diff --git a/docs/sagemaker/notebooks/sagemaker-sdk/deploy-embedding-models/sagemaker-notebook.ipynb b/docs/sagemaker/notebooks/sagemaker-sdk/deploy-embedding-models/sagemaker-notebook.ipynb index 8d6ff6f0d..d7b04c46a 100644 --- a/docs/sagemaker/notebooks/sagemaker-sdk/deploy-embedding-models/sagemaker-notebook.ipynb +++ b/docs/sagemaker/notebooks/sagemaker-sdk/deploy-embedding-models/sagemaker-notebook.ipynb @@ -53,7 +53,15 @@ "metadata": {}, "outputs": [], "source": [ - "!pip install \"sagemaker>=2.221.1\" --upgrade --quiet\n" + "!pip install \"sagemaker<3.0.0\" --upgrade --quiet" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> [!WARNING]\n", + "> [SageMaker Python SDK v3 has been recently released](https://github.com/aws/sagemaker-python-sdk), so unless specified otherwise, all the documentation and tutorials are still using the [SageMaker Python SDK v2](https://github.com/aws/sagemaker-python-sdk/tree/master-v2). We are actively working on updating all the tutorials and examples, but in the meantime make sure to install the SageMaker SDK as `pip install \"sagemaker<3.0.0\"`." ] }, { diff --git a/docs/sagemaker/notebooks/sagemaker-sdk/deploy-llama-3-3-70b-inferentia2/sagemaker-notebook.ipynb b/docs/sagemaker/notebooks/sagemaker-sdk/deploy-llama-3-3-70b-inferentia2/sagemaker-notebook.ipynb index 2f28d0b99..a95bd4163 100644 --- a/docs/sagemaker/notebooks/sagemaker-sdk/deploy-llama-3-3-70b-inferentia2/sagemaker-notebook.ipynb +++ b/docs/sagemaker/notebooks/sagemaker-sdk/deploy-llama-3-3-70b-inferentia2/sagemaker-notebook.ipynb @@ -46,7 +46,15 @@ "metadata": {}, "outputs": [], "source": [ - "!pip install sagemaker --upgrade --quiet" + "!pip install 'sagemaker<3.0.0' --upgrade --quiet" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> [!WARNING]\n", + "> [SageMaker Python SDK v3 has been recently released](https://github.com/aws/sagemaker-python-sdk), so unless specified otherwise, all the documentation and tutorials are still using the [SageMaker Python SDK v2](https://github.com/aws/sagemaker-python-sdk/tree/master-v2). We are actively working on updating all the tutorials and examples, but in the meantime make sure to install the SageMaker SDK as `pip install \"sagemaker<3.0.0\"`." ] }, { diff --git a/docs/sagemaker/notebooks/sagemaker-sdk/evaluate-llm-lighteval/sagemaker-notebook.ipynb b/docs/sagemaker/notebooks/sagemaker-sdk/evaluate-llm-lighteval/sagemaker-notebook.ipynb index 07992715c..930157152 100644 --- a/docs/sagemaker/notebooks/sagemaker-sdk/evaluate-llm-lighteval/sagemaker-notebook.ipynb +++ b/docs/sagemaker/notebooks/sagemaker-sdk/evaluate-llm-lighteval/sagemaker-notebook.ipynb @@ -25,7 +25,15 @@ "metadata": {}, "outputs": [], "source": [ - "!pip install sagemaker --upgrade --quiet" + "!pip install 'sagemaker<3.0.0' --upgrade --quiet" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> [!WARNING]\n", + "> [SageMaker Python SDK v3 has been recently released](https://github.com/aws/sagemaker-python-sdk), so unless specified otherwise, all the documentation and tutorials are still using the [SageMaker Python SDK v2](https://github.com/aws/sagemaker-python-sdk/tree/master-v2). We are actively working on updating all the tutorials and examples, but in the meantime make sure to install the SageMaker SDK as `pip install \"sagemaker<3.0.0\"`." ] }, { diff --git a/docs/sagemaker/notebooks/sagemaker-sdk/fine-tune-embedding-models/sagemaker-notebook.ipynb b/docs/sagemaker/notebooks/sagemaker-sdk/fine-tune-embedding-models/sagemaker-notebook.ipynb index d913daa55..4f11f5bb7 100644 --- a/docs/sagemaker/notebooks/sagemaker-sdk/fine-tune-embedding-models/sagemaker-notebook.ipynb +++ b/docs/sagemaker/notebooks/sagemaker-sdk/fine-tune-embedding-models/sagemaker-notebook.ipynb @@ -39,7 +39,15 @@ "metadata": {}, "outputs": [], "source": [ - "!pip install transformers \"datasets[s3]==2.18.0\" \"sagemaker>=2.190.0\" \"huggingface_hub[cli]\" --upgrade --quiet" + "!pip install transformers \"datasets[s3]==2.18.0\" \"sagemaker<3.0.0\" \"huggingface_hub[cli]\" --upgrade --quiet" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> [!WARNING]\n", + "> [SageMaker Python SDK v3 has been recently released](https://github.com/aws/sagemaker-python-sdk), so unless specified otherwise, all the documentation and tutorials are still using the [SageMaker Python SDK v2](https://github.com/aws/sagemaker-python-sdk/tree/master-v2). We are actively working on updating all the tutorials and examples, but in the meantime make sure to install the SageMaker SDK as `pip install \"sagemaker<3.0.0\"`." ] }, { diff --git a/docs/sagemaker/source/dlcs/available.md b/docs/sagemaker/source/dlcs/available.md index e58bdbfdf..044903b59 100644 --- a/docs/sagemaker/source/dlcs/available.md +++ b/docs/sagemaker/source/dlcs/available.md @@ -72,6 +72,9 @@ Let's say you want to use the training DLC for GPUs in The Python SagemMaker SDK util functions are not always up to date but it is much simpler than reconstructing the image URI yourself. +> [!WARNING] +> [SageMaker Python SDK v3 has been recently released](https://github.com/aws/sagemaker-python-sdk), so unless specified otherwise, all the documentation and tutorials are still using the [SageMaker Python SDK v2](https://github.com/aws/sagemaker-python-sdk/tree/master-v2). We are actively working on updating all the tutorials and examples, but in the meantime make sure to install the SageMaker SDK as `pip install "sagemaker<3.0.0"`. + ```python from sagemaker.huggingface import HuggingFaceModel, get_huggingface_llm_image_uri diff --git a/docs/sagemaker/source/index.md b/docs/sagemaker/source/index.md index 3235646e7..9de1c878c 100644 --- a/docs/sagemaker/source/index.md +++ b/docs/sagemaker/source/index.md @@ -12,6 +12,9 @@ We develop new tools to simplify the adoption of custom AI accelerators like AWS By combining Hugging Face's open-source models and libraries with AWS's scalable and secure cloud services, developers can more easily and affordably incorporate advanced AI capabilities into their applications. +> [!WARNING] +> [SageMaker Python SDK v3 has been recently released](https://github.com/aws/sagemaker-python-sdk), so unless specified otherwise, all the documentation and tutorials are still using the [SageMaker Python SDK v2](https://github.com/aws/sagemaker-python-sdk/tree/master-v2). We are actively working on updating all the tutorials and examples, but in the meantime make sure to install the SageMaker SDK as `pip install "sagemaker<3.0.0"`. + ## Deploy models on AWS Deploying Hugging Face models on AWS is streamlined through various services, each suited for different deployment scenarios. Here's how you can deploy your models using AWS and Hugging Face offerings. diff --git a/docs/sagemaker/source/tutorials/jumpstart/jumpstart-quickstart.md b/docs/sagemaker/source/tutorials/jumpstart/jumpstart-quickstart.md index bbaae4995..ca6569a05 100644 --- a/docs/sagemaker/source/tutorials/jumpstart/jumpstart-quickstart.md +++ b/docs/sagemaker/source/tutorials/jumpstart/jumpstart-quickstart.md @@ -15,6 +15,9 @@ In this quickstart guide, we will deploy [Qwen/Qwen2.5-14B-Instruct](https://hug | SageMaker Studio domain and user profile | We recommend using SageMaker Studio for straightforward deployment and inference. Follow this [guide](https://docs.aws.amazon.com/sagemaker/latest/dg/onboard-quick-start.html). | | Service quotas | Most LLMs need GPU instances (e.g. ml.g5). Verify you have quota for `ml.g5.24xlarge` or [request it](https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-requesting-quota-increases.html). | +> [!WARNING] +> [SageMaker Python SDK v3 has been recently released](https://github.com/aws/sagemaker-python-sdk), so unless specified otherwise, all the documentation and tutorials are still using the [SageMaker Python SDK v2](https://github.com/aws/sagemaker-python-sdk/tree/master-v2). We are actively working on updating all the tutorials and examples, but in the meantime make sure to install the SageMaker SDK as `pip install "sagemaker<3.0.0"`. + ## 2· Endpoint deployment Let's explain how you would deploy a Hugging Face model to SageMaker browsing through the Jumpstart catalog: diff --git a/docs/sagemaker/source/tutorials/sagemaker-sdk/deploy-sagemaker-sdk.md b/docs/sagemaker/source/tutorials/sagemaker-sdk/deploy-sagemaker-sdk.md index 7380265cf..8b22673bb 100644 --- a/docs/sagemaker/source/tutorials/sagemaker-sdk/deploy-sagemaker-sdk.md +++ b/docs/sagemaker/source/tutorials/sagemaker-sdk/deploy-sagemaker-sdk.md @@ -32,9 +32,12 @@ To start training locally, you need to setup an appropriate [IAM role](https://d Upgrade to the latest `sagemaker` version. ```bash -pip install sagemaker --upgrade +pip install 'sagemaker<3.0.0' ``` +> [!WARNING] +> [SageMaker Python SDK v3 has been recently released](https://github.com/aws/sagemaker-python-sdk), so unless specified otherwise, all the documentation and tutorials are still using the [SageMaker Python SDK v2](https://github.com/aws/sagemaker-python-sdk/tree/master-v2). We are actively working on updating all the tutorials and examples, but in the meantime make sure to install the SageMaker SDK as `pip install "sagemaker<3.0.0"`. + **SageMaker environment** Setup your SageMaker environment as shown below: diff --git a/docs/sagemaker/source/tutorials/sagemaker-sdk/sagemaker-sdk-quickstart.md b/docs/sagemaker/source/tutorials/sagemaker-sdk/sagemaker-sdk-quickstart.md index 67c052c43..21a7db743 100644 --- a/docs/sagemaker/source/tutorials/sagemaker-sdk/sagemaker-sdk-quickstart.md +++ b/docs/sagemaker/source/tutorials/sagemaker-sdk/sagemaker-sdk-quickstart.md @@ -11,9 +11,12 @@ The get started guide will show you how to quickly use Hugging Face on Amazon Sa Get started by installing the necessary Hugging Face libraries and SageMaker. You will also need to install [PyTorch](https://pytorch.org/get-started/locally/) if you don't already have it installed. If you run this example in SageMaker Studio, it is already installed in the notebook kernel! ```python -pip install "sagemaker>=2.140.0" "transformers==4.26.1" "datasets[s3]==2.10.1" --upgrade +pip install "sagemaker<3.0.0" "transformers==4.26.1" "datasets[s3]==2.10.1" --upgrade ``` +> [!WARNING] +> [SageMaker Python SDK v3 has been recently released](https://github.com/aws/sagemaker-python-sdk), so unless specified otherwise, all the documentation and tutorials are still using the [SageMaker Python SDK v2](https://github.com/aws/sagemaker-python-sdk/tree/master-v2). We are actively working on updating all the tutorials and examples, but in the meantime make sure to install the SageMaker SDK as `pip install "sagemaker<3.0.0"`. + If you want to run this example in [SageMaker Studio](https://docs.aws.amazon.com/sagemaker/latest/dg/studio.html), upgrade [ipywidgets](https://ipywidgets.readthedocs.io/en/latest/) for the 🤗 Datasets library and restart the kernel: ```python diff --git a/docs/sagemaker/source/tutorials/sagemaker-sdk/training-sagemaker-sdk.md b/docs/sagemaker/source/tutorials/sagemaker-sdk/training-sagemaker-sdk.md index 86f48e4c7..d5e36fdef 100644 --- a/docs/sagemaker/source/tutorials/sagemaker-sdk/training-sagemaker-sdk.md +++ b/docs/sagemaker/source/tutorials/sagemaker-sdk/training-sagemaker-sdk.md @@ -30,9 +30,12 @@ To start training locally, you need to setup an appropriate [IAM role](https://d Upgrade to the latest `sagemaker` version: ```bash -pip install sagemaker --upgrade +pip install 'sagemaker<3.0.0' ``` +> [!WARNING] +> [SageMaker Python SDK v3 has been recently released](https://github.com/aws/sagemaker-python-sdk), so unless specified otherwise, all the documentation and tutorials are still using the [SageMaker Python SDK v2](https://github.com/aws/sagemaker-python-sdk/tree/master-v2). We are actively working on updating all the tutorials and examples, but in the meantime make sure to install the SageMaker SDK as `pip install "sagemaker<3.0.0"`. + **SageMaker environment** Setup your SageMaker environment as shown below: