Description
I used the command "python validate.py /imagenet/validation/ --model seresnext26_32x4d --pretrained"
however I get results as follows:
Model seresnext26_32x4d created, param count: 16790280
Data processing configuration for current model + dataset:
input_size: (3, 224, 224)
interpolation: bicubic
mean: (0.485, 0.456, 0.406)
std: (0.229, 0.224, 0.225)
crop_pct: 0.875
Test: [ 0/196] Time: 6.305s (6.305s, 40.61/s) Loss: 9.8692 (9.8692) Acc@1: 0.000 ( 0.000) Acc@5: 0.000 ( 0.000)
Test: [ 10/196] Time: 0.460s (0.993s, 257.93/s) Loss: 9.9665 (9.8110) Acc@1: 0.000 ( 0.036) Acc@5: 0.000 ( 0.178)
Test: [ 20/196] Time: 0.460s (0.738s, 346.65/s) Loss: 9.9139 (9.8199) Acc@1: 0.000 ( 0.037) Acc@5: 0.000 ( 0.279)
Test: [ 30/196] Time: 0.658s (0.690s, 371.21/s) Loss: 9.9194 (9.8095) Acc@1: 0.000 ( 0.050) Acc@5: 0.000 ( 0.265)
Test: [ 40/196] Time: 0.456s (0.676s, 378.46/s) Loss: 9.7059 (9.8126) Acc@1: 0.000 ( 0.086) Acc@5: 0.000 ( 0.286)
Test: [ 50/196] Time: 0.598s (0.659s, 388.64/s) Loss: 9.9907 (9.8099) Acc@1: 0.000 ( 0.092) Acc@5: 0.391 ( 0.306)
Test: [ 60/196] Time: 0.456s (0.658s, 388.94/s) Loss: 9.8720 (9.8085) Acc@1: 0.000 ( 0.083) Acc@5: 0.391 ( 0.327)
Test: [ 70/196] Time: 0.458s (0.647s, 395.40/s) Loss: 9.8078 (9.8059) Acc@1: 0.391 ( 0.099) Acc@5: 0.391 ( 0.330)
Test: [ 80/196] Time: 0.457s (0.650s, 394.14/s) Loss: 9.7700 (9.8087) Acc@1: 0.000 ( 0.092) Acc@5: 0.391 ( 0.333)
Test: [ 90/196] Time: 0.462s (0.641s, 399.14/s) Loss: 9.7730 (9.8074) Acc@1: 0.000 ( 0.086) Acc@5: 0.391 ( 0.331)
Test: [ 100/196] Time: 0.455s (0.636s, 402.24/s) Loss: 9.7435 (9.8020) Acc@1: 0.000 ( 0.097) Acc@5: 1.172 ( 0.340)
Test: [ 110/196] Time: 1.086s (0.636s, 402.57/s) Loss: 9.8433 (9.8015) Acc@1: 0.000 ( 0.099) Acc@5: 0.391 ( 0.338)
Test: [ 120/196] Time: 0.456s (0.634s, 403.84/s) Loss: 9.7374 (9.8034) Acc@1: 0.391 ( 0.097) Acc@5: 0.391 ( 0.339)
Test: [ 130/196] Time: 0.756s (0.633s, 404.63/s) Loss: 9.8264 (9.8040) Acc@1: 0.000 ( 0.095) Acc@5: 0.000 ( 0.337)
Test: [ 140/196] Time: 0.456s (0.631s, 405.95/s) Loss: 9.9303 (9.8048) Acc@1: 0.000 ( 0.091) Acc@5: 1.172 ( 0.346)
Test: [ 150/196] Time: 1.038s (0.631s, 405.56/s) Loss: 9.7774 (9.8034) Acc@1: 0.000 ( 0.096) Acc@5: 1.172 ( 0.360)
Test: [ 160/196] Time: 0.456s (0.630s, 406.41/s) Loss: 9.7983 (9.8024) Acc@1: 0.000 ( 0.097) Acc@5: 0.000 ( 0.352)
Test: [ 170/196] Time: 0.948s (0.628s, 407.72/s) Loss: 9.8538 (9.8048) Acc@1: 0.000 ( 0.094) Acc@5: 0.391 ( 0.345)
Test: [ 180/196] Time: 0.456s (0.625s, 409.81/s) Loss: 9.6598 (9.8046) Acc@1: 0.391 ( 0.095) Acc@5: 1.172 ( 0.354)
Test: [ 190/196] Time: 1.276s (0.630s, 406.42/s) Loss: 9.7359 (9.8046) Acc@1: 0.000 ( 0.094) Acc@5: 0.781 ( 0.360)
- Acc@1 0.094 (99.906) Acc@5 0.360 (99.640)