diff --git a/src/transformers/models/longformer/modeling_longformer.py b/src/transformers/models/longformer/modeling_longformer.py index 22c441d476b3..a2a4e94414a2 100755 --- a/src/transformers/models/longformer/modeling_longformer.py +++ b/src/transformers/models/longformer/modeling_longformer.py @@ -16,7 +16,7 @@ import math from dataclasses import dataclass -from typing import Optional, Tuple +from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint @@ -1609,17 +1609,17 @@ def _merge_to_attention_mask(self, attention_mask: torch.Tensor, global_attentio @replace_return_docstrings(output_type=LongformerBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) def forward( self, - input_ids=None, - attention_mask=None, - global_attention_mask=None, - head_mask=None, - token_type_ids=None, - position_ids=None, - inputs_embeds=None, - output_attentions=None, - output_hidden_states=None, - return_dict=None, - ): + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + global_attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, LongformerBaseModelOutputWithPooling]: r""" Returns: @@ -1752,18 +1752,18 @@ def set_output_embeddings(self, new_embeddings): @replace_return_docstrings(output_type=LongformerMaskedLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, - input_ids=None, - attention_mask=None, - global_attention_mask=None, - head_mask=None, - token_type_ids=None, - position_ids=None, - inputs_embeds=None, - labels=None, - output_attentions=None, - output_hidden_states=None, - return_dict=None, - ): + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + global_attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, LongformerMaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., @@ -1858,18 +1858,18 @@ def __init__(self, config): ) def forward( self, - input_ids=None, - attention_mask=None, - global_attention_mask=None, - head_mask=None, - token_type_ids=None, - position_ids=None, - inputs_embeds=None, - labels=None, - output_attentions=None, - output_hidden_states=None, - return_dict=None, - ): + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + global_attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, LongformerSequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., @@ -1979,19 +1979,19 @@ def __init__(self, config): @replace_return_docstrings(output_type=LongformerQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, - input_ids=None, - attention_mask=None, - global_attention_mask=None, - head_mask=None, - token_type_ids=None, - position_ids=None, - inputs_embeds=None, - start_positions=None, - end_positions=None, - output_attentions=None, - output_hidden_states=None, - return_dict=None, - ): + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + global_attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + start_positions: Optional[torch.Tensor] = None, + end_positions: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, LongformerQuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. @@ -2124,18 +2124,18 @@ def __init__(self, config): ) def forward( self, - input_ids=None, - attention_mask=None, - global_attention_mask=None, - head_mask=None, - token_type_ids=None, - position_ids=None, - inputs_embeds=None, - labels=None, - output_attentions=None, - output_hidden_states=None, - return_dict=None, - ): + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + global_attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, LongformerTokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. @@ -2207,18 +2207,18 @@ def __init__(self, config): ) def forward( self, - input_ids=None, - token_type_ids=None, - attention_mask=None, - global_attention_mask=None, - head_mask=None, - labels=None, - position_ids=None, - inputs_embeds=None, - output_attentions=None, - output_hidden_states=None, - return_dict=None, - ): + input_ids: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + global_attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, LongformerMultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,