diff --git a/docs/source/ko/_toctree.yml b/docs/source/ko/_toctree.yml
index 74833464ccd1..98d2e1381069 100644
--- a/docs/source/ko/_toctree.yml
+++ b/docs/source/ko/_toctree.yml
@@ -1161,8 +1161,8 @@
title: SigLIP2
- local: in_translation
title: SmolLM3
- - local: in_translation
- title: SmolVLM
+ - local: model_doc/smolvlm
+ title: 소형 비전 언어 모델
- local: in_translation
title: Speech Encoder Decoder Models
- local: in_translation
diff --git a/docs/source/ko/model_doc/smolvlm.md b/docs/source/ko/model_doc/smolvlm.md
new file mode 100644
index 000000000000..1ebd50519c18
--- /dev/null
+++ b/docs/source/ko/model_doc/smolvlm.md
@@ -0,0 +1,210 @@
+
+*이 모델은 2025년 2월 20일에 출시되었으며, 동시에 허깅페이스 `Transformer` 라이브러리에 추가되었습니다.*
+
+# 소형 비전 언어 모델(SmolVLM)[[smolvlm]]
+
+
+
+## 개요[[overview]]
+[SmolVLM2](https://huggingface.co/papers/2504.05299) ([블로그 글](https://huggingface.co/blog/smolvlm2)) 은 Idefics3 모델을 개선한 버전으로, 두 가지 주요 차이점이 있습니다:
+
+- 텍스트 모델로 SmolLM2를 사용합니다.
+- 한 장의 이미지뿐 아니라 여러 장의 이미지와 비디오 입력도 지원합니다.
+
+## 사용 팁[[usage-tips]]
+
+입력된 이미지는 설정에 따라 원본 해상도를 유지하거나 크기를 조절할 수 있습니다. 이때 이미지 크기 조절 여부와 방식은 `do_resize`와 `size` 파라미터로 결정됩니다.
+
+비디오의 경우에는 업샘플링을 하면 안 됩니다.
+
+만약 `do_resize`가 `True`일 경우, 모델은 기본적으로 이미지의 가장 긴 변을 4*512 픽셀이 되도록 크기를 조절합니다.
+이 기본 동작은 `size` 파라미터에 딕셔너리를 전달하여 원하는 값으로 직접 설정할 수 있습니다. 예를 들어, 기본값은 `{"longest_edge": 4 * 512}` 이여도 사용자 필요에 따라 다른 값으로 변경할 수 있습니다.
+
+다음은 리사이징을 제어하고 사용자 정의 크기로 변경하는 방법입니다:
+```python
+image_processor = SmolVLMImageProcessor(do_resize=True, size={"longest_edge": 2 * 512}, max_image_size=512)
+```
+
+또한, `max_image_size` 매개변수는 이미지를 분할하는 정사각형 패치의 크기를 제어합니다. 이 값은 기본적으로 512로 설정되어 있으며 필요에 따라 조정 가능합니다. 이미지 처리기는 리사이징을 마친 후, `max_image_size` 값을 기준으로 이미지를 여러 개의 정사각형 패치로 분할합니다.
+
+이 모델의 기여자는 [orrzohar](https://huggingface.co/orrzohar) 입니다.
+
+
+
+## 사용 예시[[usage-example]]
+
+### 단일 미디어 추론[[single-media-inference]]
+
+이 모델은 이미지와 비디오를 모두 입력으로 받을 수 있지만, 한 번에 사용할 수 있는 미디어는 반드시 하나의 종류여야 합니다. 관련 예시 코드는 다음과 같습니다.
+
+```python
+import torch
+from transformers import AutoProcessor, AutoModelForImageTextToText
+
+processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-256M-Video-Instruct")
+model = AutoModelForImageTextToText.from_pretrained(
+ "HuggingFaceTB/SmolVLM2-256M-Video-Instruct",
+ dtype=torch.bfloat16,
+ device_map="auto"
+)
+
+conversation = [
+ {
+ "role": "user",
+ "content":[
+ {"type": "image", "url": "http://images.cocodataset.org/val2017/000000039769.jpg"},
+ {"type": "text", "text": "이 이미지에 대해 설명해주세요."}
+ ]
+ }
+]
+
+inputs = processor.apply_chat_template(
+ conversation,
+ add_generation_prompt=True,
+ tokenize=True,
+ return_dict=True,
+ return_tensors="pt",
+).to(model.device, dtype=torch.bfloat16)
+
+output_ids = model.generate(**inputs, max_new_tokens=128)
+generated_texts = processor.batch_decode(output_ids, skip_special_tokens=True)
+print(generated_texts)
+
+
+# Video
+conversation = [
+ {
+ "role": "user",
+ "content": [
+ {"type": "video", "path": "/path/to/video.mp4"},
+ {"type": "text", "text": "이 비디오에 대해 자세히 설명해주세요."}
+ ]
+ },
+]
+
+inputs = processor.apply_chat_template(
+ conversation,
+ add_generation_prompt=True,
+ tokenize=True,
+ return_dict=True,
+ return_tensors="pt",
+).to(model.device, dtype=torch.bfloat16)
+
+generated_ids = model.generate(**inputs, do_sample=False, max_new_tokens=100)
+generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
+print(generated_texts[0])
+```
+
+### 배치 다중 미디어 추론[[batch-mixed-media-inference]]
+
+이 모델은 여러 이미지, 비디오, 텍스트로 구성된 입력을 한 번에 배치 형태로 처리할 수 있습니다. 관련 예시는 다음과 같습니다.
+
+```python
+import torch
+from transformers import AutoProcessor, AutoModelForImageTextToText
+
+processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-256M-Video-Instruct")
+model = AutoModelForImageTextToText.from_pretrained(
+ "HuggingFaceTB/SmolVLM2-256M-Video-Instruct",
+ dtype=torch.bfloat16,
+ device_map="auto"
+)
+
+# 첫 번째 이미지에 대한 구성
+conversation1 = [
+ {
+ "role": "user",
+ "content": [
+ {"type": "image", "path": "/path/to/image.jpg"},
+ {"type": "text", "text": "이 이미지에 대해 설명해주세요."}
+ ]
+ }
+]
+
+# 두 장의 이미지를 포함한 구성
+conversation2 = [
+ {
+ "role": "user",
+ "content": [
+ {"type": "image", "path": "/path/to/image.jpg"},
+ {"type": "image", "path": "/path/to/image.jpg"},
+ {"type": "text", "text": "그림에 무엇이 적혀있나요?"}
+ ]
+ }
+]
+
+# 텍스트만 포함하고 있는 구성
+conversation3 = [
+ {"role": "user","content": "당신은 누구인가요?"}
+]
+
+
+conversations = [conversation1, conversation2, conversation3]
+inputs = processor.apply_chat_template(
+ conversation,
+ add_generation_prompt=True,
+ tokenize=True,
+ return_dict=True,
+ return_tensors="pt",
+).to(model.device, dtype=torch.bfloat16)
+
+generated_ids = model.generate(**inputs, do_sample=False, max_new_tokens=100)
+generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
+print(generated_texts[0])
+```
+
+## SmolVLMConfig[[transformers.SmolVLMConfig]]
+
+[[autodoc]] SmolVLMConfig
+
+## SmolVLMVisionConfig[[transformers.SmolVLMVisionConfig]]
+
+[[autodoc]] SmolVLMVisionConfig
+
+## Idefics3VisionTransformer[[transformers.SmolVLMVisionTransformer]]
+
+[[autodoc]] SmolVLMVisionTransformer
+
+## SmolVLMModel[[transformers.SmolVLMModel]]
+
+[[autodoc]] SmolVLMModel
+ - forward
+
+## SmolVLMForConditionalGeneration[[transformers.SmolVLMForConditionalGeneration]]
+
+[[autodoc]] SmolVLMForConditionalGeneration
+ - forward
+
+## SmolVLMImageProcessor[[transformers.SmolVLMImageProcessor]]
+[[autodoc]] SmolVLMImageProcessor
+ - preprocess
+
+## SmolVLMImageProcessorFast[[transformers.SmolVLMImageProcessorFast]]
+[[autodoc]] SmolVLMImageProcessorFast
+ - preprocess
+
+## SmolVLMVideoProcessor[[transformers.SmolVLMVideoProcessor]]
+[[autodoc]] SmolVLMVideoProcessor
+ - preprocess
+
+## SmolVLMProcessor[[transformers.SmolVLMProcessor]]
+[[autodoc]] SmolVLMProcessor
+ - __call__