Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
大数据机器学习框架
branch: master
Failed to load latest commit information.
clustering 第一发
contrib 第一发
data 第一发
dictionary 修正一个bug,maxent分类器训练时间减少45%
doc 第一发
eval 第一发
nn 第一发
online 第一发
optimizer 第一发
supervised 修正一个bug,maxent分类器训练时间减少45%
testdata 第一发
tool 修正一个bug,maxent分类器训练时间减少45%
util 第一发
README.md Update README.md
license.txt 第一发
mlf.go 第一发

README.md

弥勒佛

让天下没有难做的大数据模型!

现有的机器学习框架/软件包存在几个问题:

  • 无法处理大数据:多数Python,Matlab和R写的训练框架适合处理规模小的样本,没有为大数据优化。
  • 不容易整合到实际生产系统:standalone的程序无法作为library嵌入到大程序中。
  • 模型单一:一个软件包往往只解决一个类型的问题(比如监督式或者非监督式)。
  • 不容易扩展:设计时没有考虑可扩展性,难以添加新的模型和组件。
  • 代码质量不高:代码缺乏规范,难读懂、难维护。

弥勒佛项目的诞生就是为了解决上面的问题,在框架设计上满足了下面几个需求:

  • 处理大数据:可随业务增长scale up,无论你的数据样本是1K还是1B规模,都可使用弥勒佛项目。
  • 为实际生产:模型的训练和使用都可以作为library或者service整合到在生产系统中。
  • 丰富的模型:容易尝试不同的模型,在监督、非监督和在线学习等模型间方便地切换。
  • 高度可扩展:容易添加新模型,方便地对新模型进行实验并迅速整合到生产系统中。
  • 高度可读性:代码规范,注释和文档尽可能详尽,适合初学者进行大数据模型的学习。

安装/更新

go get -u github.com/huichen/mlf

功能

下面是弥勒佛框架解决的问题类型,括号中的斜体代表尚未实现以及预计实现的时间

  • 监督式学习:最大熵分类模型(max entropy classifier),决策树模型(decision tree based models,2014 Q1
  • 非监督式学习:聚类问题(k-means,2014 Q1
  • 在线学习:在线梯度递降模型(online stochastic gradient descent)
  • 神经网络(2014 Q2/3

项目实现了下面的组件

其它

Something went wrong with that request. Please try again.