Skip to content

python scripts to perform coin die clustering (performed on Riedones3D).

License

Notifications You must be signed in to change notification settings

humanpose1/riedones3d

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

31 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Riedones3D

Presentation of Riedones3D

It is the code to perform coin die recognition and die clustering. More information on this article.

Installation

requirements:

pyrender==0.1.45
hydra-core==1.0.0
omegaconf==2.0.6
scikit-learn==0.24.2
torch-cluster==1.5.9
torch-scatter==2.0.7
torch-geometric==1.7.2
torch==1.8.1
torch_points_kernels
torch-points3d==1.3.0
MinkowskiEngine==0.5.2
torch-sparse==1.4.0
omegaconf==2.0.6
hydra-core==1.0.0
open3d==0.12.0

First install anaconda or miniconda (use this website for example)

then open a terminal.

create a new environnement (for example using conda)

conda create -n "riedones_3d"
conda activate riedones_3d

execute this script to install the correct packages(here we install with cuda102)

pip install pyrender
pip install trimesh
pip install networkx
pip install torch==1.8.1
pip install torch-scatter -f https://data.pyg.org/whl/torch-1.8.1+cu102.html
pip install torch-sparse -f https://data.pyg.org/whl/torch-1.8.1+cu102.html
pip install torch-cluster -f https://data.pyg.org/whl/torch-1.8.1+cu102.html
pip install torch-spline-conv -f https://data.pyg.org/whl/torch-1.8.1+cu102.html
pip install torch-geometric==1.7.2
pip install git+https://github.com/humanpose1/deeppointcloud-benchmarks.git@registration/riedones3d

install minkowski engine (it works with version 0.5.3)

apt-get install build-essential python3-dev libopenblas-dev
pip install -U git+https://github.com/NVIDIA/MinkowskiEngine --no-deps

install torch-sparse

apt-get install libsparsehash-dev
pip install --upgrade git+https://github.com/mit-han-lab/torchsparse.git@v1.4.0

install TEASER++

git clone https://github.com/MIT-SPARK/TEASER-plusplus.git
cd TEASER-plusplus && mkdir build && cd build
cmake -DTEASERPP_PYTHON_VERSION=3.8 .. && make teaserpp_python
cd python && pip install .

Dataset

The Riedones3D dataset is available on the website.

Preprocessing

As input, we need ply format. We propose a simple script to convert from stl to ply with normals.

python scripts/preprocessing.py --path_coin mymesh.stl

this script orients the point cloud with respect to the z axis. Also it can apply a scale

Register a pair of coin

Pipeline It will register the pair and it will also compute the histogram of distance. It displays the results with open3D. The following script shows the Pairwise similarity estimation.

python scripts/whole_pipeline.py --path COIN1.ply COIN2.ply -m PATH OF THE MODEL --angle 0 --trans 20  --clf classifiers/logistic_part_droits_sym.pkl --path_scaler classifiers/mean_std.json --est ransac

You can download the model here.

The password is: !riedones3D

Coin die Clustering

Pipeline

Compute the features

First you need to compute the features:

python scripts/compute_feature.py --path_coin DROITS --list_coin Coins_et_Monnaies_Droits_all.csv -m PATH OF THE MODEL --path_output results --name Droits

It takes few minutes to compute every features. Then we can estimate the transformation

compute a pair similarity comparison

python scripts/compute_transformation.py --path_feature results/Droits/feature/  --path_output results/Droits/transformation --list_coin Coins_et_Monnaies_Droits_all.csv --num_points 5000 --est ransac --n_jobs 8 --sym

--sym means the histogram is symmetric. --num_points is the number of points --est is the robust estimator to compute the transformation It takes few days to compute every similarities it will generate two files:

  • a file containing every transformations
  • a file containing every histograms of distance

Compute the Graph

We compute the graph of similarity between the pairs of coins

python scripts/compute_graph_from_hist.py --path_histogram results/Droits/transformation/hist.npy --path_clf classifiers/logistic_part_droits_sym.pkl --path_output results/Droits/graph --path_scaler classifiers/mean_std.json

Clean the graph using graph visualizer

You can select links nodes, remove/add links, search for a node cluster the results, save the graph.

TODO: Tutorial about how to use graph visualizer

generate images and 3D models

You can use the script render_coins in order to render images (require trimesh, pyrender and open3d).

python scripts/render_coins.py --path_coin PATH COIN --path_tr PATH transfo npy --path_graph PATH GRAPH json --path_output PATH OUTPUT -t THRESH --clustered --save-3d

--path_coin is the path of directories containing the coins. WARNING: It must be meshes.

--path_tr is the path of the file containing the transformations. It is a npy format transfo.npy.

--path_graph is the path containing the graph. It is a json format graph.json

--path_output path where the 3d data and images will be stored.

-t threshold of the graph for the clustering (see the effect in the graph visualizer).

--clustered to save file by folder.

--save_3d save 3d files (if you do not want to save the 3d files, use instead --no-save-3d).

If you find this repo helpful, please cite:

@inproceedings {horache2021riedones3d,
booktitle = {Eurographics Workshop on Graphics and Cultural Heritage},
editor = {Hulusic, Vedad and Chalmers, Alan},
title = {{Riedones3D: a Celtic Coin Dataset for Registration and Fine-grained Clustering}},
author = {Horache, Sofiane and Deschaud, Jean-Emmanuel and Goulette, François and Gruel, Katherine and Lejars, Thierry and Masson, Olivier},
year = {2021},
publisher = {The Eurographics Association},
ISBN = {978-3-03868-141-0},
pages = {83-92},
DOI = {10.2312/gch.20211410}
}

About

python scripts to perform coin die clustering (performed on Riedones3D).

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

 
 
 

Languages