
Github Actions deploy Flutter iOS app 1

Github Actions deploy Flutter
iOS app
When I encountered challenges with deploying A flow manually through GitHub Actions,
I turned to the invaluable insights shared by Duco Fronik in their expertly crafted article.
Through their guidance, I was able to gain a deeper understanding of the fundamental
principles of A flow and learn how to navigate Apple's unique limitations for a smoother
deployment process. I found the article particularly useful as it provided practical tips on
what factors to consider and how to overcome common obstacles without resorting to
third-party solutions like Codemagic or Fastlane. Fronik's article proved to be an
indispensable resource for anyone looking to streamline their A flow deployment
process with GitHub Actions.

GitHub actions workflow:
https://github.com/PrimozRatej/app/blob/master/.github/workflows/version-release.yml

Build IPA
For building an IPA file that will be deployed with pipe we need these 4 values:

- name: 'Install the Apple certificate and provisioning profile'
 env:
 BUILD_CERTIFICATE_BASE64: ${{ secrets.BUILD_CERTIFICATE_BASE64 }}

https://medium.com/@ducofronik?source=post_page-----48cf2ad7c72a--------------------------------
https://medium.com/team-rockstars-it/the-easiest-way-to-build-a-flutter-ios-app-using-github-actions-plus-a-key-takeaway-for-developers-48cf2ad7c72a
https://github.com/PrimozRatej/app/blob/master/.github/workflows/version-release.yml

Github Actions deploy Flutter iOS app 2

 P12_PASSWORD: ${{ secrets.P12_PASSWORD }}
 BUILD_PROVISION_PROFILE_BASE64: ${{ secrets.BUILD_PROVISION_PROFILE_BASE64 }}
 KEYCHAIN_PASSWORD: ${{ secrets.KEYCHAIN_PASSWORD }}

1. BUILD_CERTIFICATE_BASE64 and P12_PASSWORD

1.1 This is the Base64 representation of the building certificate of a TYPE
‘Distribution’ it can be found in developer.apple.com/ ⇒ Certificates, Identifiers &
Profiles ⇒ Certificates

1.2 After we download the certificate we need to convert it to password protected
p12 file this can be done from Keytool on an Apple machine or with openssl lib.
instructions here

1.3 Then we end up with a .p12 file that represents our signing cert and a password,
now we need to convert that p12 file to a base64 string.

openssl base64 -in [filename] | pbcopy // Mac, Linux
openssl base64 -in [filename] | clip // Win

1.4 At last we can now copy the values to Github Secrets.

2. BUILD_PROVISION_PROFILE_BASE64

A provisioning profile authorizes your app to use certain app services and
ensures that you're a known developer developing, uploading, or distributing
your app
. A provisioning profile contains a single App ID that matches one or more of your
apps and a distribution certificate.

Download a a provisioning profile from developer.apple.com/ ⇒ Certificates,
Identifiers & Profiles ⇒ Profiles

Convert it to base64 string and import that to GitHub Secrets under the
BUILD_PROVISION_PROFILE_BASE64

3. KEYCHAIN_PASSWORD

When building an IPA file, the Keystore and certificates are always removed from
the build at the end. However, to ensure its security during the build process, we

http://developer.apple.com/
https://stackoverflow.com/a/42196304
http://developer.apple.com/

Github Actions deploy Flutter iOS app 3

utilize a randomly generated string (password) as a protective measure for the
Keystore.

Select any password that you would like.

And that’s it for the build let's continue to Release.

Release IPA to TestFlight
For the release, we are using the apple-actions/upload-testflight-build@v1

- name: 'Upload app to TestFlight'
 uses: apple-actions/upload-testflight-build@v1
 with:
 app-path: build/ios/ipa/humhub.ipa
 issuer-id: ${{ secrets.APP_API_ISSUER_ID }}
 api-key-id: ${{ secrets.APPSTORE_API_KEY_ID }}
 api-private-key: ${{ secrets.APP_API_PRIVATE_KEY }}

Go to https://appstoreconnect.apple.com/access/api

APP_API_ISSUER_ID (Blue) and APPSTORE_API_KEY_ID (Brown) the last
APP_API_PRIVATE_KEY is a String that you previously downloaded as a file copy it as
it is to Github secrets together with the other 2 values.

Now, this is all that we should need to successfully deploy the app to Testflight with
GitHub Actions with a current pipe.

Author: Primož Ratej Cvahte

https://github.com/marketplace/actions/upload-app-to-testflight
https://appstoreconnect.apple.com/access/api

Github Actions deploy Flutter iOS app 4

