

DMR++ vs. Kerchunk Feature Study

Aleksandar Jelenak
Hyo-Kyung (Joe) Lee

The HDF Group

February 2023

Table of Contents

1 Introduction .. 1

1.1 About DMR++ .. 1

1.2 About Kerchunk ... 1

2 DMR++ and Kerchunk Feature Comparison ... 2

3 DMR++ and Kerchunk Software Comparison ... 3

4 Findings and Recommendations ... 4

 1

1 Introduction
Native cloud computing applications often rely on the Hypertext Transfer Protocol (HTTP) for

data access. This protocol has a significant network latency, much larger compared to the

conventional or high-performance file systems, so it is imperative for cloud applications to utilize

any available optimization to achieve faster data access and reduce overall application runtime

while retaining agile scalability.

The HDF5 library currently does not offer good options for HDF5 files hosted by cloud object

storage systems. Since many of the NASA EOSDIS datasets are in this format, there is great

need in alternative cloud-native methods for HDF5 data access.

One possible approach involves a manifest file, also called sidecar file, listing one HDF5 file’s

entire content. Having entire file content readily available is very useful for any cloud-optimized

data access. This study examines two manifest file formats: DMR++ and Kerchunk. Both

formats share the same fundamentals: a text format capable of representing HDF5 groups,

datasets, their attributes including values, and dataset storage settings. The actual data in a

file’s HDF5 datasets are represented as byte ranges (file offset and size). When HDF5 files are

rarely or not at all modified, their manifest files provide readily available source of information

required for data access.

1.1 About DMR++
DMR++ is the XML-based format for describing the content of HDF5 and netCDF-4 files used by

the Hyrax server. It was created by combining Hyrax server’s Dataset Metadata Representation

(DMR) document with the HDF5 dataset chunk file location and its storage settings (the “++”

part). Access to HDF5 data described with DMR++ is currently only possible via the Hyrax

server and its web services.

Hyrax server provides all the required software to generate DMR++ files. One DMR++ file

describes one HDF5 file. Data aggregation of collections of DMR++ files employs the same

techniques as for HDF5 files.

1.2 About Kerchunk
Kerchunk is a Python package, part of the fsspec project that provides a unified file system

abstraction for many backend storage systems. Kerchunk’s output is a representation of the

content from one or more files as a virtual file system, called ReferenceFileSystem, which is

then accessed with the fsspec API as just another storage backend. For this study, we will focus

on the ReferenceFileSystem as applied to single files since this is the most relevant aspect of

the Kerchunk’s features for data access.

Kerchunk originated from a project by The HDF Group and funded by the US Geological

Survey, to enable access to HDF5 and netCDF-4 data from the software stack based on the

Python packages zarr and xarray. That project formulated an approach of translating HDF5 file

content and storage settings to Zarr format, which formed the basis for Kerchunk’s

ReferenceFileSystem. It also established that access performance between an HDF5 file and a

Zarr store with the same data and storage settings is statistically equal, and determined the

same approach was likely applicable to many other formats for multidimensional data arrays.

 2

Kerchunk is a very recent and still actively developed software. The activities are split between

adding support for new data formats and tooling to efficiently generate aggregated Kerchunk

(ReferenceFileSystem) documents from multi-file collections.

2 DMR++ and Kerchunk Feature Comparison
The main features of both DMR++ and Kerchunk are summarized in the table below.

Feature DMR++ Kerchunk

Document format XML JSON

Data model DAP
Zarr v2 (support for v3 is
pending).

Programming language C++ Python

Supported data formats
HDF5 (HDF-EOS5,
netCDF-4).

HDF5 (HDF-EOS5,
netCDF-4), TIFF, FITS,
GRIB2, netCDF3.

HDF5 content support Compatible with netCDF-4. Compatible with netCDF-4.

Inline HDF5 compact layout
dataset data

Yes Yes

Inline HDF5 contiguous
layout dataset data

No
Yes, with a configurable
threshold.

Inline HDF5 variable-length
data

Yes
Yes, with several inline
storage options.

HDF5 filter support
Compression: deflate;
Other: shuffle, fletcher32

Any filter supported by the
numcodecs Python
package. Includes: deflate,
shuffle, fletcher32.

Subchunking No Only for netCDF-3 files.

Architecture
Static files, primarily
intended for backend Hyrax
server use.

Static files accessed
directly via native object
store web services.

Primary access software
stack

Hyrax server
xarray, zarr, fsspec Python
packages.

Supported storage locations
Local or network file
system, AWS S3.

Any supported by the
fsspec Python package.
File system and AWS S3
are supported.

Data aggregation format NcML Kerchunk JSON

CF convention support
Yes. An option when
generating DMR++ files.

xarray Python package.

 3

Feature DMR++ Kerchunk

Templating object location
at runtime

Yes
Yes, in Kerchunk JSON v1
only.

Several entries in the table above warrant further clarification:

• Data inlining means including actual data in DMR++ XML or Kerchunk JSON document.

This is a requirement for HDF5 datasets with compact layout because their file location

(offset and size) is not currently available from the HDF5 library API. The maximum size

of HDF5 compact datasets is 64 kilobytes and they are overall seldom present in the

EOSDIS HDF5 files.

The other need for data inlining is for HDF5 datasets with variable-length datatype. The

current storage implementation of variable-length data by the HDF5 library does not

allow for block-like (HTTP range GET) access. The EOSDIS granules do not contain

large amounts of such data so inlining is not going to yield unwieldy DMR++ or Kerchunk

documents.

Kerchunk does support a few other storage options for variable-length HDF5 data, but

we aren’t sure whether they work as intended and did not explore further as this issue is

not that important for this study.

• Subchunking means partial access to one chunk’s data, i.e. “chunk within chunk”. Only

Kerchunk supports this and only for the old netCDF3 file format which does not have

true chunking. This file format only permits extending arrays along the first dimension,

making subchunk selections straightforward to apply.

• DMR++ document represent one file so data aggregation relies on NcML configuration

documents, which is the standard Hyrax server feature. NcML does have some runtime

aggregation update capabilities, although only if the files are in on-prem (local or

network) file systems. Kerchunk provides a programmable method for data aggregation

and the generated JSON document is static. Adding new files to the aggregation

requires either regenerating the entire JSON document or manual JSON editing.

3 DMR++ and Kerchunk Software Comparison
We evaluated several software tools and libraries for ability to generate DMR++ or Kerchunk

documents, interoperability in using these document formats, and current ability to access HDF5

data via these two formats. The following granules have been selected for this study as

reasonable representatives of different HDF5 storage features present in the EOSDIS data:

• 3A-MO.GPM.GMI.GRID2014R1.20140601-S000000-E235959.06.V03A.h5

• GLDAS_NOAH025_3H.A20210101.0000.021.nc4.h5

• OMI-Aura_L2-OMNO2_2016m0215t0210-o61626_v003-2016m0215t200753.he5

• AMSR_2_L3_DailySnow_P00_20160831.he5

• VNP09A1.A2015257.h29v11.001.2016221164845.h5

• ATL08_20181014084920_02400109_003_01.h5

• SMAP_L3_SM_P_20150406_R14010_001.h5

• 20020602090000-JPL-L4_GHRSST-SSTfnd-MUR-GLOB-v02.0-fv04.1.h5

 4

• 20220524080000-STAR-L2P_GHRSST-SSTsubskin-ABI_G17-ACSPO_V2.71-v02.0-

fv01.0.nc.h5

• 20220607120000-STAR-L3S_GHRSST-SSTsubskin-LEO_PM_D-ACSPO_V2.80-v02.0-

fv01.0.nc.h5

• SWOT_L2_HR_PIXC_007_483_235R_20220821T102608_20220821T102618_Dx0000

_01.nc.h5

The software used in the study are:

• netCDF C library with NCZarr and OPeNDAP support

• Hyrax server (as Docker container)

• zarr, xarray, xarray-datatree, pydap, kerchunk Python packages

The details of the technical part of this study are in a special GitHub repository and its wiki.

4 Findings and Recommendations
We compared manifest file formats DMR++ XML and Kerchunk JSON for their capability to

represent EOSDIS granules in HDF5-based file formats (HDF5, HDF-EOS5, netCDF-4). These

manifest files are the foundation of their respective software stacks for access to HDF5 data

without the HDF5 library.

DMR++ is based on the Data Access Protocol (DAP) while Kerchunk is based on the Zarr

format. Both share the same approach for storing HDF5 dataset chunk location as a three-tuple

of HDF5 file URI, chunk file offset, and chunk size (length). Thus, the differences are really

about all the other content in these two formats.

It is important to note that the features of both DMR++ and Kerchunk are guided by how HDF5

data they represent are interpreted by their software stacks: Hyrax server and its clients for

DMR++, and xarray & zarr Python packages for Kerchunk. Rather than going over their

similarities, we will focus on important differences relevant for EOSDIS HDF5 data.

Kerchunk JSON reflects accurately HDF5 file hierarchy while DMR++ may not if the group

flattening configuration option is set. This DMR++ functionality enables better support for Hyrax

clients who expect certain aspects of the CF metadata conventions compliance. Kerchunk

currently does not have this feature. In this context, it is important to note that the Kerchunk

Python package provides programmable support for generating file aggregations from single-file

Kerchunk JSON documents and that this functionality seems to be most interesting to its users.

All modifications for improving data content compliance are applied at this level in Kerchunk.

The most consequential deficiency in Kerchunk JSON is the lack of support for HDF5 attribute

datatypes. This comes from the Zarr format which only can store attributes as simple JSON

values: string, number, boolean, array, or null. This prevents successful round-trip conversion of

file content information between DMR++ and Kerchunk documents. This also makes

compliance checking for certain conventions not possible because precise attribute datatype

information is missing. In this regard, DMR++ has a clear advantage as it preserves attribute

datatypes.

There is one extraneous attribute added to DMR++ named build_dmrpp_metadata that does not

exist in source HDF5 file. It needs to be removed when converting to Kerchunk JSON.

https://github.com/hyoklee/kerchunk
https://github.com/hyoklee/kerchunk/wiki

 5

Kerchunk inserts _ARRAY_DIMENSIONS Zarr attribute to store netCDF dimension/HDF5

dimension scale information. This attribute also needs to be excluded when converting to

DMR++ and use the appropriate DMR++ feature for the attribute’s information.

Chunk file locations is another critical type of information not possible to extract from Kerchunk

JSON using the zarr Python package. This package de facto acts as the data I/O API for

Kerchunk information. It is possible to get chunk file locations by directly parsing Kerchunk

JSON. This approach is, however, dependent on the Kerchunk document format which already

has two versions (V0 and V1).

Final issue related to HDF5 file content representation: both DMR++ and Kerchunk cannot

currently store chunk filter mask, a bitmap value indicating which filters have actually been

applied by the HDF5 library to each particular chunk. This is an obscure HDF5 storage feature

and we have no indication any of the existing EOSDIS HDF5 files contain chunks with differing

filter masks. Currently the DMR++ and Kerchunk software does not use chunk filter mask

information. We think some basic level of checking should be implemented to ensure the

correctness of DMR++ and Kerchunk file content information.

The sizes of generated DMR++ XML and Kerchunk JSON documents for our sample granules

indicate that Kerchunk JSON is likely going to produce smaller files. The reasons are that JSON

is a less verbose format than XML and Kerchunk JSON V1 format supports templated variables

to avoid repeating strings like HDF5 file location for every chunk.

Producing DMR++ documents from our sample granules did not have any errors while we found

several granules for which generating Kerchunk failed or omitted certain HDF5 content. This is

expected given that DMR++ software is actively developed specifically for the EOSDIS HDF5

data. Kerchunk relies on the Zarr format and its community doesn’t actively use much of the

EOSDIS HDF5 data yet.

Below are conclusions and recommendations based on our study:

• DMR++ is more suitable for EOSDIS HDF5 files at present.

• DMR++ XML can be used to generate Kerchunk JSON without any loss of information.

• Lack of attribute datatypes in Kerchunk prevents it being used as the reference baseline

for HDF5-based file content.

• DMR++ and Kerchunk software should consider the values of chunk filter masks during

processing as an additional data integrity check.

• The real expertise in translating EOSDIS HDF5 file content to any manifest format, be it

DMR++ or Kerchunk, is in the Hyrax server software (handlers, modules, etc.), and is

the result of long-term development. Supporting any specific manifest file format is just a

matter of exporting HDF5 file content information into a specific text-based format.

• Having Kerchunk available, statically or on-demand, would enable support of the open-

source Python software stack based on the xarray and zarr packages with a very active

and engaged developer and user community.

	1 Introduction
	1.1 About DMR++
	1.2 About Kerchunk

	2 DMR++ and Kerchunk Feature Comparison
	3 DMR++ and Kerchunk Software Comparison
	4 Findings and Recommendations

