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1. Abstract
Blockchain technologies are growing in usage, but fragmentation is a big problem that may hinder
reaching critical levels of adoption in the future.

We propose a protocol and it’s implementation to connect as many of them as possible in an
attempt to solve the fragmentation problem by creating a heterogeneous system architecture 1.

2. Example Use Cases
Specific use cases that we intend to support. The core idea is to support as many use-cases as
possible by enabling interoperability between a large variety of ledgers specific to certain
mainstream or exotic use cases.

2.1 Ethereum to Quorum Asset Transfer

Use Case
Attribute

Name
Use Case Attribute Value

Use Case
Title Ethereum to Quorum Asset Transfer

Use Case 1. User A owns an asset on a Ethereum ledger
2. User A transfers some asset on Ethereum ledger to a Quorum ledger

Interworking
patterns Value transfer

Type of
Social
Interaction

Generic Asset Transfer

Narrative

A person (User A) has multiple accounts on different ledgers (Ethereum, Quorum) and
they wish to transfer some asset from Ethereum ledger to a Quorum ledger. The
asset they are transferring is a generic asset meaning that it doesn’t have to be
currency of any sort, but we assumed that User A agreed to release ownership of
transferring asset on Ethereum ledger instead of getting ownership of transfered
asset on Quorum ledger.

Actors 1. User A: The person or entity who has ownership of the transferred asset.
Goals of
Actors Some asset on Ethereum ledger had transfered to Quorum ledger.

Success
Scenario

Transfer succeeds without issues. Asset is available on both Ethereum and Quorum
ledgers.

Success
Criteria

Presence of asset transfer across ledgers has cryptographic proof that is obtainable
through BIF.

Failure
Criteria Asset transfer on both ledger is canceled.

Prerequisites
1. Ledgers are provisioned
2. User A identity established on both ledgers.
3. User A has access to BIF deployment

Comments







2.2 Escrowed Sale of Data for Coins

W3C Use Case Attribute Name W3C Use Case Attribute Value
Use Case Title Escrowed Sale of Data for Coins

Use Case

1. User A initiates (proposes) an escrowed transaction with User B
2. User A places funds, User B places the data to a digital escrow
service.
3. They both observe each other’s input to the escrow service
and decide to proceed.
4. Escrow service releases the funds and the data to the parties
in the exchange.

Type of Social Interaction Peer to Peer Exchange

Narrative

Data in this context is any series of bits stored on a computer:
* Machine learning model
* ad-tech database
* digital/digitized art
* proprietary source code or binaries of software
* etc.

User A and B trade the data and the funds through a BIF
transaction in an atomic swap with escrow securing both parties
from fraud or unintended failures.
Through the transaction protocol’s handshake mechanism, A
and B can agree (in advance) upon

* The delivery addresses (which ledger, which wallet)
* the provider of escrow that they both trust
* the price and currency

Establishing trust (e.g. Is that art original or is that machine
learning model has the advertised accuracy) can be facilitated
through the participating DLTs if they support it. Note that User A
has no way of knowing the quality of the dataset, they entirely
rely on User B’s description of its quality (there are solutions to
this problem, but it’s not within the scope of our use case to
discuss these).

Actors
1. User A: A person or business organization with the intent to
purchase data.
2. User B: A person or business entity with data to sell.

Goals of Actors

User A wants to have access to data for an arbitrary reason such
as having a business process that can enhanced by it.
User B: Is looking to generate income/profits from data they have
obtained/created/etc.

Success Scenario Both parties have signaled to proceed with escrow and the swap
happened as specified in advance.

Success Criteria User A has access to the data, User B has been provided with the
funds.

Failure Criteria Either party did not hold up their end of the exchange/trace.

Prerequisites

User A has the funds to make the purchase
User B has the data that User A wishes to purchase.
User A and B can agree on a suitable currency to denominate the
deal in and there is also consensus on the provider of escrow.



Comments

Hyperledger Private Data: https://hyperledger-
fabric.readthedocs.io/en/release-1.4/private_data_tutorial.html 
Besu Privacy Groups:
https://besu.hyperledger.org/en/stable/Concepts/Privacy/Privacy-
Groups/

W3C Use Case Attribute Name W3C Use Case Attribute Value



2.3 Money Exchanges
Enabling the trading of fiat and virtual currencies in any permutation of possible pairs.

On the technical level, this use case is the same as the one above and therefore the
specific details were omitted.

2.4 Stable Coin Pegged to Other Currency

W3C Use Case Attribute Name W3C Use Case Attribute Value
Use Case Title Stable Coin Pegged to Other Currency

Use Case

1. User A creates their own ledger
2. User A deploys BIF in an environment set up by them.
3. User A implements necessary plugins for BIF to interface
with their ledger for transactions, token minting and burning.

Type of Social Interaction Software Implementation Project

Narrative

Someone launches a highly scalable ledger with their own
coin called ExampleCoin that can consistently sustain
throughput levels of a million transactions per second
reliably, but they struggle with adoption because nobody
wants to buy into their coin fearing that it will lose its value.
They choose to put in place a two-way peg with Bitcoin which
guarantees to holders of their coin that it can always be
redeemed for a fixed number of Bitcoins/USDs.

Actors User A: Owner and/or operator of a ledger and currency that
they wish to stabilize (peg) to other currencies

Goals of Actors
1. Achieve credibility for their currency by backing funds.
2. Implement necessary software with minimal boilerplate
code (most of which should be provided by BIF)

Success Scenario

User A stood up a BIF deployment with their self-authored
plugins and it is possible for end user application development
to start by leveraging the BIF REST APIs which now expose
the functionalities provided by the plugin authored by User A

Success Criteria Success scenario was achieved without significant extra
development effort apart from creating the BIF plugins.

Failure Criteria
Implementation complexity was high enough that it would’ve
been easier to write something from scratch without the
framework

Prerequisites
* Operational ledger and currency
*Technical knowledge for plugin implementation (software
engineering)

Comments

Sequence diagram omitted as use case does not pertain to end users of BIF itself.

2.4.1 With Permissionless Ledgers (BTC)

A BTC holder can exchange their BTC for ExampleCoins by sending their BTC to ExampleCoin 
Reserve Wallet and the equivalent amount of coins get minted for them onto their ExampleCoin wallet
on the other network.

An ExampleCoin holder can redeem their funds to BTC by receiving a Proof of Burn on the
ExampleCoin ledger and getting sent the matching amount of BTC from the ExampleCoin Reserve 



Wallet to their BTC wallet.

2.4.2 With Fiat Money (USD)

Very similar idea as with pegging against BTC, but the BTC wallet used for reserves gets replaced
by a traditional bank account holding USD.



2.5 Healthcare Data Sharing with Access Control Lists

W3C Use Case Attribute Name W3C Use Case Attribute Value
Use Case Title Healthcare Data Sharing with Access Control Lists

Use Case

1. User A (patient) engages in business with User B (healthcare
provider)
2. User B requests permission to have read access to digitally
stored medical history of User A and write access to log new
entries in said medical history.
3.User A receives a prompt to grant access and allows it.
4. User B is granted permission through ledger specific access
control/privacy features to the data of User A.

Type of Social Interaction Peer to Peer Data Sharing

Narrative

Let’s say that two healthcare providers have both
implemented their own blockchain based patient data
management systems and are looking to integrate with each
other to provide patients with a seamless experience when
being directed from one to another for certain treatments.
The user is in control over their data on both platforms
separately and with a BIF backed integration they could also
define fine grained access control lists consenting to the two
healthcare providers to access each other’s data that they
collected about the patient.

Actors

* User A: Patient engaging in business with a healthcare
provider
* User B: Healthcare provider offering services to User A. Some
of said services depend on having access to prior medical
history of User A.

Goals of Actors

* User A: Wants to have fine grained access control in place
when it comes to sharing their data to ensure that it does not
end up in the hands of hackers or on a grey data market
place.
User B

Success Scenario User B (healthcare provider) has access to exactly as much
information as they need to and nothing more.

Success Criteria

There’s cryptographic proof for the integrity of the data. Data
hasn’t been compromised during the sharing process,
e.g. other actors did not gain unauthorized access to the data
by accident or through malicious actions.

Failure Criteria
User B (healthcare provider) either does not have access to
the required data or they have access to data that they are
not supposed to.

Prerequisites
User A and User B are registered on a ledger or two separate
ledgers that support the concept of individual data ownership,
access controls and sharing.

Comments

It makes most sense for best privacy if User A and User B are
both present with an identity on the same permissioned,
privacy-enabled ledger rather than on two separate ones.
This gives User A an additional layer of security since they can
know that their data is still only stored on one ledger instead
of two (albeit both being privacy-enabled)





2.6 Integrate Existing Food Traceability Solutions

W3C Use Case Attribute Name W3C Use Case Attribute Value
Use Case Title Food Traceability Integration

Use Case

1. Consumer is evaluating a food item in a physical
retail store.
2. Consumer queries the designated end user
application designed to provide food traces. 3. 
Consumer makes purchasing decision based on
food trace.

Type of Social Interaction Software Implementation Project

Narrative

Both Organization A and Organization B have separate
products/services for solving the problem of
verifying the source of food products sold by
retailers.
A retailer has purchased the food traceability
solution from Organization A while a food
manufacturer (whom the retailer is a customer of)
has purchased their food traceability solution
from Organization B.
The retailer wants to provide end to end food
traceability to their customers, but this is not
possible since the chain of traceability breaks
down at the manufacturer who uses a different
service or solution. BIF is used as an architectural
component to build an integration for the retailer
which ensures that consumers have access to
food tracing data regardless of the originating
system for it being the product/service of 
Organization A or Organization B.

Actors

Organization A, Organization B entities whose business
has to do with food somewhere along the global
chain from growing/manufacturing to the
consumer retail shelves.
Consumer: Private citizen who makes food
purchases in a consumer retail goods store and
wishes to trace the food end to end before
purchasing decisions are finalized.

Goals of Actors

Organization A, Organization B: Provide Consumer with a
way to trace food items back to the source.
Consumer: Consume food that’s been ethically
sourced, treated and transported.

Success Scenario Consumer satisfaction increases on account of the
ability to verify food origins.

Success Criteria Consumer is able to verify food items’ origins
before making a purchasing decision.

Failure Criteria Consumer is unable to verify food items’ origins
partially or completely.



Prerequisites

1. Organization A and Organization B are both signed
up for blockchain enabled software services that
provide end to end food traceability solutions on
their own but require all participants in the chain
to use a single solution in order to work.
2. Both solutions of Organization A and B have
terms and conditions such that it is possible
technically and legally to integrate the software
with each other and BIF.

Comments

W3C Use Case Attribute Name W3C Use Case Attribute Value







2.7 End User Wallet Authentication/Authorization

W3C Use Case Attribute Name W3C Use Case Attribute Value
Use Case Title Wallet Authentication/Authorization

Use Case

1. User A has separate identities on different
permissioned and permissionless ledgers in the
form of private/public key pairs (Public Key
Infrastructure).
2. User A wishes to access/manage these
identities through a single API or user interface
and opts to on-board the identities to a BIF
deployment.
3. User A performs the on-boarding of identities
and is now able to interact with wallets attached
to said identities through BIF or end user
applications that leverage BIF under the hood
(e.g. either by directly issuing API requests or
using an application that does so.

Type of Social Interaction Identity Management

Narrative

End user facing applications can provide a
seamless experience connecting multiple
permissioned (or permissionless) networks for an
end user who has a set of different identity proofs
for wallets on different ledgers.

Actors User A: The person or entity whose identities get
consolidated within a single BIF deployment

Goals of Actors

User A: Convenient way to manage an array of
distinct identities with the trade-off that a BIF
deployment must be trusted with the private keys
of the identities involved (an educated decision
on the user’s part).

Success Scenario User A is able to interact with their wallets without
having to access each private key individually.

Success Criteria

User A’s credentials are safely stored in the BIF
keychain component where it is the least likely
that they will be compromised (note that it is
never impossible, but least unlikely, definitely)

Failure Criteria
User A is unable to import identities to BIF for a
number of different reasons such as key format
incompatibilities.

Prerequisites
1. User A has to have the identities on the various
ledgers set up prior to importing them and must
have access to the private

Comments







3. Software Design
3.1. Principles

3.1.1. Wide support

Interconnect as many ecosystems as possible regardless of technology limitations

3.1.2. Plugin Architecture from all possible aspects

Identities, DLTs, service discovery. Minimize how opinionated we are to really embrace
interoperability rather than silos and lock-in. Closely monitor community feedback/PRs to determine
points of contention where core BIF code could be lifted into plugins. Limit friction to adding future
use cases and protocols.

3.1.3. Prevent Double spending Where Possible

Two representations of the same asset do not exist across the ecosystems at the same time
unless clearly labelled as such [As of Oct 30 limited to specific combinations of DLTs; e.g. not yet
possible with Fabric + Bitcoin]

3.1.4 DLT Feature Inclusivity

Each DLT has certain unique features that are partially or completely missing from other DLTs. BIF
- where possible - should be designed in a way so that these unique features are accessible even
when interacting with a DLT through BIF. A good example of this principle in practice would be
Kubernetes CRDs and operators that allow the community to extend the Kubernetes core APIs in a
reusable way.

3.1.5 Low impact

Interoperability does not redefine ecosystems but adapts to them. Governance, trust model and
workflows are preserved in each ecosystem Trust model and consensus must be a mandatory part
of the protocol handshake so that any possible incompatibilities are revealed up front and in a
transparent way and both parties can “walk away” without unintended loss of assets/data. The idea
comes from how the traditional online payment processing APIs allow merchants to specify the
acceptable level of guarantees before the transaction can be finalized (e.g. need pin, signed
receipt, etc.). Following the same logic, we shall allow transacting parties to specify what sort of
consensus, transaction finality, they require. Consensus requirements must support predicates,
e.g. “I am on Fabric, but will accept Bitcoin so long X number of blocks were confirmed post-
transaction” Requiring KYC (Know Your Customer) compliance could also be added to help foster
adoption as much as possible.

3.1.6 Transparency

Cross-ecosystem transfer participants are made aware of the local and global implications of the
transfer. Rejection and errors are communicated in a timely fashion to all participants. Such
transparency should be visible as trustworthy evidence.

3.1.7 Automated workflows

Logic exists in each ecosystem to enable complex interoperability use-cases. Cross-ecosystem
transfers can be automatically triggered in response to a previous one. Automated procedure,



which is regarding error recovery and exception handling, should be executed without any
interruption.

3.1.8 Default to Highest Security

Support less secure options, but strictly as opt-in, never opt-out.

3.1.9 Transaction Protocol Negotiation

Participants in the transaction must have a handshake mechanism where they agree on one of the
supported protocols to use to execute the transaction. The algorithm looks an intersection in the list
of supported algorithms by the participants.

3.1.10 Avoid modifying the total amount of digital assets on any blockchain
whenever possible

We believe that increasing or decreasing the total amount of digital assets might weaken the
security of blockchain, since adding or deleting assets will be complicated. Instead, intermediate
entities (e.g. exchanger) can pool and/or send the transfer.

3.1.11 Provide abstraction for common operations

Our communal modularity should extend to common mechanisms to operate and/or observe
transactions on blockchains.

3.1.12 Integration with Identity Frameworks (Moonshot)

Do not expend opinions on identity frameworks just allow users of BIF to leverage the most
common ones and allow for future expansion of the list of supported identity frameworks through
the plugin architecture. Allow consumers of BIF to perform authentication, authorization and
reading/writing of credentials.

Identity Frameworks to support/consider initially:

Hyperledger Indy (Sovrin)
DIF
DID

3.2 Feature Requirements

3.2.1 New Protocol Integration

Adding new protocols must be possible as part of the plugin architecture allowing the community to
propose, develop, test and release their own implementations at will.

3.2.2 Proxy/Firewall/NAT Compatibility

Means for establishing bidirectional communication channels through proxies/firewalls/NAT
wherever possible

3.2.3 Bi-directional Communications Layer

Using a blockchain agnostic bidirectional communication channel for controlling and monitoring
transactions on blockchains through proxies/firewalls/NAT wherever possible. * Blockchains vary

https://www.hyperledger.org/projects/hyperledger-indy
https://identity.foundation/
https://www.w3.org/TR/did-core/


on their P2P communication protocols. It is better to build a modular method for sending/receiving
generic transactions between trustworthy entities on blockchains.

3.2.4 Consortium Management

Consortiums can be formed by cooperating entities (person, organization, etc.) who wish to all
contribute hardware/network resources to the operation of a BIF cluster (set of validator nodes, API
servers, etc.).

After the forming of the consortium with it’s initial set of members (one or more) it is possible to
enroll or remove certain new or existing members.

BIF does not prescribe any specific consensus algorithm for the addition or removal of consortium
members, but rather focuses on the technical side of making it possible to operate a cluster of
nodes under the ownership of separate entities without downtime while also keeping it possible to
add/remove members.

A newly joined consortium member does not have to participate in every component of BIF:
Running a validator node is the only required action to participate, etcd, API server can remain the
same as prior to the new member joining.

3.3 Working Policies
1. Participants can insist on a specific protocol by pretending that they only support said

protocol only.
2. Protocols can be versioned as the specifications mature
3. The two initially supported protocols shall be the ones that can satisfy the requirements for

Fujitsu’s and Accenture’s implementations respectively



4. Architecture
4.1 Interworking patterns

4.1.1 Interworking patterns list

The Blockchain Integration Framework has several interworking patterns as the following.

Note: In the following description, Value (V) means numerical assets (e.g. money). Data (D)
means non-numerical assets (e.g. ownership proof). Ledger 1 is source ledger, Ledger 2 is
destination ledger.

No. Name Pattern Consistency

1. value transfer V -> V check if V1 = V2 
(as V1 is value on ledger 1, V2 is value on ledger 2)

2. value-data
transfer V -> D check if data transfer is successful when value is transferred

3. data-value
transfer D -> V check if value transfer is successful when data is transferred

4. data transfer D -> D check if all D1 is copied on ledger 2 
(as D1 is data on ledger 1, D2 is data on ledger 2)

5. data merge D <->
D

check if D1 = D2 as a result 
(as D1 is data on ledger 1, D2 is data on ledger 2)

4.1.2 Value transfer

4.1.2.1 Desription of the pattern

4.1.2.2 Sequence diagram





4.1.3 Value-data transfer

4.1.3.1 Desription of the pattern



4.1.3.2 Sequence diagram

4.1.4 Data-value transfer

4.1.4.1 Desription of the pattern

4.1.4.2 Sequence diagram

4.1.5 Data transfer

4.1.5.1 Desription of the pattern

4.1.5.2 Sequence diagram

4.1.6 Data merge

4.1.6.1 Desription of the pattern

4.1.6.2 Sequence diagram



4.2 Technical Architecture

4.2.1 Monorepo Packages

The Blockchain Integration Framework is divided into a set of npm packages that can be compiled
separately or all at once.

Naming conventions for packages: * cmd-* for packages that ship their own executable * sdk-* for
packages designed to be used directly by application developers * All other packages should be
named preferably as a single English word suggesting the most important feature/responsibility of
the package itself.

4.2.1.1 core

Contains the kernel of the Blockchain Integration Framework. Code that is strongly opinionated
lives here, the rest is pushed to other packages that implement plugins or define their interfaces.

The main responsibilities of the core package are:

4.2.1.1.1 Runtime Configuration Parsing and Validation

The core package is responsible for parsing runtime configuration from the usual sources (shown in
order of precedence): * Explicit instructions via code (config.setHttpPort(3000);) * Command line
arguments (--http-port=3000) * Operating system environment variables (HTTP_PORT=3000) * Static
configuration files (config.json: { "httpPort": 3000 })

The Apache 2.0 licensed node-convict library to be leveraged for the mechanical parts of the
configuration parsing and validation: https://github.com/mozilla/node-convict

4.2.1.1.2 Configuration Schema - Validator

Parameter Type
Config
Key:
CLI

Config
Key: Env

Config
Key:

JSON
Description

Etcd Hosts Array<string>
--etcd-
hosts

ETCD_HOSTS etcdHosts
The hosts of Etcd nodes the validator node
should connect to for the purpose of
leadership election.

Private
Key string

--private-
key

PRIVATE_KEY privateKey
The private key of the validator node to be
used when signing validated messages.

Public Key string
--public-
key

PUBLIC_KEY publicKey
The public key of the validator node that
pairs with the Private Key of the same node.

4.2.1.1.3 Configuration Schema - API Server

Parameter Type Key: CLI, Env, JSON Description

Validator
Hosts Array<string>

--validator-hosts

VALIDATOR_HOSTS

validatorHosts

List of hosts to connect to when
requesting validation related tasks from
the validator nodes.



HTTPS_PORT number

--https-port

HTTPS_PORT

httpsPort

The TCP port to listen on for HTTPS
connections.

CORS
Domains Array<string>

--cors-domains

CORS_DOMAINS

corsDomains

Optional. Zero or more domain patterns
(wildcards are allowed).

Virtual Hosts Array<string>

--virtual-hosts

VIRTUAL_HOSTS

virtualHosts

Optional. When specified, constrains the
acceptable incoming requests to ones that
specify their host HTTP header in a way
that matches at least one of the patterns
specified in this configuration parameter.

Authentication
Strategies Array<string>

--authentication-strategies

AUTHENTICATION_STRATEGIES

authenticationStrategies

Optional. Specifies the fully qualified
name, version and exported module of
one or more npm packages that are to be
loaded and used as the providers for the
authentication strategies. For example to
use PassportJS’s OpenID Connect
strategy one with specify the value 
["passport-oidc-strategy@0.1.1###Strategy"] which
will get parsed as a JSON string
containing an array of strings.

Authentication
Options Array<string>

--authentication-options

AUTHENTICATION_OPTIONS

authenticationOptions

Used to provide arguments to the
constructors (or factory functions)
exported by the modules specified by 
AUTHENTICATION_STRATEGIES. For example,
in this configuration parameter you can
specify the callback URL for an Open ID
Connect provider of your choice, the client
ID, client secret, etc. Important: The order
in which the items appear have to match
the order of items in 
AUTHENTICATION_STRATEGIES.

Package
Registries Array<string>

--package-registries

PACKAGE_REGISTRIES

packageRegistries

Optional. Defaults to the public npm
registry at https://registry.npmjs.org/. Can be
used to specify private registries in the
event of closed source plugins. If multiple
registry URLs are provided, they all will be
tried in-order at bootstrap time.

Parameter Type Key: CLI, Env, JSON Description

4.2.1.1.4 Plugin Loading/Validation

Plugin loading happens through NodeJS’s built-in module loader and the validation is performed by
the Node Package Manager tool (npm) which verifies the byte level integrity of all installed
modules.

4.2.1.2 cmd-api-server



A command line application for running the API server that provides a unified REST based HTTP
API for calling code.

By design this is stateless and horizontally scalable.

Comes with Swagger API definitions.

4.2.1.3 cmd-validator

Command line application to run a single BIF validator node.

4.2.1.4 sdk-javascript

Javascript SDK (bindings) for the RESTful HTTP API provided by cmd-api-server. Compatible with
both NodeJS and Web Browser (HTML 5 DOM + ES6) environments.

4.2.1.5 keychain

Responsible for persistently storing highly sensitive data (e.g. private keys) in an encrypted format.

For further details on the API surface, see the relevant section under Plugin Architecture.

4.2.1.7 tracing

Contains components for tracing, logging and application performance management (APM) of code
written for the rest of the Blockchain Integration Framework packages.

4.2.1.8 audit

Components useful for writing and reading audit records that must be archived longer term and
immutable. The latter properties are what differentiates audit logs from tracing/logging messages
which are designed to be ephemeral and to support technical issues not
regulatory/compliance/governance related issues.

4.2.1.9 document-storage

Provides structured or unstructured document storage and analytics capabilities for other packages
such as audit and tracing. Comes with its own API surface that serves as an adapter for different
storage backends via plugins. By default, Open Distro for ElasticSearch is used as the storage backend:
https://aws.amazon.com/blogs/aws/new-open-distro-for-elasticsearch/



The API surface provided by this package is kept intentionally simple and feature-poor
so that different underlying storage backends remain an option long term through the
plugin architecture of BIF.

4.2.1.10 relational-storage

Contains components responsible for providing access to standard SQL compliant persistent
storage.

The API surface provided by this package is kept intentionally simple and feature-poor
so that different underlying storage backends remain an option long term through the
plugin architecture of BIF.

4.2.1.11 immutable-storage

Contains components responsible for providing access to immutable storage such as a distributed
ledger with append-only semantics such as a blockchain network (e.g. Hyperledger Fabric).

The API surface provided by this package is kept intentionally simple and feature-poor
so that different underlying storage backends remain an option long term through the



plugin architecture of BIF.

4.2.2 Deployment Diagram

Source file: ./docs/architecture/deployment-diagram.puml

4.2.3 Component Diagram



4.2.4 Class Diagram

4.2.5 Sequence Diagram - Transactions

TBD



4.3 Transaction Protocol Specification

4.3.1 Handshake Mechanism

TBD

4.3.2 Transaction Protocol Negotiation

Participants in the transaction must have a handshake mechanism where they agree on one of the
supported protocols to use to execute the transaction. The algorithm looks an intersection in the list
of supported algorithms by the participants.

Participants can insist on a specific protocol by pretending that they only support said protocol only.
Protocols can be versioned as the specifications mature. Adding new protocols must be possible
as part of the plugin architecture allowing the community to propose, develop, test and release their
own implementations at will. The two initially supported protocols shall be the ones that can satisfy
the requirements for Fujitsu’s and Accenture’s implementations respectively. Means for
establishing bi-directional communication channels through proxies/firewalls/NAT wherever
possible



4.4 Plugin Architecture
Since our goal is integration, it is critical that BIF has the flexibility of supporting most ledgers, even
those that don’t exist today.

A plugin is a self contained piece of code that implements a predefined interface
pertaining to a specific functionality of BIF such as transaction execution.

Plugins are an abstraction layer on top of the core components that allows operators of BIF to swap
out implementations at will.

Backward compatibility is important, but versioning of the plugins still follows the
semantic versioning convention meaning that major upgrades can have breaking
changes.

Plugins are implemented as ES6 modules (source code) that can be loaded at runtime from the
persistent data store. The core package is responsible for validating code signatures to guarantee
source code integrity.

An overarching theme for all aspects that are covered by the plugin architecture is that there should
be a dummy implementation for each aspect to allow the simplest possible deployments to happen
on a single, consumer grade machine rather than requiring costly hardware and specialized
knowledge.

Ideally, a fully testable/operational (but not production ready) BIF deployment could be
spun up on a developer laptop with a single command (an npm script for example).



4.4.1 Ledger Connector Plugins

Success is defined as: 1. Adding support in BIF for a ledger invented in the future requires no core
code changes, but instead can be implemented by simply adding a corresponding connector plugin
to deal with said newly invented ledger. 2. Client applications using the REST API and leveraging
the feature checks can remain 100% functional regardless of the number and nature of deployed
connector plugins in BIF. For example: a generic money sending application does not have to
hardcode the supported ledgers it supports because the unified REST API interface (fed by the
ledger connector plugins) guarantees that supported features will be operational.

Because the features of different ledgers can be very diverse, the plugin interface has feature
checks built into allowing callers/client applications to determine programmatically, at runtime if
a certain feature is supported or not on a given ledger.



4.4.2 Identity Federation Plugins

Identity federation plugins operate inside the API Server and need to implement the interface of a
common PassportJS Strategy: https://github.com/jaredhanson/passport-strategy#implement-
authentication

4.4.1.1 X.509 Certificate Plugin

The X.509 Certificate plugin facilitates clients authentication by allowing them to present a
certificate instead of operating with authentication tokens. This technically allows calling clients to
assume the identities of the validator nodes through the REST API without having to have access
to the signing private key of said validator node.

PassportJS already has plugins written for client certificate validation, but we go one step further
with this plugin by providing the option to obtain CA certificates from the validator nodes
themselves at runtime.

4.4.3 Key/Value Storage Plugins

Key/Value Storage plugins allow the higher-level packages to store and retrieve configuration
metadata for a BIF cluster such as: * Who are the active validators and what are the hosts where
said validators are accessible over a network? * What public keys belong to which validator nodes?
* What transactions have been scheduled, started, completed?

export interface LedgerConnector {
  // method to verify a signature coming from a given ledger that this connector is responsible for connecting to.
  verifySignature(message, signature): Promise<boolean>;

  // used to call methods on smart contracts or to move assets between wallets
  transact(transactions: Transaction[]);

  getPermissionScheme(): Promise<PermissionScheme>;

  getTransactionFinality(): Promise<TransactionFinality>;

  addForeignValidator(): Promise<void>;
}

export enum TransactionFinality {
  GUARANTEED = "GUARANTEED",
  NOT_GUARANTEED = "NOT_GUARANTEED
}

export enum PermissionScheme {
  PERMISSIONED = "PERMISSIONED",
  PERMISSIONLESS = "PERMISSIONLESS"
}

abstract class IdentityFederationPlugin {
  constructor(options: any): IdentityFederationPlugin;
  abstract authenticate(req: ExpressRequest, options: any);
  abstract success(user, info);
  abstract fail(challenge, status);
  abstract redirect(url, status);
  abstract pass();
  abstract error(err);
}



4.4.4 Serverside Keychain Plugins

The API surface of keychain plugins is roughly the equivalent of the key/value Storage plugins, but
under the hood these are of course guaranteed to encrypt the stored data at rest by way of
leveraging storage backends purpose built for storing and managing secrets.

Possible storage backends include self hosted software [1] and cloud native services [2][3][4] as
well. The goal of the keychain plugins (and the plugin architecture at large) is to make BIF
deployable in different environments with different backing services such as an on-premise data
center or a cloud provider who sells their own secret management services/APIs. There should be
a dummy implementation as well that stores secrets in-memory and unencrypted (strictly for
development purposes of course). The latter will decrease the barrier to entry for new users and
would be contributors alike.

Direct support for HSM (Hardware Security Modules) is also something the keychain plugins could
enable, but this is lower priority since any serious storage backend with secret management in
mind will have built-in support for dealing with HSMs transparently.

By design, the keychain plugin can only be used by authenticated users with an active BIF session.
Users secrets are isolated from each other on the keychain via namespacing that is internal to the
keychain plugin implementations (e.g. users cannot query other users namespaces whatsoever).

[1] https://www.vaultproject.io/ [2] https://aws.amazon.com/secrets-manager/ [3]
https://aws.amazon.com/kms/ [4] https://azure.microsoft.com/en-us/services/key-vault/

interface KeyValueStoragePlugin {
  async get<T>(key: string): Promise<T>;
  async set<T>(key: string, value: T): Promise<void>;
  async delete<T>(key: string): Promise<void>;
}

interface KeychainPlugin extends KeyValueStoragePlugin {
}



5. Identities, Authentication, Authorization
BIF aims to provide a unified API surface for managing identities of an identity owner. Developers
using the BIF REST API for their applications can support one or both of the below requirements: 1.
Applications with a focus on access control and business process efficiency (usually in the
enterprise) 2. Applications with a focus on individual privacy (usually consumer-based applications)

The following sections outline the high-level features of BIF that make the above vision reality.

An end user (through a user interface) can issue API requests to * register a username+password
account (with optional MFA) within BIF. * associate their wallets to their BIF account and execute
transactions involving those registered wallet (transaction signatures performed either locally or
remotely as explained above).

5.1 Transaction Signing Modes, Key Ownership
An application developer using BIF can choose to enable users to sign their transactions locally on
their user agent device without disclosing their private keys to BIF or remotely where BIF stores
private keys server-side, encrypted at rest, made decryptable through authenticating with their BIF
account. Each mode comes with its own pros and cons that need to be carefully considered at
design time.

5.1.1 Client-side Transaction Signing

Usually a better fit for consumer-based applications where end users have higher expectation of
individual privacy.

Pros * Keys are not compromised when a BIF deployment is compromised * Operator of BIF
deployment is not liable for breach of keys (same as above) * Reduced server-side complexity (no
need to manage keys centrally)

Cons * User experience is sub-optimal compared to sever side transaction signing * Users can
lose access permanently if they lose the key (not acceptable in most enterprise/professional use
cases)

5.1.2 Server-side Transaction Signing

Usually a better fit for enterprise applications where end users have most likely lowered their
expectations of individual privacy due to the hard requirements of compliance, governance, internal
or external policy enforcement.

Pros * Frees end users from the burden of managing keys themselves (better user experience) *
Improved compliance, governance



Cons * Server-side breach can expose encrypted keys stored in the keychain

5.2 Open ID Connect Provider, Identity Provider
BIF can authenticate users against third party Identity Providers  or serve as an Identity Provider
itself. Everything follows the well-established industry standards of Open ID Connect to maximize
information security and reduce the probability of data breaches.

5.3 Server-side Keychain for Web Applications
There is a gap between traditional web/mobile applications and blockchain applications (web 2.0
and 3.0 if you will) authentication protocols in the sense that blockchain networks rely on private
keys belonging to a Public Key Infrastructure (PKI) to authenticate users while traditional
web/mobile applications mostly rely on a centralized authority storing hashed passwords and the
issuance of ephemeral tokens upon successful authentication (e.g. successful login with a
password). Traditional (Web 2.0) applications (that adhering security best practices) use server-
side sessions (web) or secure keychains provided by the operating system (iOS, Android, etc.) The
current industry standard and state of the art authentication protocol in the enterprise application
development industry is Open ID Connect (OIDC).

To successfully close the gap between the two worlds, BIF comes equipped with an OIDC identity
provider and a server-side key chain that can be leveraged by end user applications to authenticate
once against BIF and manage identities on other blockchains through that single BIF identity. This
feature is important for web applications which do not have secure offline storage APIs (HTML
localStorage is not secure).

Example: A user can register for a BIF account, import their private keys from their
Fabric/Ethereum wallets and then have access to all of those identities by authenticating once only
against BIF which will result in a server-side session (HTTP cookie) containing a JSON Web Token
(JWT).

Native mobile applications may not need to use the server-side keychain since they
usually come equipped with an OS provided one (Android, iOS does).



In web 2.0 applications the prevalent authentication/authorization solution is Open ID Connect
which bases authentication on passwords and tokens which are derived from the passwords. Web
3.0 applications (decentralized apps or DApps) which interact with blockchain networks rely on
private keys instead of passwords.



6. Terminology
API Server: A module of BIF which provides a unified interface to control/monitor Blockchain
ledger behind it.

Validator: A module of BIF which verifies validity of transaction to be sent out to the blockchain
application.

Lock asset: An operation to the asset managed on blockchain ledger, which disable further
operation to targeted asset. The target can be whole or partial depends on type of asset.

Abort: A state of BIF which is determined integrated ledger operation is failed, and BIF will execute
recovery operations.

Integrated ledger operation: A series of blockchain ledger operations which will be triggered by
BIF. BIF is responsible to execute ‘recovery operations’ when ‘Abort’ is occurred.

Restore operation(s): Single or multiple ledger operations which is executed by BIF to restore the
state of integrated service before start of integrated operation.

End User: A person (private citizen or a corporate employee) who interacts with BIF and other
ledger-related systems to achieve a specific goal or complete a task such as to
send/receive/exchange money or data.

Business Organization: A for-profit or non-profit entity formed by one or more people to achieve
financial gain or achieve a specific (non-financial) goal. For brevity, business organization may be
shortened to organization throughout the document.

Identity Owner: A person or organization who is in control of one or more identities. For example,
owning two separate email accounts by one person means that said person is the identity owner of
two separate identities (the email accounts). Owning cryptocurrency wallets (their private keys)
also makes one an identity owner.

Identity Secret: A private key or a password that - by design - is only ever known by the identity
owner (unless stolen).

Credentials: Could mean user authentication credentials/identity proofs in an IT application or any
other credentials in the traditional sense of the word such as a proof that a person obtained a
masters or PhD.

Ledger/Network/Chain: Synonymous words meaning referring largely to the same thing in this
paper.

OIDC: Open ID Connect authentication protocol

PKI: Public Key Infrastructure

MFA: Multi Factor Authentication
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