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ON RELIABILITY ENGINEERING OF SHIPS
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ABSTRACT

ABSTRACT

Maintenance optimization of naval ship equipment is crucial in terms of national defense. However,
the mixed effect of the maintenance and the pure deterioration processes in the observed data hinders
an exact comparison between candidate maintenance policies. That is, the observed data-annual
failure counts of naval ships reflect counteracting actions between the maintenance and deterioration.
The inference of the latent deteriorating process is needed in advance for choosing an optimal
maintenance policy to be carried out. This study proposes a new framework for the separation of the
true deterioration effect by predicting it from the current maintenance effect through the multi-state
Markov model. Using an annual engine failure count of 99 ships in the Korean navy, we construct
the framework consisting of imputation, transition matrix design, optimization, and validation. The
hierarchical Gaussian process model is used for the imputation and the three-state Markov model is
applied for the estimation of parameters in the deterioration and maintenance effect. To consider the
natural (deterioration) and artificial (maintenance) effect respectively, the Bayesian HMM model with
a categorical distribution is employed. Computational experiments under multiple settings showed the
robustness of the estimated parameters, as well as an accurate recovery of the observed data, thereby
confirming the credibility of our model. The framework could further be employed to establish a
reliable maintenance system and to reduce an overall maintenance cost.
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Introduction

1 Introduction

A maintenance policy is crucial both in terms of the safety and efficiency in managing naval ships’ equipment.
Maintenance policy includes several controllable variables to be determined, such as an inspection frequency or an
acceptable maintenance standard. Too long inspection interval or overly lenient standard for the repair would result in
an unstable system, and the resulting failure costs will be markedly increased. On the other hand, strict maintenance
with frequent inspections and excessively conservative standards would yield an excellent budget waste.
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Figure 1: Process of the proposed model.
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Figure 2
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Figure 2: Overview of the failure counts from the 99 Korean naval ships.
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Imputation using GP

Yt.j NN(Mt,jaai[j]) (1)
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Continuous time multi-state Markov model

A2

Figure 3: Deterioration rate between three states.

Table 1: Deterioration state of ship equipment according to the standardized annual failure counts.

State  Status Description  Annual failure counts

1 Normal [ -1.8304, -0.3340 )
2 Near Failure [ -0.3340, -0.0703 )
3 Failure [ -0.0703, 2.1273 ]
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Continuous time multi-state Markov model

between states follows a continuous-time Markov process, and transition probabilities only depend on a present state.
For a time-homogeneous Markov chain, we can write the transition probability function from state ¢ at time s to state
j attime t as p;;(s,t) = Pr{Y (t) = j|Y (s) = 4}. The transition probabilities between all possible pairs (i, j) are
represented by a n X n matrix called the transition probability matrix P(s,t), where n is the number of possible
condition states as shown in[Q]

p11(s,t) pi2(s,t) pia(s,t)
P(s,t) = | pa1(s,t)  paz(s,t) pas(s;t) )
p31(s,t) p32(s,t) pas(s,t)
To separate the effect of the deterioration and the maintenance, we first define a deterioration matrix D(t), which is
a function at the age ¢. Deterioration matrix D(t) should be an upper-diagonal matrix reflecting the reality that engines
continuously undergo degradation through the life cycle. Also, since the extent of the deterioration varies between
different age ranges, it is constructed in a time-inhomogeneous manner. Older engines are prone to be readily weakened,
and it’s reasonable to design a more severe deterioration matrix D(¢) for them. Equation[11|shows the deterioration rate
matrix Q(¢) for the three-state Markov model. This transition rate matrix requires three distinct parameters for each
time t and is also upper-diagonal, considering that the deterioration process can only occur in a forward direction.
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As in equation 12, transition probabilities of the deterioration matrix D(t) can be calculated solely with the given
rate matrix Q(t), which comes from the solution of Kolmogorov’s forward and backward equation. Each element in 3 x
In the same way, we define a maintenance matrix M as in@ which is a transition probability matrix with two
parameters. The maintenance matrix M is multiplied to the state probability vector whenever the maintenance is

performed. The construction of this maintenance matrix is based on several circumstantial assumptions as follows.

First, maintenance interval is once a year. Second, an imperfect maintenance makes the transition probability from
state 2 to be divided into state 1 and 2, which is ps; and 1 — po; for certain probability. Likewise, the transition from
state 3 could be parameterized with p31, p32, and 1 — p31 — p32. However, the preliminary experiment results showed
that 1 — p31 — p32 term mostly converged to 0, we assumed it as 0 and replaced the probability p31, p32 with p3; and
1 — p31, discarding the redundant parameter p3s.
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Continuous time multi-state Markov model

state £ 10 be aividea 1nto state 1 and 2, Whnicn 1S po; and 1 — po; IOr Certain probaoility. L1Kew1se, the ransiuon rrom
state 3 could be parameterized with p31, p32, and 1 — p31 — p32. However, the preliminary experiment results showed
that 1 — p31 — p32 term mostly converged to 0, we assumed it as 0 and replaced the probability p31, p32 with p3; and
1 — p31, discarding the redundant parameter p3o.
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Result
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Figure 6: Resulting sampling results of the maintenance parameters: p2; and p3;.
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Figure 7: Estimated probability density of the maintenance matrix M.
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Result

Figure 9
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Figure 9: Histogram of the training and test sets MSE values.

add the average value of MSE (20.7 and 20.9, respectively) in red vertical lines.



Result
5.2 Predicted states

The main purpose of the model is to predict the deteriorating state of each engine so that management could be
calculated based on their predictions. Figure 8 shows the observed ratio of the 99 naval ship’s deterioration states,
representing their observed probabilities with the size of the black circles. Red circles indicate the predicted states for
each time. Predictions fit well with the observed state from three out of the sample ship’s engines in most cases. For
example, between years 10 and 20, the flat area which corresponds to the flat area of a bathtub in previous studies, the

observed states are concentrated in the first two states and so are the predictions. I
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Question

Q1. Bayesian 20| prior& = 3= U277

been 1ntroduced 1n [Z]] and |.3]], @ hierarchical model with 1ts advanced Hexibility could increase the model’s accuracy.
Second, prior knowledge of the engines (deterioration and operation patterns) could be reflected. Priors could greatly
affect the performance of the model if properly understood in the context of the entire Bayesian analysis, from inference
to prediction to model evaluation [16].
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Imputation 2fO| CHF 2 O|CHE L], Of G| O|E{ 7} @} reliable SHA|Of| Cliot 8 HEe

Q3. 2l missing 2£0| Bf= AO|&x?
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Q6. Journal of applied statistics 7| 02 0|=0| CtZ 2|AHO| R 2 A X|?


https://github.com/hyunjimoon/defense-reliability

