iISECpartners®

part of NCCQroup

Shattering Illusions in Lock-Free Worlds

Compiler and Hardware behaviors in OSes and VMs

Marc Blanchou

blhckhat

LUSA 2013

July 31, 2013 1/37

Shattering Illusions in Lock-Free Worlds iSEC Partners

Introduction

Developer:
“"Compiler/hardware, that's not the code | wrote for my driver?!"

Compiler/hardware:

"But your code is correctly synchronized right? So you should not
care — you do not want to actually execute this horror you just
wrote — trust us”

July 31,2013 BHUSA 2013 Definitions 2/37

Shattering Illusions in Lock-Free Worlds

_ : ¢
Introduction ISECpartners

* Whatis it about?

* Race conditions introduced by the compiler or the
hardware in lock-free sections (in OSes and VMs
among others)

* Why should you care?
* You don't realize how messy lock-free code can be
* You want to find these bugs more easily

* You want to know more about the different layers
involved in these types of race conditions

blhckhat

UsA 2013

July 31, 2013 Definitions

Agenda iISECpartners®

part of NCCQroup

* Definitions
* Lock-free programming
* Memory models
* Optimizations
* Compiler, hardware and races
* Reordering issues
* Double-fetch (TOCTTOU) issues
* Otherissues
* How to find these bugs?

* Solutions?

blhckhat

UsA 2013

July 31, 2013 Definitions

Shattering Illusions in Lock-Free Worlds

L ocks? iISECpartners®

part of NCCQroup

* Locks were initially created because of the difficulty of
writing correct multi-threaded code

* They more or less allow developers (and researchers) to
not care too much about memory models and various
compiler and hardware optimizations

A multiprocessing system on a single computer involves problems
similar to those of a distributed system because of the
unpredictable order in which certain events can occur. ... We have
found that problems often arise because people are not fully aware
of this fact and its implications.

— Leslie Lamport 1978

blhckhat

UsA 2013

July 31, 2013 Definitions

Shattering Illusions in Lock-Free Worlds

_ : ¢
Lock-free programming ISECpartners

°* Whatisit?
* Threads never waiting on each others

* No more deadlocks
* No livelocks or theorical scheduling issues

Usually cheaper and scale better than locks

* Always completes operations in time (critical)

Usually only used for a few sections of applications
* Way harder to get right than using locks

* What for?

* Various OSes and VM operations
* Multimedia and financial apps, some databases etc.

blhckhat

UsA 2013

July 31, 2013 Definitions

Shattering Illusions in Lock-Free Worlds

: ¢
The (very) obvious ISECpartners

part of NCCQroup

* What a compiler/hardware knows
* Memory operations within the thread

* What a compiler/hardware does not know
* Shared memory locations

* Solution

* Letthe compiler/hardware know

° Appropriate memory barriers and atomic operations

* BUT you can’t make assumptions about memory models
anymore

° Be careful with compiler/hardware specific code
° Can break on newer or different hardware/compilers

blhckhat

UsA 2013

July 31, 2013 Definitions

Shattering Illusions in Lock-Free Worlds

: ¢
Cache and Sequential Consistency ISECpartners

part of NCCQroup

* Cache coherence

* No data lost or written before being transferred
from the cache to the target memory

* Sequential Consistency (or illusion of)
* Order of memory operations specified by a program
* No memory reordering should be visible
* People usually write code that needs SC
* Thisis language and hardware dependent

blhckhat

UsA 2013

July 31, 2013 Definitions

Shattering Illusions in Lock-Free Worlds

" " " " i e
Compiler Optimizations ISECpartners

* If not told otherwise, the compiler can do any
optimization it wants to, as long the compiled code acts
as if it would run on a single threaded machine.

* What about Profile Guided Optimization (PGO) or
code obfuscation?

blhckhat

UsA 2013

July 31, 2013 Definitions

Shattering Illusions in Lock-Free Worlds

Memory models

Source code

Compiler

Machine code

iISECpartners®

part of NCCQroup

Processor [cache

int gl _walue, gl random number:
int gl_is_updated;

o>

void threadl() {
gl _wvalue = gl random number + 42

gl iz updated = 1;

int threadZ2i)

if (gl_is updated) {

Software

memory model

blhckhat

UsA 2013

Peaephole optimizations
Constant folding
Strength reduction
Hull sequences
Combine Operations
Algebraic Laws
Special Casze Instructions
Address Mode Operations
Local optimizations
Glebal ocptimizations
Locp optimizations
fission/distribution
fusion/fcombining
interchange/permucation
inversion
loop-invariant code motion
parallelization
zeversal
acheduling
askewing
software pipelining
aplitcing/peeling
tiling/blocking
wvectorization
unrolling
unawitching
sectioning
Interprocedural, whole-program
or link-time optimization
Machine code optimization

o>

threadl(): I Reordering I Executionl
.LFBO: Erefetch
mov DWCORD PTR gl_is_apdated [rip], 1 Branch prediecticon
mov eax, DWORD PFTR gl random number[rip] private and shars cache
add eax, 42
mov DWORD PTR gl vwvalue[rip], eax
ret
.LFEO:
threadZ () : Dua's?.::i:[c;::::;w'm
.LFB1:
mov eax, DWORD PTR gl_i= updated[rip] ‘ |
test eax, eax Cored Core 1
je .L4 / A
_ ‘ : | ‘ B cach;IQ ‘
L2 Cacha(|

i
i
[]

Hardware memory model

Strong
(closer to SC)

[A-64 (Itanium)

X86 - 64

PowerPC

July

2013

Shattering Illusions in Lock-Free Worlds iSEC Partners

What can go wrong?

Developer:

“"Compiler/harware, but | swear to synchronize properly!”

Compiler/hardware:

“Fine... We'll do our best so that you can't tell we modified the
program you wrote.”

July 31,2013 BHUSA 2013 Definitions 12 /37

Shattering Illusions in Lock-Free Worlds

iISECpartners®

part of NCCQroup

'll synchronize, | promise

* Definitions
* Compilers, hardware and races

* Reordering issues
* Double-fetch (TOCTTOU) issues
* Otherissues

* How to find these bugs?
* Solutions

blhckhat

UsA 2013

July 31, 2013 13/37

Shattering Illusions in Lock-Free Worlds

_ : c
Lock-free and reordering ISECpartners

* Reordering can happen at compile time as well as at
runtime (hardware).

* We did not need to care with locks before

* What does it mean for the developer?
* Atomic operations
* Appropriate memory barriers

blhckhat

UsA 2013

July 31, 2013 Definitions

Shattering Illusions in Lock-Free Worlds

u " i e
Atomicity ISECpartners

* C/C++ operations are NOT presumed atomic
* But some native types can be if they are aligned

* C++11: atomic<>
°* RMW (read-modify-write) operations
* CAS (compare-and-swap)

Non-atomic Atomic

g_value++; /[g_value = g_value + 1; InterlockedIncrement(&g_value);

int* rValue = (int*)([aligned_ptr] + 3);
*rValue = 42; /[not aligned

blhckhat

UsA 2013

July 31, 2013 Definitions

Shattering Illusions in Lock-Free Worlds

u " i e
Compiler reordering ISECpartners

* G++ 4.8 with no optimization flags

int gl wvalue, gl random number;] .ZEero q

g int gl_is deated 8| threadl () :
g | .LFBO:
10 woid threadl () 10 push rbp
11 11 mowv rbp, rsp
1 gl value = gl random number + 42; 1. mov eax, DWORD PTR gl random number[rip]
] - - - \1%6 add eax, 42 - -

LY

mov DWCORD PTE gl wvalue[rip], eax
DWCED PTR gl i= updated|[rip].

gl iz updated = 1; 1

¥}
o Y U

° G++ 4.8 with -0O3

int gl wvalue, gl random number; 1| .Ltext0:

int gl _is deated threadl () :

.LFBO:

mow eax, DWORD PTR gl random number[rip]
mov DWORD PTR gl is updated[rip], 1

add esax, 42 -

mov DWORD PTR gl walue[rip], eax

ret

BuoLd Ped

vold threadl ()

{
gl value = gl random number + 42;
gl i= deated = 1:

o R Y U

1

co

bibekhat

UsA 2013

July 31, 2013 Definitions

Shattering Illusions in Lock-Free Worlds

Vs~

u " i e
Compiler reordering ISECpartners

° G++4.8and-03

1/int gl walue, gl random number; 1 .LtextO:

2 int gl is updated; - 2 threadl():

3 - 3| .LFBO:

4| woid threadl () 4 mov eax, DWORD PTR gl random number[rip]
S { 5 mov DWORD PTR gl is updated[rip], 1
6 gl wvalue = gl random number + 42; % add eax, 42 =

7 gl is updated = 1; 7 mov DWCORD PTR gl wvalue[rip], eax

8 - 8 ret -

9 | .LFEOQ:

10 int thread2 () 10| thread2 () :

11 ¢ 11| .LFB1:

12 if (gl i= updated) 12 mov eax, DWORD PTR gl i=s updated|[rip]
13 13 test eax, =ax -

14 14 e L4

15
16
17 .L4:
. rep; Tt

[=

bibekhat

UsA 2013

July 31, 2013 Definitions

Shattering Illusions in Lock-Free Worlds

Vi~

u u i e
Compiler barriers ISECpartners

int gl walue, gl random number; 1 .Ltext0:
int gl is updated; - 2| threadl():
- 3| .LFBO:
wvold threadl () : mov eax, DWORD PTR gl random number[rip]

=] Oy LN B Gl B

{ ___J) add eax, 42
gl wvalue = gl random number + 42;) mowv DWORD PTR gl wvalue[rip], eax
asm wvolatile("" ::: "memozy") ¢ ’a mov DWORD PTR gl is updated[rip], 1
8 gl i= updated = 1: g ret -
g9 - 9| .LFED:
Prevent compiler reordering*

1 int gl walue, gl random number; 1| .LtextO:

2 int gl i= updated: - 2 threadl():

3 - 3| .LFBOD:

4 #define SIMPLE BLRRIER() asm volatile ("™ ::: "memory") 4 mov eax, DWORD PTE gl random number[rip]
5 - add eax, 42 - -

6 volid threadl () mov DWORD PTRE gl value[rip], eax
T4 7 mov DWORD PTR gl is updated[rip], 1
8 gl wvalue = gl random number + 42; ret -

g9 SIMPLE BARRIER(): - 8 .LFEO:
10 gl i= updated = 1; 10 | thread2 () :
11 - 11| .LFB1:
12 12 mov eax, DWORD PTR gl is updated[rip]
13 int thread?2 () 13 test eax, eax -
14| { 14 je L4
16 SIMFLE BARRIER() : 16
17 S 17 .L4:
19 15 .LFE1l:

bibekhat

UsAa 2013 *note: this does not act as a hardware barrier

July 31, 2013 Definitions

Shattering Illusions in Lock-Free Worlds

Preventing compile-time reordering ISECpartners

° Compiler barriers
* VC++ specific
* Interlocked operations
° Volatile — not atomic, VC++ specific implementation (/volatile:ms)
* ReadWriteBarrier() — but better use atomic<>
* Usethe /kernel flag!
* GCC
° asm volatile ("": : : "memory")
° Use specific memory barriers defines depending on the kernel
* C++11 atomic types
* Avoid relaxed atomic!

* Volatile
* Java: Full barrier (CPU+compiler) (!= C/C++ volatile)
* Avoid volatile in C/C++ for synchronization
° Implied
* CPU fences
° Some function calls (containing barriers or "unknown” functions) but they can be inlined
* Use __declspec(noinline) for VC++ or __attribute__((noinline)) for gcc

(1

blhckhat

UsA 2013

July 31, 2013 Definitions

Shattering Illusions in Lock-Free Worlds

" n i e
Real-time reordering ISECpartners

* Only visible on multicore or multiprocessor

* ONE CPU guarantees

* Dependent memory accesses are in order
* Overlapping load and store will appear ordered

blhckhat

UsA 2013

July 31, 2013 Definitions

Shattering Illusions in Lock-Free Worlds

" n i e
Real-time reordering ISECpartners

* ONE CPU does NOT Guarantee

* Overlapping memory accesses are not merged or discarded

* Independent load and store are issued in the order given
* Even on x86-64 (strong memory model)
° Anindependent load (read) can be reordered with older stores

threadl () :
mov DWORD PTR gl is updated[rip], 1 é Store <—
Can be reordered

by the CPU

mov eax, DWORD PTR gl value[rip] _> Load <—

* Non-SC load and store instruction: mov
* SCload instruction: mov
° SCstore instruction: xchg (or mfence + mov)

blhckhat

UsA 2013

July 31, 2013 Definitions

Shattering Illusions in Lock-Free Worlds

_ : ¢
Hardware barriers ISECpartners

° C++11 atomic<>types (apart from relaxed atomic)

* GCC: volatile("[instruction]” ::: "memory”)
* And the various defines (mb(), rmb(), wmb() etc.)

° VC++
* MemoryBarrier() (full memory barrier, compiler+CPU)
* Interlocked operations

* Volatile in Java (# C/C++ volatile)

blhckhat

UsA 2013

July 31, 2013 Definitions

Shattering Illusions in Lock-Free Worlds

u u i %
Reordering at runtime ISECpartners

° Lots of different types of barriers depending on the CPU

C/C++11 Operation “ ARM implementation
Load Relaxed: e
‘C;"C-H-ll Operaﬁun” %86 implementation ‘ g;; preserve dependencies until next ki1l dependency
Load Relaxed: MOV (from memory) | Load Consume: 'gffé teq; beg; isb
‘Load Consume: ”MDV (from memory) ‘ Idr; dmb
‘Load Acquire: ”MDV (from memory) ‘ . dr; teq; beg; isb
Load Acquire: OR
‘Load Seq Cst ”}TDV ifrom memory) ‘ Idr; dmb
[Store Relaxed: | MOV (into memory) | LoadSeaCst e, dmb
Store Relaxed: “str
‘Stm’e Release: ”MDV (into memory) ‘ Store Release: [dmbs st
|Store Seq Cst: |[LOCK) XCHG / alternative: MOV (into memory). MFENCE|| Store Seq Cst dmb; str, dab
‘Ct}nsm:ﬂe Fence: ” ‘:iglt}r . ‘ Cmpxchg Relaxed (32 bit):||_loop: Idrex roldval, [rptr]; mov tres, 0; teq roldval, rold; strexeq rres, mewval, [rptr]; teq
. . Cmpxchg Acquire (32 bit):} _loop: Idrex roldval, [rptr]; mov tres, 0; teq roldval, rold; strexeq rres, mewval, [rptr]; teq
‘Acqun’e Fence: ”ngre} ‘ Cmpxchg Release (32 bit): ||dmb; _loop: Idrex roldval, [rptr]; mov rres, 0; teq roldval, rold; strexeq rres, mewval, [rptr
‘RElEﬂSE Fence: ||<:ig10r e ‘ Cmpxchg AcqRel (32 bit): ||dmb; _loop: Idrex roldval, [rptr]; mov rres, 0; teq roldval, rold; strexeq rres, mewval, [rptr
‘ Ac q_R el Fence: ” <) snore> ‘ Cmpxchg SeqCst (32 bit): ||dmb; _loop: Idrex roldval, [rptr]; mov rres, 0; teq roldval, rold; strexeq rres, mewval, [rptr
= Acquire Fence: j dmb
‘SEq_CSt Fence: ||}1:FE1\ CE ‘ Release Fence: dmb
AcgRel Fence: dmb
SeqCst Fence: Hdmb
USA 2013 http://www.cl.cam.ac.uk/~pes20/cpp/cppoxmappings.html

July 31, 2013 Definitions 23 /37

http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html

Shattering Illusions in Lock-Free Worlds

u " i e
Other potential issues ISECpartners

* Speculative register promotion

* Write condition write

* Adjacent field overwrites

* Branch predictions

* Merging loops or inverting nested loops
° ABA problem?

* Conditional “locks”

° etc.

blhckhat

UsA 2013

July 31, 2013 Definitions

Shattering Illusions in Lock-Free Worlds

Example iISECpartners®

part of NCCQroup

Thread 1 Thread 2
g_value= . ; while (!gl_done) §
gl_done = true; [...]

}

local_data = g_value;

bibekhat

UsA 2013

July 31, 2013 Definitions

Shattering Illusions in Lock-Free Worlds

: ¢
Example ISECpartners

* Register promotion and reordering

Thread 1 Thread 2

g_value= . ; while (!gl_done) §

/y gl_done = true; [...]
}

local_data = g_value;

Potential CPU and
compiler reordering
l Potential compiler optimization
register int tmp = gl_done;
while ('tmp) §
[...]
0 }
blackhat local_data = g_value;
USA 2013

Definitions

July 31, 2013

Shattering Illusions in Lock-Free Worlds

Classic double-fetch or TOCTTOU iSECpartners®

part of NCCQroup

* C(lassicissue that can lead to privilege escalation
* Kernel (local privilege escalation, userland->kernel)
* Hypervisor (quest->host, VM breakout?)

* Example
* Two memory reads in kernel space from a user-writable address

* Kernel fetches the location once, verifies and validates the data
° -> Attacker modifies the memory in user space

* Kernel fetches the attacker-controlled value a second time and uses it

blhckhat

UsA 2013

July 31, 2013 Definitions

Shattering Illusions in Lock-Free Worlds

Classic double-fetch or TOCTTOU iSECQngge@rf

void called_by_user(void* pUserSpaceMemory, [...]) {// kernel mode
[...]
try {
[...]
data_struct* p_data_struct =
(data_struct*) pUserSpaceMemory; // attacker controlled

[...]

Captured twice

ProbeForWrite(p_data_struct->buffer, =

->
p_data_struct->len, An attacker can

sizeof(UCHAR)); change the address of
[...] the buffer after the check
RtICopyMemory(p_data_struct->buffer,
p_DATA,

p_data_struct->len);

[...]

leokha'l:

UsA 2013

July 31, 2013 Definitions

Shattering Illusions in Lock-Free Worlds

, ¢
More secure? ISECpartners

void called_by_user(void* pUserSpaceMemory, [...]) {// kernel mode

[...]
try §
[...]
captured_user_data = *(data_struct*) pUserSpaceMemory;
[...]
ProbeForWrite(captured_user_data.buffer, Captured only once?
captured_user_data.len,
sizeof(UCHAR));
[...]
RtICopyMemory(captured_user_data.buffer,
p_DATA,
captured_user_data.len);
[...]

leokha'l:

UsA 2013

July 31, 2013 Definitions

Shattering Illusions in Lock-Free Worlds

" u u " " i e
Potential compiler optimization? ISECpartners

void called_by_user(void* pUserSpaceMemory, [...]) {// kernel mode

[...]
try {
ProbeForWrite(((data_struct*)pUserSpaceMemory)->buffer,
((data_struct*)pUserSpaceMemory)->len,
sizeof(UCHAR));
Still captured
twice?
The compiler may not
RtlCopyMemory(((data_struct*)pUserSpaceMemory)->buffer), see why you need the
p_DATA, local storage (which
. * _ . just adds instructions)
((data_struct*)pUserSpaceMemory)->len)); and could optimize
n away
black hat
UsA 2013

Definitions

July 31, 2013

Shattering Illusions in Lock-Free Worlds

" u i %
Potential compiler bug? ISECpartners

void called_by_user(void* pUserSpaceMemory, [...]) {// kernel mode
[...]
try {

captured_user_data = *(volatile data_struct*) pUserSpaceMemory;

Force volatile semantic,
force capture (legal)

(/volatile:ms)
ProbeForWrite(((data_struct*)pUserSpaceMemory)->buffer,

Use copy_from_user(...) ((data_struct*)pUserSpaceMemory)->len,

on Linux sizeof(UCHAR));
Still captured
twice?

RtlCopyMemory(((data_struct*)pUserSpaceMemory)->buffer),
p_DATA,
((data_struct*)pUserSpaceMemory)->len));

leokha'l:

UsA 2013

July 31, 2013 Definitions

Shattering Illusions in Lock-Free Worlds

" - I e
Compilers and CPUs can have issues ISECpartners

* Especially with lock-free code

* These bugs are more frequent than you may think, and can
impact a lot of code —that may never be recompiled

* Compilers may not always follow the standard

blhckhat

UsA 2013

July 31, 2013 Definitions

Shattering Illusions in Lock-Free Worlds

: ¢
How to find these bugs ISECpartners

* Blackbox

* Determine which compiler was used
° Any type of bug known to be introduced by the compiler?

* Look for specific instructions (hardware barriers) and see
what it is supposed to protect (in weak memory models:
is the right instruction used?)

* ThreadSanitizer (TSAN)
° Linux/Mac based on Valgrind, based on PIN for Windows

°* Memory access pattern analysis?
* See Bochspwn (M. Jurczyk and G. Coldwin)

blhckhat

UsA 2013

July 31, 2013 Definitions

Shattering Illusions in Lock-Free Worlds

n [] i e
Whitebox and solutions ISECpartners

* Thoroughly review code that:
* Should not be optimized in any way
* Where shared memory is accessed/written

* Test cases and fuzzing

* You are not only testing your code but the compiler/CPU too
* Using ThreadSanitizer (TSAN) or Helgrind

* Disabling optimizations has limits
* Compare an test against CPUs with weaker memory models
* Equivalence checking
* Using different compilers (could be very difficult, though)
* Temporary mitigation for the user: sandbox with one CPU
blé‘l?::kh&:t

UsA 2013

July 31, 2013 Definitions

Lock-free programming is hard

It can create lots of issues that easily go unnoticed

And even with valid code due to compiler/CPU issues

"The fences in the current [C++] standard may be the most
experts-only construct we have in the language"

— Hans Boehm

"It's easy to write lock-free code that appears to work, but it's
very difficult to write lock-free code that is correct and
performs well. Even good magazines and refereed journals
have published a substantial amount of lock-free code that was
actually broken in subtle ways and needed correction.”

— Herb Sutter

Shattering Illusions in Lock-Free Worlds

: ¢
ThankYou ISECpartners

* Marc Blanchou
* Principal Security Consultant at iSEC Partners
* marc@isecpartners.com

* References

* Papers/articles from:

° Hans Bohem, Leslie Lamport, Herb Sutter, Vance Morrison, Jeff
Preshing, David Howells, Paul E McKenney, Intel Corporation,
Andrei Alexandrescu, Linus Torvalds, Petru Marginean, Tian Tian

blhckhat

UsA 2013

July 31, 2013 Definitions

mailto:marc@isecpartners.com

Shattering Illusions in Lock-Free Worlds

-

iISECpartners®

part of NCCQroup

L .
[L - [)
UK Offices North American Offices Australian Offices
Manchester - Head Office San Francisco Sydney
Cheltenham Atlanta
Edinburgh New York
Leatherhead Seattle
London
Thame

European Offices
Amsterdam - Netherlands
Munich — Germany
Zurich - Switzerland

July 31, 2013 BH USA 2013

