
HTTPS://WWW.ISECPARTNERS.COM 1/12

RECOGNIZING AND PREVENTING

TIME-OF-CHECK TO TIME-OF-USE VULNERABILITIES

Christopher Hacking – chacking[at]isecpartners[dot]com

iSEC Partners, part of NCC Group

123 Mission Street, Suite 900

San Francisco, CA 94105

https://www.isecpartners.com

March 2, 2015

Abstract

Time-Of-Check to Time-Of-Use (TOCTOU) vulnerabilities may occur where a privileged

component attempts to validate untrusted input, and result in elevation of privileges. This

paper describes the characteristics of TOCTOU to enable developers to recognize this class

of vulnerabilities, and proposes solutions for various scenarios in which TOCTOU is likely to

be found. A selection of examples demonstrates the problem and several solutions.

1 INTRODUCTION

Time-of-Check to Time-of-Use, often abbreviated as “TOCTOU” or “TOCTTOU”, describes a class of security

vulnerabilities that occur when a privileged system component validates (checks) an attacker-controllable

resource prior to consuming (using) it, and an untrusted attacker is able to modify the resource between the

check and the use. TOCTOU vulnerabilities typically lead to elevation of privilege exploits, where a malicious

input will cause unintended behavior in the privileged component and the attacker can modify that input to

make it malicious after it passes validation.

This paper is aimed at software architects, developers, and testers. Our goal is to help avoid situations in

which TOCTOU vulnerabilities might occur, recognize them when they are present, and remedy them. There

are too many variants of TOCTOU to discuss each one individually, so we will instead attempt to describe

classes of scenarios in which TOCTOU vulnerabilities occur, and provide representative examples. We hope

that this will enable developers to recognize similar patterns in their own code.

Preventing TOCTOU vulnerabilities is an area which has received considerable research. However, most of

this research has either focused on a specific form of TOCTOU vulnerability, or the proposed solutions have

been found inadequate. Additionally, runtime testing for TOCTOU is difficult, as each potential vulnerability

may require a custom test and TOCTOU vulnerabilities are usually non-deterministic. Therefore, TOCTOU

issues are typically identified during design or code review. This paper will not discuss automated tests to

recognize TOCTOU vulnerabilities.

https://www.isecpartners.com/
https://www.isecpartners.com/

HTTPS://WWW.ISECPARTNERS.COM 2/12

2 DESCRIPTION OF TOCTOU VULNERABILITIES

TOCTOU vulnerabilities have been known since at least the 1970s. However, they occur in many forms, and

new examples are still being discovered today. They can occur on all platforms and all languages. The attacker

usually needs to be local, but in some cases can be remote. The typical impact is elevation of privileges.

2.1 THE PROBLEM

Systems frequently contain trust boundaries, which divide a system between trusted components (which are

privileged) and untrusted components and actors (which are not). Examples of trust boundaries are the user-

kernel boundary, the user account boundary, and the machine boundary. In most such systems, a privileged

component will sometimes need to trust (use) input which comes across a trust boundary. To ensure that this

input is trustworthy despite its source, the privileged component will validate (check) the input before use.

TOCTOU vulnerabilities occur when the attacker can modify the resources after the check but before the use.

The privileged component now trusts the input, but the input is no longer trustworthy. If the behavior of the

privileged component is determined by the input, then the unprivileged attacker now has elevated privileges.

2.2 RACE CONDITIONS

The most common TOCTOU vulnerabilities are race conditions, where an operation which is assumed to be

atomic (such as checking a file path or a pointer, and then using it) may be interrupted on a multitasking

operating system, allowing the attacker’s code to execute and change the resource between check and use.

After a resource is checked, the vulnerable code is “racing” with the attacker to use the resource before it gets

changed.

Exploiting a race condition is typically non-deterministic, but in many cases the attacker can repeat the

attack until it succeeds, and will only need to succeed once. A well-known historical TOCTOU race condition

in the BSD 4.3 mail utility could usually be exploited in about a minute.

There have been a number of proposed mitigations for race conditions. For example, if you require that the

race be won many times in a row, naïve exploitation becomes nearly impossible. [1] However, more advanced

attacks may still occur. [2] Our recommended solutions are deterministic and avoid the race entirely.

3 RECOGNIZING TOCTOU

3.1 CHARACTERISTICS OF TOCTOU

All TOCTOU vulnerabilities have certain elements in common.

 A trusted component that has higher privileges than the attacker.

 An untrusted resource (usually an input) which the attacker can control.

 An undesirable action which the trusted component will take if it trusts (uses) a malicious input.

 A check by which the trusted component determines whether it can trust the input.

 An opportunity for the attacker to modify the resource between the check and the use.

The trusted component must have privileges that a potential attacker lacks, or there is no threat. It does not

matter if the component is not fully trusted by the system, however. For example, the programs that User A

https://www.isecpartners.com/

HTTPS://WWW.ISECPARTNERS.COM 3/12

runs are typically trusted to read and write User A’s files, while programs that User B runs are not. Regardless

of whether or not the users have administrative capabilities, most modern operating systems have a trust

boundary between user accounts. It is important to not allow one user to access another user’s data.

The untrusted resource or input may be supplied by the attacker or chosen by the trusted component, but it

must be attacker-controllable. A file path where the attacker has no write access is not at risk of a TOCTOU

vulnerability, but a file where the attacker can control even one directory in the path to that file may be a risk.

The way in which the trusted component uses the resource must be of potential use to the attacker. A script

that will execute in the trusted context is of interest to the attacker; an image used to represent the attacker’s

user account is much less sensitive.

The distinguishing characteristic of the check in a TOCTOU-vulnerable system is that an input which passes

the check is considered trusted. If the component declines to ever trust the input – for example, by dropping

its own privileges to those of the input’s source while the input is being used – then it is not vulnerable to

TOCTOU (unless the result of checking the input’s source can be attacker-controlled).

The core of a TOCTOU vulnerability, however, is the opportunity for an attacker to modify the resource after

it has been checked, but before it is used. When the attacker can invalidate the check’s result but the trusted

component still trusts the input, the result is equivalent to just removing the check and trusting any input.

3.2 MULTIPLE RETRIEVALS

Typically, TOCTOU vulnerabilities occur when a resource is indicated by a path, name, or other reference or

identifier, and is checked and used via multiple retrievals of the identified item. For example, a file which is

checked via its name, then opened by name (and used in some manner) is potentially vulnerable; file

systems can be manipulated such that a given path and name which refers to one file during the check may

refer to another during use. In addition to file paths, this can apply to network addresses, pointer variables in

multithreaded programs, and more.

The key is the multiple retrievals or dereferences. If the resource is loaded in such a way that an external

attacker cannot modify it, and the loaded copy is used for both the check and the use without a new load,

then a TOCTOU vulnerability cannot exist. However, be aware that the retrieved resource often includes its

environment. For example, if checking whether a named file exists, the resource being retrieved is the state

of that portion of the file system (including metadata such as permissions), not just a particular file name.

Some TOCTOU vulnerabilities occur when the attacker can control the channel over which the resource is

loaded. If software erroneously trusts a communication mechanism to be immune to tampering, it might

request data over the channel once to check it for validity, and then again (assuming it to be unchanged) for

usage. The response to the second request could be tampered with by the attacker, leading to the use of

unchecked data. The most common place for such a problem to arise would be in the transfer of large

resources between machines; if the attacker controls the other machine or can intercept and modify network

traffic, it is easy to present different inputs for the check and the use. Such a TOCTOU vulnerability is often

not a race condition; the attacker can simply switch the resource after the first retrieval is completed.

4 REMEDIATING TOCTOU

There are several general approaches to preventing TOCTOU vulnerabilities. If the check and the use can be

made atomic, there will be no opportunity for an attacker to interfere. Alternatively, perform the check and

the use out of the attacker’s reach. Other solutions may be possible, and in some situations may be required.

https://www.isecpartners.com/

HTTPS://WWW.ISECPARTNERS.COM 4/12

However, the simplest solution that will work is usually the best choice, as it reduces the risk of introducing a

new vulnerability. Also, some of these proposed fixes are usually platform-specific, so developers of portable

code might need to avoid them. Ensure that your chosen solution is safe on all supported platforms.

4.1 ATOMIC CHECK AND USE

Sometimes it is possible to perform the desired check as part of the use. If both actions are atomic from the

attacker’s perspective, then there is no TOCTOU vulnerability. APIs (or optional parameters to the APIs you

are currently using) may incorporate the check and the use into a single operation, such that the attempted

use fails if the check would have failed. In such cases, a separate step to check may be redundant from a

security perspective (existing only to, for example, avoid the performance cost of failed attempt at use).

4.2 CACHING THE RETRIEVED RESOURCE

In many cases, the solution to TOCTOU is to avoid the repeated retrieval of the resource. By retrieving the

resource only once and keeping it internally (where the attacker cannot modify it), the check and use become

effectively atomic from the attacker’s perspective regardless of how much time actually passes between check

and use. This approach is most effective when the resource in question is easy to store, such as a reference to

a file; rather than using a file path for each operation (and risking the attacker changing elements of the

path), open the file once and store the file descriptor.

4.3 ENSURE THE RESOURCE IS UNCHANGED

Sometimes avoiding repeated retrievals of the resource is impractical, such as when a very large amount of

data would need to be cached. In such cases, a hybrid approach may be used: on the initial retrieval to check

the resource, also create and store a cryptographic hash of the data, then verify the hash on the subsequently-

retrieved data prior to using it.

In some cases it is impractical to store the entire resource in working memory. If the resource is retrieved in

chunks of known size and offset, each chunk can be hashed during the check, and the hashes stored. During

use, re-hash each chunk and verify that this hash matches the cached value before using the chunk. While

this will impose a performance impact, it will avoid the risk of using untrustworthy resources.

4.4 PREVENT MODIFICATION OF THE RESOURCE

In some scenarios, it is possible to “lock” a resource, preventing modification by an attacker, while the

trusted component performs the check and use. However, it is vital to distinguish between locking the

resource and locking its reference. For example, if the resource is referenced by path, it is vital to lock the

entire path rather than just locking the final portion where the resource is named.

4.5 USE AN UNPRIVILEGED PROCESS

As mentioned in section 3.1, the first characteristic of a TOCTOU vulnerability is the presence of a trusted

component with privileges greater than the attacker currently possesses. Sometimes elevated privileges are

not actually required. In that case, the component should use the resource in a process or thread with the

same privileges as the potential attacker. Under this remediation, the check is generally no longer required at

all; the input is always treated as untrusted.

https://www.isecpartners.com/

HTTPS://WWW.ISECPARTNERS.COM 5/12

5 EXAMPLES OF TOCTOU VULNERABILITIES

The following examples are intended to illustrate a diverse sampling of TOCTOU vulnerabilities. This is not a

comprehensive list of either vulnerable mechanisms or scenarios where such mechanisms may be used.

5.1 PROGRAM PRIVILEGE CHECKS

5.1.1 DESCRIPTION

This section could have just been called “the POSIX access system call”, but while most people now know

not to use access1, it has been re-implemented just as insecurely under other names and on other platforms.

This is possibly the classic example of a TOCTOU vulnerability. The function takes a file path as a string and

an access mask as an integer, and checks whether the program’s real user ID – that is, the ID of the user who

launched the program, even if the executable has the setuid bit set – has the specified access to that file. Its

purpose is to allow a high-privilege program to take actions on a user’s behalf, but only if the user would be

able to take that action already.

Part of the reason that access is such a popular example of TOCTOU is because it is inherently vulnerable.

This is because the file to check is referenced by path, and there is neither any mechanism for preventing the

file referenced by that path from changing nor any way to verify that the file checked by access is the same

one being used later. Any function which uses file paths for a similar purpose is probably vulnerable.

Note that this does not just apply to file system resources. For example, on Microsoft Windows, an issue of

this type could involve a registry key, named pipe, driver object, or any other securable object.

5.1.2 CODE

Simple POSIX C example showing abuse of a setuid program to overwrite the system authentication file:

Vulnerable system code Attacker code

// RootProg (runs setuid root)
// “Safely” open a file for writing
int openUserFile(char *file) {
 int fd;
 // Check real UID access
 if (access(file, W_OK)) {
 return -1;
 } // Else, safe to write!
 // Note: check was above, use is below!
 fd = open(file, O_WRONLY);
 return fd;
}

// AttackProg (runs as limited user)
while (!isFileOverwritten()) {
 system(“touch ./safefile”);
 // Launch the vulnerable program in the bg
 system(“RootProg ./safefile &”);
 // Change the target file into a link to
 // a file that we can’t write normally
 remove(“./safefile”);
 link(“/etc/shadow”, “./safefile”);
 usleep(10);
 remove(“./safefile”);
}

5.1.3 REMEDIATION

One of the simplest ways to fix this vulnerability is to make the check and the use a single, atomic operation

(from the perspective of the file system). In the case of access, the OS already checks the file permissions

1 The Linux manual specifically notes the security vulnerability and recommends against using this system
call: http://linux.die.net/man/2/access

https://www.isecpartners.com/
http://linux.die.net/man/2/access

HTTPS://WWW.ISECPARTNERS.COM 6/12

when opening a file. To make it check against the real ID, it is sufficient to temporarily drop the effective ID

to match the real ID:

Patched system code

// RootProg (runs setuid root)
// Safely open a file for writing
int openUserFile(char *file) {
 int fd = -1;
 // Drop effective UID root for real UID
 if (!seteuid(getuid())) {
 // Now open file, let OS check perms
 fd = open(file, O_WRONLY);
 // Restore root permissions
 seteuid(0);
 }
 return fd;
}

Similar solutions are available on all modern platforms, although the exact implementation may vary. On the

Microsoft Windows platform, for example, a thread on the privileged process may impersonate2 the caller.

Another option is to simply avoid having the privileged process perform the task; sometimes it is possible to

have the unprivileged process perform the operation directly. However, if the unprivileged process needs

some information from the privileged one before the operation can be carried out, it is important to secure

the channel used to communicate between the processes to avoid introducing a new vulnerability.

Other options exist, such as opening the file descriptor and then using fstat to confirm access for the real ID

(essentially re-implementing access with a file descriptor in place of a path) works. However, TOCTOU

vulnerabilities (as with other classes of software bug) should generally be fixed in the simplest manner

possible; more complex fixes risk either just moving the vulnerability, or introducing a new one.

5.2 TEMPORARY FILE CREATION

5.2.1 DESCRIPTION

Programs frequently create temporary files to cache data too big for memory, to pass data between processes,

or various other reasons. These files might contain sensitive data that untrusted processes should not have

access to. Alternatively, privileged processes may create the files and write data into them that an attacker

would like to have written into a different file.

5.2.2 GETTEMPFILENAME

The Win32 API provides a function for creating temporary files, GetTempFileName3. Despite the function’s

name, it will actually create the file and then close it (providing the name to the function’s caller). Because

no particular access controls are applied to the created file, it will simply inherit the security of the directory

in which it resides. If the file is created in a limited-user-writable location, limited users can delete the

created file and replace it.

2 Impersonation: http://msdn.microsoft.com/en-us/library/windows/desktop/aa376391(v=vs.85).aspx
3 GetTempFileName: http://msdn.microsoft.com/en-us/library/windows/desktop/aa364991(v=vs.85).aspx

https://www.isecpartners.com/
http://msdn.microsoft.com/en-us/library/windows/desktop/aa376391(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa364991(v=vs.85).aspx

HTTPS://WWW.ISECPARTNERS.COM 7/12

This is a TOCTOU issue because the API checks for an unused file name, but the file is created at the time of

the check and then closed. Securing or using the file will require re-opening the file by its path, allowing an

attacker to replace the file (or a folder in the path) first. This is a common problem any time a program needs

to create a new file in a shared location.

5.2.3 OTHER TEMPORARY FILE FUNCTIONS

POSIX has its own insecure temporary file functions, such as mktemp, tmpnam, and tempnam. These functions

do not create the temp file, and instead merely return a file name that did not exist at the time of the check.

The C standard function tmpfile creates a unique file and returns an open FILE* pointer which can be safely

used, but offers no control over the file’s location or creation mode.

The POSIX function mkstemp (and its siblings in glibc, such as mkostemps) create a temp file securely and

return a usable file descriptor, but they also return the full path of the file. This path must not be trusted to

refer to the same file if used in another open call (or similar API).

5.2.4 CODE

Example Win32 C++ and C# code showing abuse of the GetTempFileName API with a privileged system

component that inadvertently overwrites another system component. This particular example requires that

the attacker have the ability to create symbolic links, which on Windows is not granted by default.

Vulnerable system code Attacker code

// InstallSvc (runs as TrustedInstaller)
// Store network-retrieved data in a temp file
HANDLE storeTempData(char *data, DWORD len) {
 // Get a new, unique temp file name
 WCHAR p[MAX_PATH];
 GetTempFileNameW(L“\\TMP”, L“Ins”, 0, p);
 // Now that we checked for a file nobody
 // else is using, we can use it ourselves
 HANDLE h = CreateFile(
p, GENERIC_ALL, 0, NULL, OPEN_EXISTING,
FILE_FLAG_DELETE_ON_CLOSE, NULL);
 if (!h || INVALID_HANDLE_VALUE == h) {
 // File is open or doesn’t exist
 return NULL;
 }
 // Restrict access and write to the file
 LockFile(h, 0, 0, len, 0);
 if (WriteFile(h, data, len, &len, NULL))
 return h;
 // Something went wrong if we get here
 CloseHandle(h);
 return NULL;
}

// AttackProg (limited user + symlinks)
// Overwrites UAC prompter (SYSTEM process)
void Elevate () {
 // Monitor the temp directory
 FileSystemWatcher fsw = new
 FileSystemWatcher(“\\TMP”, “Ins*”);
 fsw.Created += (ob, ev) => {
 // Event handler to race InstallSvc
 File.Delete(ev.FullPath);
 if (CreateSymbolicLink(ev.FullPath,
 @“\Windows\System32\consent.exe”,
 0)) { // Wrapper around Win32 API
 // Wait for write then trigger UAC
 Thread.Sleep(1000);
 Process.Start(“devmgmt.msc”);
 }
 };
 fsw.EnableRaisingEvents = true;
 while (!IsFileOverwritten()) {
 // Trigger InstallSvc over network
 SendPayloadToElevate();
 }
}

5.2.5 REMEDIATION

There are multiple approaches to fixing temporary file TOCTOU. One of the best is to use a temporary file

function which returns a still-open file descriptor or HANDLE, making the operation atomic and eliminating

https://www.isecpartners.com/

HTTPS://WWW.ISECPARTNERS.COM 8/12

the opportunity for an attacker to interfere with the file. Unfortunately, while POSIX has the mkstemp APIs,

Win32 lacks any such functions. The C standard function tmpfile can be used on most platforms, but offers

no control over where the file is created (notably, the Microsoft C runtime creates the file in the root of the

drive and may fail due to insufficient permissions4).

Another option is to create the temporary file directly, requiring that it not yet exist. This combines the check

(for file existence) and the use (opening a new, temporary file) in a single, atomic operation; if the specified

file exists, the function will fail. On POSIX, including the O_CREAT|O_EXCL flags to open will require that the

file not yet exist. On Windows, use the CREATE_NEW option in the dwCreationDisposition parameter of the

CreateFile API (you should also set dwShareMode to 0 and/or specify a very restrictive security descriptor).

No such option exists universally for C library functions such as fopen, although some implementations

(such as glibc) support the “x” flag to require this behavior.5

An additional option usable in some scenarios is to “lock” a file or directory such that no other process can

modify it. On Windows, this can be done by opening a HANDLE to any file or directory without any share

flags; the opened item and every element of its path will be immutable to other processes until the HANDLE

is closed (or the process exits). If the path specified in CreateFile contains one or more reparse points6 (such

as directory junctions, which can be created without any special privileges) then the path that gets locked

will be the resolved path; the reparse points themselves will not be locked. To safely use the locked path,

retrieve the path of the locking HANDLE7 instead of using the path by which the HANDLE was opened.

Finally, one can use a location that the attacker cannot access. However, it is important to remember that the

entire path must be safe; if the attacker can replace any directory in the path with a symlink or junction to a

location that the attacker can write to, then TOCTOU attacks are still possible.

5.3 MEMORY LOCATIONS

5.3.1 DESCRIPTION

When memory is shared between functions executing at different privilege levels, there is a threat of the less-

privileged process attempting to use the shared memory to gain elevated privileges. If the trusted component

checks a value supplied via the shared memory and then attempts to use it for something sensitive, the less-

privileged code might modify the shared value to invalidate the check result before the value is used. This can

occur between processes, or within a process when threads are executing at different privilege levels (such as

user-mode and kernel-mode).

5.3.2 CODE

Example of code one might find in an NT kernel-mode driver’s handler for the DeviceIoControl function (an

IOCTL handler). In this example, the driver uses neither buffered nor direct I/O8, so it operates in the

address space of the caller. As kernel-mode code, however, it is able to read and write kernel-mode addresses.

Some variable assignments and error handling are omitted for brevity.

4 tmpfile on MSDN: http://msdn.microsoft.com/en-us/library/x8x7sakw.aspx
5 http://linux.die.net/man/3/fopen - see the section “Glibc notes”
6 Reparse points: http://msdn.microsoft.com/en-us/library/windows/desktop/aa365505(v=vs.85).aspx
7 Path from HANDLE: http://msdn.microsoft.com/en-us/library/windows/desktop/aa366789(v=vs.85).aspx
8 Non-buffered I/O: http://msdn.microsoft.com/en-us/library/windows/hardware/ff565432(v=vs.85).aspx

https://www.isecpartners.com/
http://msdn.microsoft.com/en-us/library/x8x7sakw.aspx
http://linux.die.net/man/3/fopen
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365505(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366789(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff565432(v=vs.85).aspx

HTTPS://WWW.ISECPARTNERS.COM 9/12

Vulnerable driver code

// Executes in caller’s address space (neither buffered nor direct I/O)
// Writes to a user-specified address specified in a structure in the output buffer
try {
 UserData *pData = (UserData*)(Irp->UserBuffer);
 // Make sure the destination buffer is large enough or raise an exception
 if (pData->buflen < outputLen) ExRaiseStatus(STATUS_INVALID_PARAMETER);
 // Ensure the destination buffer is user-mode and is mapped or raise an exception
 ProbeForWrite(pData->buffer, outputLen, 1);
 // If we got here, the probe succeeded and we can write to the user-mode buffer
 RtlCopyMemory(pData->buffer, outputBuffer, outputLen);
} except (EXCEPTION_EXECUTE_HANDLER) {
 // Handle exceptions gracefully…
}

In this example, if the address stored at pData->buffer is changed after the ProbeForWrite call but before the

RtlCopyMemory (memcpy) call, the safety guarantees of the ProbeForWrite check will no longer be valid. The

UserData struct is in user-mode memory; any thread executing in parallel with the one that called the IOCTL

could modify that address to do something like point at a kernel memory address, allowing untrusted user-

mode code to overwrite arbitrary kernel data.

5.3.3 REMEDIATION

In this case, making the check and use atomic is probably possible, but at great cost and complexity; all non-

caller threads in the calling process would need to be suspended, as would every other untrusted process that

could debug the caller. Instead, copy the sensitive values to a location where an attacker cannot modify them

and then use those cached values for the probe and the write.

Patched driver code

// Executes in caller’s address space (neither buffered nor direct I/O)
// Writes to a user-specified address specified in a structure in the output buffer
try {
 UserData *pData = (UserData*)(Irp->UserBuffer);
 // Make sure the destination buffer is large enough or raise an exception
 if (pData->buflen < outputLen) ExRaiseStatus(STATUS_INVALID_PARAMETER);
 // Copy the address locally
 void *buffer = pData->buffer;
 // Ensure the destination buffer is user-mode and is mapped or raise an exception
 ProbeForWrite(buffer, outputLen, 1);
 // If we got here, the probe succeeded and we can write to the user-mode buffer
 RtlCopyMemory(buffer, outputBuffer, outputLen);
} except (EXCEPTION_EXECUTE_HANDLER) {
 // Handle exceptions gracefully…
}

An attacker could still modify memory between the probe and the write. For example, if the user buffer gets

unmapped before the copy operation, the copy will fail. However, the whole operation is in a try block, and

the attacker cannot change the address to which the write is attempted after probing. For most drivers, using

a safer method of passing data (such as Buffered I/O9, where the kernel safely copies data back to user-mode)

is also an option. Regardless, for nearly all cases of memory TOCTOU, the simplest solution is to cache the

input out of the attacker’s reach and perform both the test and use on the cached data.

9 http://msdn.microsoft.com/en-us/library/windows/hardware/ff565356(v=vs.85).aspx

https://www.isecpartners.com/
http://msdn.microsoft.com/en-us/library/windows/hardware/ff565356(v=vs.85).aspx

HTTPS://WWW.ISECPARTNERS.COM 10/12

5.4 NETWORK RESOURCES

5.4.1 DESCRIPTION

This is an interesting case, because it is frequently not a race condition. TOCTOU over the network usually

occurs when a resource (could be a file, a media stream, or something else entirely) is downloaded and the

client checks some characteristic of it but does not store the entire download. If the client then wants to use

the resource (because the check succeeded) the download must be repeated. In the case of an insufficiently

secure connection, the attacker can intercept and modify the resource when it is retrieved (downloaded) the

second time. In the case of an untrustworthy server, the attacker can modify the resource for the second load.

Since a network attacker or server can easily control the flow of data, the attacker has no need to “race” to

modify the resource between subsequent retrievals and thus, this attack can succeed 100% of the time.

5.4.2 CODE

Example of a C# utility that retrieves an update package, checks to make sure it was signed by the vendor, and

if so, installs it. The update utility has the public key for the signing authority, and the file’s signature is

located at the head of the file. The file may be too big for the utility to store locally, so it will be downloaded

and its hash computed in blocks. If the signature verifies for the hashed data, the update will be installed.

Vulnerable update retrieval

// Gets the update package’s signature, then builds a hash of the data to verify.
// returns true if the update verifies, in which case it will be re-downloaded and installed
bool CheckUpdateSignature (NetworkStream update, // open connection to the server
 AsymmetricSignatureDeformatter verif, // keyed signature verifier
 HashAlgorithm hash) { // cryptographic hash function used by sig
 byte[] sig = new byte[SIGNATURE_SIZE], len = new byte[8], buf = new byte[1 << 20];
 long remaining; // Size of the download that we have not yet hashed
 int bytes;
 try { // Get the signature; it’s at the head of the network stream
 if (update.Read(sig, 0, SIGNATURE_SIZE) < SIGNATURE_SIZE) return false;
 // Get the length (next 8 bytes, network byte order)
 if (reader.Read(len, 0, 8) < 8) return false;
 if (BitConverter.IsLittleEndian) Array.Reverse(len);
 remaining = BitConverter.ToInt64(len);
 while (remaining > 0) { // Get the update package 1MB at a time
 bytes = update.Read(buf, 0, (int)(Math.Min(remaining, (1L << 20))));
 remaining -= bytes;
 if (remaining > 0)
 hash.TransformBlock(buf, 0, bytes, buf, 0); // Update hash with this block
 else hash.TransformFinalBlock(buf, 0, bytes);
 } // We now have a hash of the while update package
 return verif.VerifySignature(hash.Hash, sig);
 } catch (Exception ex) {
 // Handle exceptions gracefully…
} }

If the attacker controls the server (perhaps the update utility was tricked to connect to the wrong server, or

the attacker compromised the server), or controls the network traffic, then the attacker controls what data

the updater sees on each download. When this check is performed, the attacker sends a valid update package

and its signature. However, when the updater goes to re-download the update package for use, the attacker

can substitute malicious code that is not signed.

https://www.isecpartners.com/

HTTPS://WWW.ISECPARTNERS.COM 11/12

5.4.3 REMEDIATION

There are a few options here. The first is to download the data only once; store it locally and check the local

copy, then use that local copy if the check passes. If the data might not fit in RAM, a temporary file may be

an option (make sure to avoid the pitfalls in section 5.2). If a temporary file will not work – for example, if the

device doesn’t have enough spare storage to hold the full download – then each chunk of the download will

need to be verified individually.

The best way to do that, assuming the ability to verify the data as a whole, is to cryptographically hash each

individual chunk and store the digests (hopefully there is storage for this). Then, when re-downloading the

data for use, verify the hash of each chunk – while it is held in memory – against the stored value, before the

data gets used.

6 CONCLUSION

TOCTOU vulnerabilities come in a variety of forms, and can appear in any language and on any platform. It is

not possible to provide an exhaustive exploration of the topic any more than it would be possible to provide a

list of all the types of checks a program might make on a resource obtained across a trust boundary. However,

the descriptions and examples in this paper will hopefully enable software architects, developers, and testers

to recognize TOCTOU risks in their designs and code, and to remedy them.

This paper has described the characteristics of a TOCTOU vulnerability: the trusted component that takes a

reference to a resource or input from an untrusted source, retrieves the input and checks its safety, and uses

the now-trusted resource in a way that will have a negative effect if the resource is not trustworthy. We have

identified the key aspect of the vulnerability: the multiple retrievals (for check, then use) with an

opportunity for the attacker to modify the resource between check and use. We have provided broad

categories of remediation for TOCTOU: using an atomic check-and-use, caching the resource where the

attacker cannot modify it before use, ensuring the resource is unchanged between check and use, and

dropping privileges to match those of the attacker. For several common forms of TOCTOU vulnerability, we

have provided examples and code to help developers recognize such vulnerabilities in their own systems, and

have provided potential solutions to each example.

https://www.isecpartners.com/

HTTPS://WWW.ISECPARTNERS.COM 12/12

REFERENCES

[1] D. Dean and A. J. Hu, "Fixing Races for Fun and Profit: How to use access(2)," in 13th USENIX Security

Symposium, San Diego, CA, 2004.

[2] N. Borisov, R. Johnson, N. Sastry and D. Wagner, "Fixing races for fun and profit: how to abuse atime," in

14th USENIX Security Symposium, Baltimore, MD, 2005.

https://www.isecpartners.com/

