
Creating a Safer OAuth User-Experience

Paul Youn— paul[at]isecpartners[dot]com

iSEC Partners, Inc
444 Spear Street, Suite 105
San Francisco, CA 94105

https://www.isecpartners.com

April 26, 2011

Abstract
An increasing number of web services are implementing OAuth servers in order to allow users to securely

share their resources with third-party “consumer” applications. OAuth allows end-users to grant a consumer
access to these private resources without surrendering their actual server credentials. Security risks can be
introduced into an OAuth implementation and this paper suggests making a more secure user-experience by
creating a simple and understandable workflow, implementing a least-privilegesmodel, and auditing consumers.

1 Introduction

OAuth provides a framework that allows an end-user to authorize information sharing between web services
or applications. The goal of OAuth is to allow resource sharing without requiring the user to share their actual
credentials withmultiple services. Although some background will be provided in this paper, it is recommended
that the reader become familiar with the OAuth 1.0 protocol[1] as well as draft 15 of the OAuth 2.0 protocol[2]1.
Although the OAuth 2.0 is an evolution of OAuth 1.0, the overall security model is similar and most of the
following recommendations apply to both versions.

1.1 The OAuth protocol

The OAuth protocol was designed as a three-legged authorization that involves an end-user, a consumer service
requesting authorization, and a server hosting the end-user’s resources2. The end-user initiates a request to
share her resources across applications. The server is the party that controls the resources. The consumer is
the party that will use the resources controlled by the server on behalf of the end-user.

The example given in the OAuth 1.0 specification[1] involves a user Jane who wants to order prints from
printer.example.com (the consumer) using pictures she keeps at another site personaldata.example.net3
(the OAuth server). Jane wants to grant access of her photos to printer.example.com using the OAuth pro-
tocol.

1OAuth 2.0 may undergo significant changes before being finalized.
2Although OAuth 2 introduces several other use cases, the three-legged authorization scheme is the focus of this paper.
3The name of the website has been changed to highlight that the server may control more information than just photographs.

https://www.isecpartners.com 1/10

https://www.isecpartners.com
printer.example.com
personaldata.example.net
printer.example.com
https://www.isecpartners.com


Figure 1 gives a simplified view of the OAuth protocol. In step zero, the consumer (printer.example.com)
registers with the server (personaldata.example.net). Typically the server will issue a consumer ID and se-
cret that the consumer uses to authenticate. Much of this paper focuses on using the registration process to
implement least-privilege principles that protect a user from consumers that may ask the user for unnecessary
privileges. A less discriminating registration process will treat a third-party that seeks to harvest data for adver-
tising purposes the same as a third-party that responsibly handles the end-user’s data. Although OAuth makes
it tempting to place the responsibility on the end-users to protect themselves, this paper discusses several ways
that the server and consumer can help the end-user by creating a safer environment.

In the first step of the typical authorization flow, an end-user initiates a request for the consumer (the printer
service) to access private resources (Jane’s photos) on the server. For the second step, the consumer (the printer
service) packages an authorization request that contains a list of requested permissions, the duration of the
credentials, and the redirect URI where the credential will be sent. The user is then redirected to the resource
server.

Figure 1: A simplified view of OAuth

During the third step, the usermust first authenticate to the server and is then asked to authorize the consumer’s
request. The authorization decision is all-or-nothing. A typical OAuth implementation will allow the consumer
to request any permissions and rely on the user to decide if they want to use the service or not. The consumer
may request permissions that are not required for the task at hand and the user will still grant the request if the
service is valuable. For example, the printer service may request access to Jane’s photos as well as access to her
social media interface to broadcast that “Jane loves printing with printer.example.com!”.

The authorized access token is sent to the consumer via the end-user in the fourth step. The consumer can
now present the token to the resource server and gain access the end-user’s resources in the fifth step4.

4The interaction between server and consumer may require multiple round trips depending on the particular deployment scenario as
described in the working draft of OAuth 2[2]

https://www.isecpartners.com 2/10

printer.example.com
personaldata.example.net
printer.example.com
https://www.isecpartners.com


1.2 Beyond the OAuth specification

The OAuth specification only provides a protocol for exchanging security tokens. Consumer and resource
provider sites wishing to use OAuth to collaborate still need to create a user-experience around authenticating
users and authorizing access to resources. OAuth is intended to allow a user to easily share resources in a secure
and controlled manner. Even vague authorization messages could expose end-users to risk because they won’t
be able to make informed decisions.

Implementors of OAuth should strive to protect the end-user and enable them to make informed decisions.
A weaker implementation of OAuth may expose the user to consumers harvesting long-term and powerful
credentials or insecure consumers that expose access tokens to attackers through bad practices. Understanding
and mitigating the potential risks to the end-user is the subject of the remainder of this paper.

2 Towards a secure OAuth server framework

A complete implementation of the OAuth server must include an “authorization server”5, a “resource server”,
and a means for managing consumers. All three of these major components will manage sensitive credentials
and must be at least as secure as the server’s normal authentication process. The authorization server must
allow end-users to securely authenticate and grant access to their resources. The resource server must enforce
access controls. The OAuth server must be able to register consumer applications, restrict or revoke consumer
access, and audit consumer actions.

2.1 Follow the principle of least-privilege

Many consumers will only need very limited access to an end-user’s resources in order to provide a service. For
example, although an end-user stores a lot of private information on personaldata.example.net, printer.
example.com only needs read access to certain photo albums. Although it is tempting to make the user respon-
sible for granting least-privileges, the user is often faced with the choice of not using a consumer’s service at all,
or granting excessive permissions and accepting the risk. Even though the user has the final ability to grant or
deny the authorization, an unrestricted consumer is able to request persistent excessive permissions as long as
their service is valuable to the user.

A secure OAuth server should define resource sets that allow consumers to request and end- users to authorize
the minimum access necessary for specific use-cases. A contact management system might need access to a
user’s address book or social graph, but not the full text of emails, their calendar, or their photos. A printing
application might need read access to a particular photo album but not the address book. Although the per-
mission scheme should be fine-grained, it must also be easy for the user to understand. Simplicity and clarity is
preferable to technical correctness.

Once an OAuth server has implemented a permission scheme, consumers could specify exactly what permis-
sions they would like to access at registration time. For example, the registration process should allow con-
sumers to specify that they will only request permission to view photos and that tokens will only be valid for
half an hour. The OAuth server can also curtail certain consumers based on reputation of the consumer, how
securely the consumer secret will be protected6, and what permissions are actually required to provide the
consumer’s service.

Unless the resource server itself has only one use-case, resource and permission sets should always be more
granular than granting access to the full privileges of a user’s account. This will not only help prevent abuse by

5Although this term was only coined in the OAuth 2 specification, OAuth 1 implementations often use an authorization server in
practice.

6OAuth 2 also provides for use cases where clients do not use consumer secrets.

https://www.isecpartners.com 3/10

personaldata.example.net
printer.example.com
printer.example.com
https://www.isecpartners.com


malicious or compromised consumer applications, but will make users more comfortable sharing access to their
data. Resource providers that grant access to personal data unrelated to the tasks a user is trying to accomplish
place their own reputation at risk if consumer applications are abusive.

Access tokens should be valid for a minimum amount of time for the task at hand. Even if a particular consumer
requires long-lived tokens, all access tokens should be invalidated whenever the user changes their actual server
password (or other credential). Failure to invalidate access tokens will create an awkward security model in
which access tokens can be, in terms of longevity, more valuable than the user’s original password.

2.2 Inform the end-user

Informing the end-user begins by authenticating the actual resource server. Just as with any web service inter-
action, the user must be confident that they are speaking with the server before authenticating and authorizing
requests. Users must be trained to use browsers that display the OAuth authentication and authorization re-
quests along with SSL indicators and the URL serving the request.

The authorizationmessage should be simple and easy to understand. Themessagemay also require internation-
alization, and real users should be consulted to see if the messages are being interpreted correctly. Live users
should be able to provide feedback or request help if they are confused by an authorization message. By clearly
informing the user, the server empowers the end-user to control their own private resources. If the OAuth
server is not informative, the end-user may blame the server if an authorized consumer behaves unexpectedly.

2.2.1 User authentication

The OAuth server must authenticate the end-user before allowing them to authorize access to protected re-
sources. Consider allowing the user to configure their account so they will be required to reenter their creden-
tials even if they are already authenticated in order to prevent attacks such as cross-site request forgery.

Once the server has received a request from a consumer and authenticated an end-user for the first time, con-
sider informing the user that a new consumer has requested access to their resources through an out-of-band
channel such as email. This form of auditing will help end-users and OAuth servers to detect a security breach.
See section 2.5 for a more thorough discussion of auditing.

2.2.2 The authorization message

The OAuth server should inform the end-user exactly what permissions are being requested, who is requesting
the permissions7, and how long the permissions will be valid (including if the token can be renewed without
further authorization). The authorization message should be simple and possibly use intuitive icons with text
representing resources.

Figure 2 is an example of anOAuth authorization screen8 that provides poor information. Note that the identity
of the calling application is included in the actual authorization message without any separation. Not only does
this make it harder for the user to identify the originator of the authorization request, but if a malicious con-
sumer could register an application name such as “yourself ”, the authorization message would become “Would
you like to grant yourself access to your vague.example.com account?” In addition, the button labeled “Grant
Access” may confuse a user into assuming they must grant access because closing the window is the only way to
deny the request. Lastly, the message “The application will be able to access your account even if you are not
logged in” doesn’t indicate when the token will expire.

7The “oauth_callback” parameter (in OAuth 2.0, the “redirect_uri” parameter) specifies where the final authorization and access tokens
are sent and is more relevant than the registered consumer name. The value of the “oauth_callback” parameter should be displayed to the

https://www.isecpartners.com 4/10

vague.example.com
https://www.isecpartners.com


Figure 2: A less informative OAuth authorization screen

Figure 3 is an example of amore informativeOAuth authorization screen. The identity of the calling application
is clearly separated from the authorization message. A message is also displayed that could warn a user if the
specified oauth_callback URI wasn’t registered. The specific permission being requested is clearly presented.
A message also indicates that the requesting application will have access to the data for five minutes. Lastly,
the simple “Grant Access” or “Deny Access” options don’t push the user toward one decision or another.

Figure 3: A more informative OAuth authorization screen

2.3 Consumer registration and management

Learn about a consumer before allowing them to register and request access to resources that are viewed as
valuable. Not all consumers have the same security model and an OAuth server doesn’t have to treat them
equally. OAuth servers that only control low-value data may be willing to let any consumer application register
and put the responsibility of authorization on the end-user, but this is generally not good enough for even
moderately private or valuable data. Consumer application security flaws such as susceptibility to common
flaws like Cross-Site-Scripting, SQL Injection, or poor web session management, will now reflect poorly on the
server’s service as a whole and put users at risk.

end-user in addition to the consumer name if a consumer did not register a callback URI.
8The example is based on actual implementations of OAuth authorization messages.

https://www.isecpartners.com 5/10

https://www.isecpartners.com


Protect against compromised consumer secrets. As suggested in section 2.1.1 of the OAuth 2[2] working draft,
the server should require the consumer to register a valid callback URI whenever possible to make it harder for
an impostor that has compromised a consumer secret to obtain access tokens. The server can then reject and
flag any request for an access token to be sent to a non-registered URI. Secondary authentication mechanisms
can also make it more difficult for a malicious attacker to spoof a consumer even if the consumer secret is
compromised. Whenever possible, the callback URI should use SSL to authenticate and protect the access
token sent to the consumer. The server should insist that all communications with the consumer and end-user
are performed over SSL.

The OAuth server should clearly state security policies that govern how consumers can use the OAuth service
and protect access tokens with explicit penalties for violations such as loss of service or other legal action.
Requiring consumers to submit to random auditing can help enforce these policies.

2.4 Consumers that can not keep secrets

OAuth can still provide some value even if a distributed application is unable to protect a consumer secret. In
some cases, it may be worthwhile for the server to support unauthenticated consumers but the decision should
not be taken lightly and will allow an attacker to spoof popular applications. The following recommendations
can provide some protections if unauthenticated consumers are supported.

Although a consumer secret should not be issued to applications that can not protect it, even unauthenticated
applications may wish to persist a limited access token that can be independently managed by the end-user
instead of actual credentials9. For defense-in-depth, the authorization server should consider curtailing the
privileges that can be requested depending on how easy it is to positively identify a particular consumer.

Section 1.4.3 of the OAuth 2[2] working draft discusses a deployment scenario in which a consumer application
receives and passes the user’s actual credentials to the OAuth server in order to obtain a more limited OAuth
access token. Although this deployment requires that the user trusts the consumer application, the OAuth
server should honor the user’s trust and issue an access token even if the consumer can’t maintain a consumer
secret. Because the consumer application already has the user’s actual credentials, the added benefit of obtaining
a lower privileged access token is minimal.

A consumer application that can’t be authenticated may alternatively leverage the user’s web-browser to obtain
an OAuth token.

Figure 4: Unauthenticated consumer message

9The working draft of OAuth 2[2] highlights the use-case of a client that can’t maintain secrets in section 3.

https://www.isecpartners.com 6/10

https://www.isecpartners.com


It is critical for the OAuth server to inform the user that the requesting consumer can’t be authenticated rather
than give the user a false sense of security by trusting the asserted consumer ID. Much like browsers support
non-SSL traffic or allow a user to proceed even if an SSL certificate chain can not be verified10, the key is to
provide an OAuth experience that allows a user to understand the risks. Users have been trained to look for
the SSL lock in browsers and similar mechanisms could be introduced for OAuth. Figure 4 shows a possible
message that can be displayed to the user.

2.5 Audit and analyze consumer application requests

Inappropriate access to private data by even an authorized application can damage the reputation of an OAuth
service provider, so it is important to audit consumers and monitor their activities for fraud and abuse. In some
cases, a compromised or abusive consumer may be easy to detect: if the OAuth server receives a request using
credentials registered to printer.example.com asking for access to write emails to the end-user’s contact list,
something is probably going wrong. Perhaps the request even specifies that the access token should be sent
to a different URI than printer.example.com registered. The OAuth server should be able to automatically
detect that the consumer is behaving unexpectedly and the request can be rejected and flagged. Asmentioned in
section 2.2.1, other types of abuse could be detected by notifying the user when a new relationship is established
with a consumer to make sure the action was initiated by the user.

The OAuth server has two options for denying unexpected or malicious behavior. The server can block partic-
ular requests, or cut off all requests from a particular consumer. The second action is imprecise, and a protocol
should be developed to work with the consumer to resolve the situation. Particularly valuable consumer-server
relationships can be protected by issuing different consumer identities for different sets of requested permis-
sions. Abuse of higher-privilege requests could be disabled without interrupting lower risk requests that are
still behaving as expected until the issue is resolved.

Users should be engaged to assist with auditing because general auditing may be unable to detect certain abuses
without an understanding what the end-user intended to authorize. To further protect against misbehaving
consumers, the OAuth server should provide an interface that the end-user can use to invalidate existing access
tokens. The interface should display all active access tokens as well as previously granted access tokens. Ideally,
the end-user should be able to view a simple audit trail to see what resources have been accessed using each
token. This audit trail wouldn’t have to disrupt the user-experience, but a security conscious end-user could
verify that their authorization token was used as expected and report abuse to the OAuth server owner. As
with any logging or auditing scheme, the user’s privacy should also be considered. Users should be educated
about the auditing policy and be able to opt out of auditing that ties themselves to particular actions. Similarly,
consumers should be informed of the server’s auditing policy.

3 Consumers can reduce risk to the end-user

A secure consumer OAuth implementation will keep users happy and help maintain a strong partnership with
the OAuth server. Security conscious servers and users may choose not to deal with consumers that don’t
protect an end-user even in extreme cases such as if a consumer secret is compromised or back-end data storage
is exposed.

3.1 Only ask for only what you need

Self-policing will be very important for OAuth consumers. Because OAuth servers can deny a consumer access
at any time for arbitrary reasons, it is in a consumer’s best interest to maintain a trusting relationship with
10Typically after the user explicitly dismisses a warning.

https://www.isecpartners.com 7/10

printer.example.com
printer.example.com
https://www.isecpartners.com


the OAuth server. Consumers should specify what permissions they require during registration as well as valid
“oauth_callback” parameter values whenever possible. If possible, a consumer should specify the lifetime for
the requested access token. Consumers that ask for excessive permissions may damage their relationship with
the server as well as the end-user. The requested permissions will be displayed to the user who won’t be able to
selectively grant permissions. If a consumer asks for too many permissions, the end-user may choose to deny
the entire request.

3.2 Securely handle access tokens

The safest way to handle access tokens is to request short-lived or one-time-use tokens that have limited value
to an attacker. If that isn’t possible because of the consumer’s requirements or limitations in the OAuth server,
long-lived tokens should be deleted as soon as they are no longer needed. Remember that active access tokens
are password equivalents for the authorized resources. If tokens need to be saved, a consumer must make best
efforts to protect the token. The available protections will likely vary depending on deployment, but should be
explicitly called out by a less secure consumer to explain the risks and mitigations servers will need to accept.

If the consumer application is a web server, ideally the token will only reside in memory, but it should be
encrypted and protected with strict access controls if written to disc because tokens may have long-lifetimes
that overlap with backup schedules or disc rotation. Avoid sending a token to a user’s browser to reduce the
risk of disclosure by common vulnerabilities such as Cross-Site Scripting. If tokens are sent to browsers, avoid
placing them in cookies which can end up lasting longer than needed or being sent to places they don’t belong.
Also avoid placing tokens in URLs (i.e. as parameters in HTTP GET requests) as they may end up being
exposed to other sites in referrer headings as well as logs.

If the consumer application is a distributed application used by more than one user at a time, it may be possible
to secure user tokens in the cloud and off of the specific device. If a short-lived token is used, it can alternatively
be stored in devicememory, never written to disc, and clearedwhenever it is no longer needed. Long-lived access
tokens must be protected by distributed applications. The running device may contain a secret store that could
be used to secure access tokens.

3.3 Secure large deployments

There are a couple of additional considerations for larger deployments of OAuth on top of all of the security
concerns described above. High availability may be critical, and replication of OAuth secrets between redun-
dant servers may be necessary. When replication is necessary an authenticated and encrypted channel should
be used to transmit OAuth tokens.

Larger deployments may also have physically separated authorization servers and resource servers. When pre-
sented with an access token, the resource server must be able to verify that the token came from the autho-
rization server. OAuth tokens may either need to be transmitted over an authenticated and encrypted channel
between servers, or the token itself must be generated in a verifiable manner. For example, a shared secret
could be used to create an HMAC of the token sent along as an additional optional parameter as allowed by
the OAuth protocol.

4 Summary

It is the responsibility of an OAuth implementor to provide end-users with a secure and easily understood
experience that allows them to make informed authorization decisions.

https://www.isecpartners.com 8/10

https://www.isecpartners.com


The OAuth server can create a more secure user-experience by clearly informing the user about exactly what
resources will be shared, with whom, and for how long. The OAuth server should limit a consumer’s privileges
by providing a fine-grained privilegemodel that only allows consumers to request aminimum set of permissions.
Regular reviews of the OAuth audit logs by security-conscious end-users and OAuth administrators will help
hold consumers accountable if they don’t comply with security policy.

The consumer should use the framework provided by the OAuth server to limit the risk if an OAuth access
token is stolen or their consumer secret becomes known to an attacker. During registration, the consumer
can protect themselves by specifying the permissions that will be requested, the lifetime of tokens, and valid
callback URIs if possible. Once access tokens have been obtained, they must be protected. Long-term tokens
should be avoided whenever possible, but strongly protected when necessary.

5 Acknowledgments

Thanks to Brad Hill and Jesse Burns for reviewing and suggesting significant improvements for this paper as
well as other iSEC consultants Alban Diquet, Aaron Grattafiori, and Thomas Daniels for additional reviews.

https://www.isecpartners.com 9/10

https://www.isecpartners.com


References

[1] The oauth 1.0 protocol. http://tools.ietf.org/html/rfc5849, April 2010. 1

[2] The oauth 2.0 protocol, draft-ietf-oauth-v2-15. http://tools.ietf.org/html/draft-ietf-oauth-v2-15, April 2011.
1, 2, 6

https://www.isecpartners.com 10/10

https://www.isecpartners.com

	Introduction
	The OAuth protocol
	Beyond the OAuth specification

	Towards a secure OAuth server framework
	Follow the principle of least-privilege
	Inform the end-user
	User authentication
	The authorization message

	Consumer registration and management
	Consumers that can not keep secrets
	Audit and analyze consumer application requests

	Consumers can reduce risk to the end-user
	Only ask for only what you need
	Securely handle access tokens
	Secure large deployments

	Summary
	Acknowledgments
	References

