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Abstract
Disclosure of state sponsoredmonitoring of electronic communications and the threat of retroactive decryption

of traffic of millions of people have created an urge for an extra layer of security and privacy for all electronic
communications. The purpose of this paper is to survey Perfect Forward Security — invented more than twenty
years ago — as the solution to this problem.

ͱ IēęėĔĉĚĈęĎĔē

Millions of websites and billions of people rely on Transport Layer Security (TLS), IPSec, VPN software, and similar
protocols to protect the electronic transmission of sensitive and personal information with the expectation that
encryption guarantees security and privacy. The difficulty of cryptanalysis of the encryption algorithms used in
these protocols ensures the security of the encrypted messages. The cryptographic algorithms often have a single
point of failure, however. Today anybody can record an encrypted, or unreadable, communication in transit. Later,
when the keys used have been compromised, or asymmetric cryptanalysis has advanced sufficiently to break them,
an adversary can retroactively decrypt today’s traffic.

The terms ‘Forward Security’ and ‘Perfect Forward Security’ have evolved slightly in colloquial use since Whitfield
Diffie, Paul C. VanOorschot, andMichael J.Wiener invented a two-partymutual authentication protocol and coined
the term twenty years ago.ͱ Their protocol provides authenticated key exchange, focused on using asymmetric tech-
niques. They defined PFS as: “An authenticated key exchange protocol provides perfect forward secrecy if disclosure
of long-term secret keying material does not compromise the secrecy of the exchanged keys from earlier runs.” Ͳ

Today, however, the terms ‘Forward Security’ (FS), ‘Perfect Forward Security’ (PFS), and even ‘Future Secrecy’ͳ have
evolved slightly to imply something different. In addition to fully explaining the nuanced differences between FS,
PFS, and Future Secrecy, this paper will cover a simple explanation, real life applications, advantages, and imple-
mentation of PFS in different protocols, including Transport Layer Security (TLS), Off-the-record (OTR)Messaging,
Secure Shell (SSH),Wireless Protected Access II Protocol (WPAͲ EAP-PWD), Internet Protocol Security (IPSec) and
Virtual Private Networking (VPN).

ͱ“Authentication and Authenticated Key Exchanges” : http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.59.
6682&rep=rep1&type=pdf

ͲSection ʹ: Desirable Protocol Characteristics http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.59.6682&rep=
rep1&type=pdf

ͳCoined by Moxie Marlinspike and Trevor Perrin in https://whispersystems.org/blog/advanced-ratcheting/
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Note: The terms Perfect Forward Security and Perfect Forward Secrecy are used interchangeably in practice. In this
paper, we will only use “Security”, but in common literature (including the original paper) you should expect to find
“Secrecy” as well. The term “Future Secrecy” is not commonly used, but in this paper we will use the term to denote
a specific property we will define shortly.

Ͳ WčĆę ĎĘ (PĊėċĊĈę) FĔėĜĆėĉ SĊĈĚėĎęĞ

Forward Security is a characteristic of an authenticated key exchange protocol which ensures that the disclosure of a
long term identity key (such as a SSL Certificate or a SSH Host Key) does not compromise the confidentiality of the
messages encrypted in sessions prior to the compromise. The session keys, or the short term encryption keys, are
independent of the long term identity keys — although these session keys are authenticated by the identity keys.

Each protocol operates differently, but in general, a session key is not used in subsequent runs of the protocol, so it
is feasible to destroy it after each session. Destroying the key does not disrupt any other communication and once
these short term keys are destroyed, it is not possible to decrypt any ciphertext encrypted under these keys. Thus
Forward Security provides a layer of defense against the retroactive decryption of sessions in case of compromise of
long term identity keys.

Ͳ.ͱ PFS ěĘ. FS

Forward Security has been used as a synonym for Perfect Forward Security but there is a subtle difference between
the two. The difference relates specifically to the compromise of a session key — not a long term identity key.

In Forward Security, compromise of a session key allows retroactive decryption of prior sessions. Perfect Forward
Security has the additional property that compromise of a session key does not allow compromise of prior sessions.

Ͳ.Ͳ FĚęĚėĊ SĊĘĘĎĔēĘ

The subtle different of Forward Security vs Perfect Forward Security applies only to the compromise of session keys,
not long term identity keys. It also applies only to attacking prior sessions. The term “Future Secrecy” was coined
to describe what happens to future sessions if a session key is disclosed.

But even with FS, PFS, and Future Secrecy — there is nothing to describe how a protocol behaves to future sessions
if a long term identity key is disclosed. We can summarize these terms with the following table:

Scenario Protocol with Forward
Security

Protocol with Perfect
Forward Security

Protocol with Future
Secrecy

Compromise of Identity Key
Attacking Prior Sessions Secure (By Definition) Secure (By Definition) Depends on Protocol

Compromise of Identity Key
Attacking Future Sessions Depends on Protocol Depends on Protocol Depends on Protocol

Compromise of Session Key
Attacking Prior Sessions Insecure (By Definition) Secure (By Definition) Depends on Protocol

Compromise of Session Key
Attacking Future Sessions Depends on Protocol Depends on Protocol Secure (By Definition)
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ͳ HĔĜ ęĔ ĆĈčĎĊěĊ PFS

This section will look into how a generic protocol can achieve Perfect Forward Security and illustrate how one could
build protocols that do or don’t provide security from some of the attacks outlined above. It will go over the key
requirements, message flows, and demonstrate the resistance or vulnerability of the protocol to key compromise.
These designs are trivial examples intended to illustrate forward security properties— certain aspects are considered
out of scope: for example, no care is given to long-term key authentication, revocation or replay attacks.

Because so many protocols are built on top of the Diffie-Hellman Key Exchange, to arrive at a session key, we will
briefly describe this key exchange in both the ordinary and Elliptic Curve variants.

ͳ.ͱ DĎċċĎĊ-HĊđđĒĆē ĐĊĞ ĊĝĈčĆēČĊ ĕėĔęĔĈĔđ

Diffie-Hellman key exchangeʹ is an implementation of public-key cryptography, designed to arrive at a shared secret
among two parties, over an insecure public medium without sharing anything beforehand. In this algorithm, there
are three parameters (also known as DH parameters):

• p— a very large prime number

• g— a primitive root͵ modulo p, also known as generator of the multiplicative group of integersͶ modulo p;
such that g < p

• x— a private key

For each numbern, there is a power x of g such thatn ≡ gx modp. This is the public key. Now from the knowledge
of x, g and n, each party can calculate the shared secret key s. Both parties keep their x and s as secret, while all
the other values — p, g and n are shared over insecure channel.

Let’s consider our very old friends Alice and Bob, who want to communicate securely. The process starts with each
of them agreeing on publicly shared p and g. Alice chooses a random integer a as her private key and calculates
her public key as na ≡ ga mod p. Similarly, Bob chooses b and computes his public key as nb ≡ gb mod p. Both
of them exchange their public keys na and nb. Finally, to determine the shared secret key (symmetric key), Alice
computes s ≡ (nb)

a mod p and Bob computes s ≡ (na)
b mod p.

Both Alice and Bob have arrived at the same value, because (ga)b mod p and (gb)a mod p are equal. Once Alice
and Bob compute the shared secret they can use it as an encryption key, known only to them, for sending messages
across the same open communications channel.

There is no efficient algorithm to solve the discrete logarithm problem,ͷ which would make it easier for adversary
to compute x from the knowledge of p, g, and n and to solve the Diffie–Hellman problem.͸ So the security of the
protocol is as strong as the difficulty to efficiently solve discrete logarithm problem for very large prime numbers.

ͳ.Ͳ EđđĎĕęĎĈ ĈĚėěĊ ĈėĞĕęĔČėĆĕčĞ

Elliptical curve cryptography͹ (ECC) is a public key encryption technique based on elliptic curveͱͰ theory that can
be used to create faster, smaller, and more efficient cryptographic keys. ECC generates keys through the properties
of the elliptic curve equation, instead of the traditional methods like multiplying two very large prime numbers.

ʹhttp://www.ietf.org/rfc/rfc2631.txt
͵http://math.arizona.edu/~savitt/mathcamp/1999/primitive_roots.pdf
Ͷhttp://en.wikipedia.org/wiki/Multiplicative_group_of_integers_modulo_n
ͷhttp://en.wikipedia.org/wiki/Discrete_logarithm_problem
͸http://en.wikipedia.org/wiki/Diffie-Hellman_problem
͹http://tools.ietf.org/html/rfc6090
ͱͰhttp://en.wikipedia.org/wiki/Elliptic_curve
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ECC is based on properties of a particular type of equation created from the mathematical groupͱͱ derived from
points where the line intersects the axes.

An elliptic curve is a set of points (x,y) on a plane which satisfy an equation of the form y2 = x3 + ax+ b (where
a and b are constants), together with an extra point o which is called the point at infinity. For applications to
cryptography we consider finite fieldͱͲ or Galois field of q elements (where q is a finite set of integers modulo a
prime number), which is represented as Fq or GF(q).ͱͳ

Once again, Alice andBobwant to communicate securely using ECC. They agree on a (non-secret) elliptic curve and a
(non-secret) fixed curve point Fq. Alice chooses a secret random integer ka which is her secret key, and publishes the
curve point Pa = ka ∗Fq as her public key. Bob does the same. His secret key is kb and curve point is Pb = kb ∗Fq.
Now to send encryptedmessages, Alice can simply compute the shared secret key s = ka∗Pb. Bob can compute the
same number s by calculating kb ∗Pa, since kb ∗Pa = kb ∗ (ka ∗ Fq) = (kb ∗ka) ∗ Fq = ka ∗ (kb ∗ Fq) = ka ∗Pb.

The security of the scheme is based on the assumption that it is difficult to compute k given Fq and k ∗ Fq. ECC
can provide a higher level of security with a smaller key, hence with lower computing power than other crypto-
systems. For elliptic-curve-based protocols, it is assumed that finding the discrete logarithm of a random elliptic
curve element with respect to a publicly known base point is infeasible— this is known as the Elliptic Curve Discrete
Logarithm problem.

ͳ.ͳ TĔĞ PėĔęĔĈĔđĘ

Any secure communication protocol has authentication, confidentiality, and integrity of the message as its proper-
ties. The implementation specifics of these properties can vary depending on the requirement of the protocol. Our
toy protocols aim to achieve these properties as well.

Authentication ensures that two parties are communicating to the intended recipient over a public channel. One
can achieve authentication using Public-Key Infrastructure and Certificate Authorities or by sharing public keys
of both the parties beforehand. The protocol designer can achieve confidentiality by using a strong encryption
algorithm. The choice of symmetric or asymmetric encryption algorithm depends on the purpose and efficiency
of the implementation. Use of a message authentication code (MAC) is one way to validate the integrity of the
message.

Now we have the base framework of a secure communication protocol: let’s use examples to illustrate the Forward
Security and Future Secrecy properties. Alice and Bob want to communicate with each other, and somehow have
established trust in each other’s long term identity keys.

ͳ.ͳ.ͱ No Forward Security

Alice creates a random symmetric key, encrypts it with Bob’s public key and then transfers it to Bob. Bob decrypts
the symmetric key, and both start using the symmetric key to encrypt communication for the rest of the session.
When they close the session and make a new one, it repeats as before with a new key.

If either of their identity keys gets compromised, then all the past communications are compromised, as that key
can be used to decrypt all the symmetric keys encrypted under it. Identity key compromise also allows attacks on
all future sessions as well.

ͱͱA Group is a set of values for which operations (∗) can be performed on any two members of the group to produce a third member while
satisfying the group axioms like closure, associativity, identity, and invertibility. More on Group — https://en.wikipedia.org/wiki/
Group_(mathematics)

ͱͲThe requirement for a set of elements to be in a field is to have operations like addition, subtraction, multiplication, and division — these
operations always produce a result that is in the field, with the exception of division by zero, which is undefined. More about the Finite field:
https://en.wikipedia.org/wiki/Finite_field

ͱͳMore details of working of ECC and requirement of choosing elliptic curve — http://www.cryptoman.com/elliptic.htm
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Although this trivial protocol is about as simple as you can make it (and at its core, is how non-PFS TLS works) — it
does have Future Secrecy, as disclosing any individual session key does not allow you to attack any future (or prior)
sessions.

ͳ.ͳ.Ͳ Adding Forward Security

Now consider the same example, but this time Alice and Bob modified the protocol to have the property of For-
ward Security. Alice and Bob use a DH Key Exchange (authenticated by the long term identity keys) to generate a
symmetric encryption key for the initial session. They use this session key in this and all future sessions.

This protocol will provide Forward Security. But disclosure of the session key allows attacking prior sessions — so
this protocol does not have Perfect Forward Security. It also allows compromising all future sessions, so it does not
have Future Security either.

Disclosing an identity key does not compromise future sessions, unless the protocol is started from scratch. In that
case, the attacker can perform a man in the middle attack on the DH exchange and impersonate one of the parties
to the other.

ͳ.ͳ.ͳ Adding Perfect Forward Security

As we saw, compromising the session key allowed the attacker to decrypt all prior sessions. We’d like to fix this
problem. Instead of using the same symmetric key for every connection, Alice and Bob will hash the secret. For the
first session, they use an agreed upon Key K, and at the conclusion of the session, they store H(K). On the next
session, they use H(K) as the key, and at its conclusion, they store H(H(K)).

This proposal provides Perfect Forward Security — if an attacker compromises a session key, they cannot decrypt
prior sessions because they cannot invert the hash function. But it does allow an attacker to decrypt future sessions,
as they can iterate the hash function also.

As in the prior protocol, disclosing an identity key does not compromise future sessions, unless the protocol is
started from scratch. In that case, the attacker can perform a man in the middle attack on the DH exchange and
impersonate one of the parties to the other.

ͳ.ͳ.ʹ Achieving Future Secrecy

Let us consider our attacks again:

ͱ. Compromise of Identity Key Attacking Prior Sessions

Ͳ. Compromise of Identity Key Attacking Future Sessions

ͳ. Compromise of Session Key Attacking Prior Sessions

ʹ. Compromise of Session Key Attacking Future Sessions

So far we have achieved defense against the first and third — let us add the Future Secrecy property to achieve
security against the last. This protocol is actually noticeably simpler than the last two. Alice and Bob will perform
a DH Exchange, authenticated with their long term identity keys. They use this exchange to agree upon a new
symmetric key, at every run of the protocol.

That’s it (and indeed, this is how TLS with PFS works, roughly). Compromise of an identity key does not allow
compromise of prior sessions. Compromise of a session key does not allow compromise of prior or future sessions.
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And it is possible to extend this protocol even more! By authenticating the DH Key Exchange with both the long
term identity key and the prior session key, we can ensure an attacker who compromises only the identity key cannot
attack future protocols — they would need to compromise both the identity key and the most recent session key.

However, keeping some keyingmaterial around from the prior session to authenticate the next is complicated. While
protocols such as ZRTPͱʹ are able to, it is much more difficult for TLS, where there are multiple sessions active and
open at any time. For more about this concept (often called ‘ratcheting’), we recommend Moxie Marlinspike and
Trevor Perrin’s work.ͱ͵

ͳ.ʹ WčĆę ĈĆē ČĔ ĜėĔēČ

Even in a well-designed protocol, there are several attacks that can occur and compromise the confidentiality of a
connection.

• Long Term Identity Key Compromise: As explained, the long term identity key may get compromised,
which usually allows an attacker to perform an impersonation attack.

• Bad Random Number Generator: Any key generated with a biased or broken random number generator
will be significantly weaker than it’s advertise bit-length, allowing more efficient brute force attacks to recover
the key.

• Algorithm Strength Mismatch: In certain circumstances, the PFS algorithm (e.g. the DH handshake) may
be weaker than the Identity Keys. This allows an attacker to target the weakest link in the protocol. This is
poor practice, and should be avoided, but deployment may pose problems, an example being TLS today does
DH in ͱͰͲʹ-bit groups, but authenticated with ͲͰʹ͸-bit RSA identity keys.

• Attack Algorithm Advances: Public-Key cryptography is based on trapdoor functions like factoring or the
discrete log problem — improvements in attacking these functions leads to the weakening of any public-key
cryptography, PFS algorithms included.

ʹ IĒĕđĊĒĊēęĆęĎĔē Ĕċ PFS Ďē ĉĎċċĊėĊēę ĕėĔęĔĈĔđĘ

In this section, several commonly-used protocols and their use of Forward Security are explained. For each, the
paper addresses a brief description and walk-through of the protocol — with focus on the key exchange mechanism
with and without Forwards Security. Later, the paper explains the conditions, configurations, and the caveats to
achieve Forward Security in these protocols and real life utility of them.

ʹ.ͱ TėĆēĘĕĔėę LĆĞĊė SĊĈĚėĎęĞ (TLS) PėĔęĔĈĔđ

In a typical TLS handshake, authentication is one-way, meaning that only the server is authenticated to the client.
In a non-PFS TLS handshake using RSA keys, authenticated key exchange is achieved via the following mechanism:

ͱ. The server sends its public key, almost always contained in an x͵Ͱ͹ certificate.

Ͳ. The client, upon successfully verifying the certificate, replies with the pre-master secret, encrypted with the
server’s public key.

ͳ. The server decrypts the client’s key exchange message and both parties derive a shared session key from the
pre-master secret.

ͱʹhttp://tools.ietf.org/html/rfc6189
ͱ͵https://whispersystems.org/blog/advanced-ratcheting/
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ʹ. Both parties start communicating over encrypted channel using the shared session key.

The TLS handshake described above does not have Forward Security. The server’s public key is used to encrypt the
keying material of the individual session, which can only be decrypted by server’s private key. The security of all
sessions relies on a single static key (server’s private key). If the server’s private key is compromised, the security of
all sessions established under that key is compromised.

The property of PFS ensures that no long-term key compromise can affect the security of past sessions, which
is achieved in TLS via authenticated Diffie-Hellman (DH) key agreement. Contrary to RSA handshakes, in DH
handshakes, the server’s long-term RSA key only performs authentication: it is only used to sign the server’s DH key
parameters. In TLS, PFS is often referred to as Ephemeral Diffie-Hellman, and in ciphersuite names is abbreviated
DHE. If Ephemeral DH is used, then both parties generate a fresh DH keys for every handshake, and Perfect Forward
Security is achieved, as the security of each session depends on a different instance of the DH problem.

In an RSA handshake, the server needs to perform one decryption operation with its private key; however, in an
Ephemeral DH handshake, the server needs to perform a signing operation in addition to two exponentiation oper-
ations for the DH parameters. While they can be optimized, these operations are still costly. For more efficient DH
operations, TLS thus specifies an extension for elliptic curves, which achieve equivalent security with less compu-
tational cost. ECC in TLS,ͱͶ includes two types of elliptic curve Diffie-Hellman (ECDH) key exchange — Fixed-key
key exchange with ECDH certificates (which lack PFS) and ephemeral ECDH key exchange with a RSA or ECDSA
certificate.

In a TLS server, PFS can be configured by enabling the server to honor the TLS cipher suite order and placing the
ECDHE and DHE suites at the top of the list. The suites that need to be enabled for PFS are:

• DHE-DSS-AES-<k>-GCM-SHA<h>

• DHE-RSA-AES-<k>-GCM-SHA<h>

• DHE-DSS-AES-<k>-CBC-SHA<h>

• DHE-RSA-AES-<k>-CBC-SHA<h>

• DHE-RSA-AES-<k>-CBC-SHA

• ECDHE-ECDSA-AES<k>-GCM-SHA<h>-P<c>

• ECDHE-ECDSA-AES<k>-CBC-SHA<h>-P<c>

• ECDHE-RSA-AES-<k>-CBC-SHA<h>-P<c>

• ECDHE-RSA-AES-<k>-CBC-SHA-P<c>

Here possible values of key sizes (k) are Ͳ͵Ͷ and ͱͲ͸; hash digest sizes (h) are ͵Ͳͱ, ͳ͸ʹ, and Ͳ͵Ͷ; and curve (c) sizes
are ͳ͸ʹ and Ͳ͵Ͷ. In addition, the GCM suites (supported in TLS ͱ.Ͳ, but not widely implemented) can be placed
higher up in the hierarchy as they provide better security than Cipher Block Chaining (CBC) mode.

ʹ.ͱ.ͱ Implementation of PFS in Apache - Linux

PFS requires Apache Ͳ.Ͳ.* or higher. Here is one example configuration for mod_ssl that will work to enable PFS for
the current stable branch Apache Ͳ.ʹ.*:

SSLProtocol +TLSv1 +TLSv1.1 +TLSv1.2
SSLHonorCipherOrder On
SSLCipherSuite ECDHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-RSA-AES128-GCM-SHA256:

ECDHE-RSA-AES128-SHA256:ECDHE-RSA-RC4-SHA:ECDHE-RSA-AES256-SHA:DHE-RSA-AES256-GCM-SHA384:DHE-
RSA-AES256-SHA256:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES128-SHA256:DHE-RSA-AES256-SHA:DHE-RSA-
AES128-SHA:RC4-SHA:AES256-GCM-SHA384:AES256-SHA256:CAMELLIA256-SHA:ECDHE-RSA-AES128-SHA:
AES128-GCM-SHA256:AES128-SHA256:AES128-SHA:CAMELLIA128-SHA

Listing ͱ: Configuration of mod_ssl to enable PFS

ͱͶhttp://tools.ietf.org/html/rfc4492
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ʹ.ͱ.Ͳ Implementation of PFS in nginx

To implement PFS in nginx, add the following ciphers suites in the configuration file.

ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
ssl_prefer_server_ciphers on;
ssl_ciphers "EECDH+ECDSA+AESGCM EECDH+aRSA+AESGCM EECDH+ECDSA+SHA384 EECDH+ECDSA+SHA256 EECDH+

aRSA+SHA384 EECDH+aRSA+SHA256 EECDH+aRSA+RC4 EECDH EDH+aRSA RC4 !aNULL !eNULL !LOW !3DES !MD5
!EXP !PSK !SRP !DSS";

Listing Ͳ: Configuration of nginx to enable PFS

ʹ.ͱ.ͳ What can go wrong

The client announces the list of ciphersuites and elliptic curves it supports in ClientHellomessage of TLS handshake.
If the server chooses an ECDH or ECDHE ciphersuite, the server also chooses a curve that both the server and the
client support. But if the server chooses a DH or DHE ciphersuite, the server can choose an arbitrary DH group.
Some servers choose DH groups as small as Ͳ͵Ͷ bits. Smaller DH groups mean that the connection can be broken
open with relatively little effort. So, the implementation of PFS can be botched by using under-sized DH groups.
Ideally the DH group would match or exceed the RSA key size (preferable > ͱͰͲʹ bits).

Moreover, there is no possible way for server to determine the security requirements of the client. If the client does
not consider the group selected strong enough, the client terminates the connection. For ECC, TLS extensions allow
a client to negotiate the use of specific curves and point formats. If Gillmore’s proposalͱͷ is adopted, TLS will also
support DH field negotiation.

Another way PFS can be botched is by improper session management at the server side. Session resumptionͱ͸ in
TLS is performed by either session IDͱ͹ or by session tickets. To optimize the performance, if the server store the
session keys on the server side long after the session has been terminated, those session keys can be used later to
decrypt the encrypted messages.

TLS’ implementation is Perfectly Forward Secure (protecting prior sessions from session key compromise) and For-
ward Secret (protecting future sessions from session key compromise); however, disclosure of a long term identity
key does allow the attacker to impersonate the server and compromise future sessions.

ʹ.ͱ.ʹ Real life application

TLS is the backbone in providing secure communication over Internet. The most common use is for securing web
browser sessions, but it has widespread application to other tasks, such as securing email servers or any kind of
client-server transaction. TLS can also be used to tunnel an entire network stack to create a VPN, and to authenticate
and encrypt the Session Initiation Protocol (SIP) often used in VoIP (Voice over IP).

ʹ.Ͳ Oċċ-ęčĊ-RĊĈĔėĉ (OTR) MĊĘĘĆČĎēČ

Off-the-Record (OTR) Messaging is a cryptographic protocol that allows two parties to have private conversations
over instant messaging using a combination of the AES symmetric-key algorithm, the Diffie–Hellman key exchange,
and the SHA-ͱ hash function providing:

• Confidentiality: No one else can read others’ instant messages.

ͱͷhttp://tools.ietf.org/html/draft-ietf-tls-negotiated-dl-dhe
ͱ͸http://tools.ietf.org/html/rfc5077
ͱ͹https://en.wikipedia.org/wiki/Session_ID
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• Authentication: Users are assured the correspondent is who they think it is.

• Deniability: The Message Authentication Code (MAC) keys that have already been used and will not be used
again are included in the subsequent outgoing messages. The idea is that since these keys are in the clear,
any one could have created or used these keys (including your chat partner) and therefore forged a message.
However, during a conversation, it assures that the messages are authentic and unmodified.

• Perfect Forward Security: Each instant message is encrypted using a different encryption key which is dis-
carded after use. Compromising a single encryption key does not impact on the confidentiality of other
messages sent or those to be sent in the future. In addition, each message is authenticated using a different
MAC key.

The OTR protocol consists of two phases:

ͱ. An authenticated key-exchange is performed obtaining a shared session key.

Ͳ. A continuous refresh of the session key (re-key) during the exchange of instant messagesͲͰ (often called a
“ratchet”).

In theOTRmessaging protocol, one user signals the other about their willingness to useOTR to communicate, either
by using an OTR Query Message or using a whitespace-tagged plaintext message. Once the other user accepts the
request, communication begins over OTR messaging protocol.

Alice picks her own DH encryption key kA and a serial number k_idA. Bob does the same and generates DH
encryption key kB and serial number k_idB. Both Alice and Bob share the public component of their DH keys over
the wire. Both of them sign the components for authenticity with their long term identity key.

Alice picks themost recent of Bob’s DH encryption keys kB and serial number k_idB. Alice then usesDiffie-Hellman
to compute a shared secret from the two keys kA and kB, and generates the AES key ek, and the MAC keymk. She
picks a value of the counter, ctr, so that the triple (kA, kB, ctr) is never the same for more than one data message
that Alice sends to Bob. She computes TA = (k_idA, k_idB, keyB(j), ctr, AES− CTRek,ctr(msg)) and sends Bob
TA, MACmk

(TA), oldmk. If the above key is Alice’s most recent key, she generates a new DH key (keyA(i)), to
get the serial number k_idA + 1. Alice maintains the old MAC keys that were used in previous messages, in a list,
oldmk.

Bob uses Diffie-Hellman to compute a shared secret from the two keys k_A and k_B, and generates the receiving
AES key, ek, and the receiving MAC key, mk. These will be the same as the keys Alice generated above. Bob then
usesmk to verifyMACmk

(TA) and ek, and ctr to decrypt AES− CTRek,ctr(msg).

All the instantmessages are encryptedwith a new symmetric key. Both the parties perform these key exchanges with
every instant message. For every successive message, both parties create new keys, discard old keys and increment
the serial number. There is no “official” protocol implementation of OTR for multi-party messaging; OTR provides
Forward Security to only two parties messaging currently.

ʹ.Ͳ.ͱ What can go wrong

OTR was designed with Perfect Forward Security in mind. Furthermore, the ratcheting of Diffie-Hellman keys goes
even further than PFS - because nearly every individual message is encrypted with a different key, one would have
to compromise a significant amount of session state to reach any more than a single message in a session. However,
after a session is ended, disclosure of a long term identity key does allow an attacker to impersonate the victim and
compromise future sessions.

The OTR protocol performs a DH key exchange per message and such exchange is authenticated with the previous
key. The goal is to obtain a fine-grain PFS mechanism in which learning the encryption key at one point will not
allow the adversary to learn even a single past message. However, if the adversary learns the current ephemeral key,

ͲͰMore on the working of these two phases — http://www.cypherpunks.ca/otr/Protocol-v3-4.0.0.html
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future messages may be completely compromised. Indeed even if the new encryption key is not computable from
the old one (being the result of a fresh DH exchange), the adversary can impersonate the parties because the old key
is used for authentication. In particular the attacker can hijack the session and learn/modify all future messages.

OTR uses opportunistic authentication, where users are expected to authenticate fingerprints out of band or using
a Socialist’s Millionaire’s Protocol. If this authentication is performed, it is secure, but it is often omitted.

ʹ.Ͳ.Ͳ Real life application

Many chat applications use theOTRprotocol to encrypt instantmessages and provide Forward Security. Chat clients
like TextSecure,Ͳͱ Pidgin,ͲͲ Jabber,Ͳͳ Adium,Ͳʹ JitsiͲ͵ uses OTR or variants of OTR for XMPP and SMS transport
protocols.

ʹ.ͳ SĊĈĚėĊ SčĊđđ (SSH) PėĔęĔĈĔđ

The Secure Shell (SSH) Protocol is a protocol for secure remote login and other secure network services over an
insecure network. SSH is organized as three protocols that typically run on top of TCP:

• Transport Layer Protocol: Provides server authentication, data confidentiality, and data integrity with For-
ward Security; the transport layer may optionally provide compression.

• User Authentication Protocol: Authenticates the user to the server.

• Connection Protocol: Multiplexes multiple logical communication channels over a single underlying SSH
connection.

Our point of interest will be in the Transport Layer Protocol, where the key exchange happens based on the server
possessing a public-private key pair. As discussed earlier, the solution to have PFS is to use ephemeral key exchange;
instead of always encrypting messages using the same static key, peers in a message exchange negotiate secrets
through an ephemeral key exchange.

• SSH vͱ:

After the initial TCP connection is set up, the server sends the client two keys: a host key and a server key. The
host key is a persistent asymmetric key used for server identification whereas the server key is a temporary
asymmetric key. The client doubly encrypts the session key to the server key and host key. The server key is
discarded periodically, by default every hour.

The server key could be discarded after every session, but the duration is decided on the requirement. The
user can set the lifetime and size of ephemeral version ͱ server key by setting the option KeyRegenerationIn-
terval (specifies how long in seconds the server should wait before automatically regenerating its key) and
ServerKeyBits (specifies how many bits to use in the server key) appropriately in sshd_config file. This server
key provides PFS in SSH vͱ. Once the server destroys the server key, it is not possible to recover the session
key.

• SSH vͲ:

After establishing the TCP connection, both systems agree on a session key via the SSH_MSG _KEXINIT mes-
sage, using DH key exchange.ͲͶ SSH vͲ uses the long-term host key only to authenticate the server during
DH or ECDH key exchanges; it does not encrypt any data using it.

Ͳͱhttps://play.google.com/store/apps/details?id=org.thoughtcrime.securesms&hl=en
ͲͲhttp://pidgin.im/
Ͳͳhttp://www.jabber.org/
Ͳʹhttps://www.adium.im/
Ͳ͵https://jitsi.org/
ͲͶhttp://tools.ietf.org/html/rfc4253#section-8
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In SSH vͲ, DH is used to set up the session keys. DH inherently provides PFS without need of a second server
key as was required in SSH vͱ. SSH vͲ destroys the information that would compromise the session key imme-
diately after closing the session, instead of sometime later. SSH vͲ also supports use of elliptic curve algorithm
defined in RFC-͵Ͷ͵Ͷ.Ͳͷ The key exchange between the server starts with the SSH_MSG_KEX_ECDH_INIT
message after the initial TCP connection.

A user can configure the DH exchange methods in sshd_config as:

KexAlgorithms ecdh-sha2-nistp256, ecdh-sha2-nistp384, ecdh-sha2-nistp521,
diffie-hellman-group-exchange-sha256,diffie-hellman-group14-sha1,
diffie-hellman-group-exchange-sha1, diffie-hellman-group1-sha1

Listing ͳ: Snippet of sshd_config listing the DH Key Exchange algorithm

The “diffie-hellman-<group_value>-exchange-<hash_value>” specifiesDiffie-HellmanGroup andKey Exchange
with HASH. According to RFC-ʹʹͱ͹Ͳ͸ the acceptable groups with minimum and maximum values of a mod-
ulus length of k bits are ͱͰͲʹ and ͸ͱ͹Ͳ respectively.

SSH sessions resulting from a key exchange using the Diffie-Hellman methods (including “diffie-hellman-groupͱ-
shaͱ” and “diffie-hellman-groupͱʹ-shaͱ”) are secure even if private keying/authentication material is later revealed,
but as with all PFS protocols, not if the session keys are revealed.

ʹ.ͳ.ͱ What can go wrong

SSH vͱ achieves Perfect Forward Security by rotating the server key regularly. If the private components of both the
server and host key were compromised, then all the sessions established between the host and the client during the
lifetime of the server key are also compromised. This compromise does not affect the sessions created before the
lifetime of compromised server key. Disclosure of the host key allows server impersonation for future sessions.

SSH vͲ achieves Perfect Forward Security by using a DH key exchange as the default key exchange mechanism.
If a session key is compromised, it will not allow the adversary to learn about any previous or future sessions. But
disclosure of a long term host key still allows the attacker to impersonate the server and compromise future sessions.

Generally speaking, SSHmakes it difficult to have PFS go wrong. If the DH private parameters for the client or server
are revealed, then the session key is revealed, but these items are thrown away periodically in SSH vͱ and right after
the key exchange completes in SSH vͲ. It is possible to alter a server to prefer a weaker group (e.g. the ͱͰͲʹ-bit
diffie-hellman-groupͱ-shaͱ) before a stronger group (e.g. the ͲͰʹ͸-bit diffie-hellman-groupͱʹ-shaͱ) but this would
require overriding a default.

ʹ.ͳ.Ͳ Real life application

Secure Shell (SSH) is used for secure data communication, remote command-line login, remote command execution,
and other secure network services between two networked computers. It is extensively used as a replacement for
Telnet and other insecure remote shell protocols.

ʹ.ʹ WĎėĊđĊĘĘ CĔēēĊĈęĎĔēĘ (WPAͲ EAP-PWD)

Extensible Authentication Protocol (EAP) is an authentication framework frequently used in wireless networks and
Point-to-Point connections. Wewill mainly concentrate on the EAP-PWDͲ͹ protocol implemented forWPAͲ proto-
col for authentication and authorization in wireless networks. EAP-PWD uses a shared password for authentication

Ͳͷhttp://tools.ietf.org/html/rfc5656
Ͳ͸http://tools.ietf.org/html/rfc4419
Ͳ͹https://tools.ietf.org/html/rfc5931
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between a peer and an authenticator. The underlying key exchange is resistant to active (including dictionary at-
tacks) and passive attacks. It is easy to configure as this does not use certificates for authentication, and can resists
active attacks even in case of low entropy passwords.

EAP-PWD is a four step process:

ͱ. Identity exchange: The peer and server use the Identity exchange to discover each other’s identities and to
agree upon a ciphersuite to use in the subsequent exchanges.

Ͳ. Commit exchange: The peer and server exchange information to generate a shared key.

ͳ. Confirm exchange: The peer and server prove “liveness” and knowledge of the password by generating and
verifying verification data.

ʹ. Shared secret generation: The shared secret is generated from the information exchanged in previous mes-
sages between peer and server for a particular session.

During Commit exchange, the peer and server use each other’s identities and the agreed upon ciphersuite to fix an
element in the negotiated group (either an integer DH group or an ECC group) called the Password Element (PWE).
The server then chooses two random numbers s_rand and s_mask (private components) to calculate Scalar_S
and Element_S (public components), and send them to the peer. Similarly, the peer chooses two random numbers
p_rand and p_mask (private components) to calculate Scalar_P and Element_P (public components), and send
them to the server. In Confirm exchange, the server calculates ks, Confirm_S and peer calculates kp, Confirm_P
from previously exchanged information. Confirm_S and Confirm_P are calculated as:

Confirm_ < i >= H(k < i > |Element_S|Scalar_S|Element_P|Scalar_P|Ciphersuite)

where value of < i > is either P or S, and H is the random function specified in the ciphersuite. Both the peer and
the server exchange these values during confirm exchange stage of the protocol.ͳͰ

In the final step, the EAP Server computes the shared secretMaster Key(MK) as: MK = H(ks|Confirm_P|Confirm_S)
and the EAP Peer computes the shared secret as: MK = H(kp|Confirm_P|Confirm_S). Master Session Key
(MSK) or Extended Master Session Key (EMSK) are derived as KDF(MK, Session-ID, ͱͰͲʹ), where KDF is the Key
Derivation Functionͳͱ and Session-ID = Type-Code | H(Ciphersuite|Scalar_P|Scalar_S).

The MSK and EMSK are extracted from MK, which is derived from doing group operations with s_rand, p_rand,
and the PWE. The peer and server choose random values with each run of the protocol. So even if an attacker is
able to learn the password, the attacker will not know the random values used by either the peer or server from an
earlier run and will therefore be unable to determine MK, or the MSK or EMSK. Hence the protocol provides Perfect
Forward Security.

There are n possible distinct pairs of numbers that will produce Scalar_P and Scalar_S, where n is the order of
the chosen group. The difficulty of finding the value of MK without the knowledge of s_rand and p_rand lies in
the fact that for a large n, it is computationally infeasible to guess these random numbers.

ʹ.ʹ.ͱ What can go wrong

EAP-PWD provides Perfect Forward Security by generating the random numbers rand and mask per session, so
no future or previous sessions can be compromised if either the private components or the session key/Forward
Secret (MK) are compromised. However, if the long term identity key is compromised, the peer can be tricked into
authenticating to an adversary instead of the actual authentication server. All the sessions hence forward will be
compromised as long as the adversary can maintain their position as the authentication server, which is limited by
the characteristics of rogue access point attacks.

ͳͰDetails of calculation of Element_S, Scalar_S, Element_P, Scalar_P, ks, and kp are present in Section Ͳ.͸.ʹ - Message Construction —
http://tools.ietf.org/html/rfc5931#section-2.8.4

ͳͱhttp://tools.ietf.org/html/rfc5931#section-2.5
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The strength of the shared secret, MK, depends on the effort needed to solve the discrete logarithm problem in the
chosen group. Choosing a weak group will decrease the computational complexity and can be broken with relatively
less effort. RFC ͵͹ͳͱͳͲ recommends using DH Group ͱ͹ (Ͳ͵Ͷ bit ECC curve) for this implementation. For example,
to configure EAP-PWD in a radius server, one can set the pwd_group=ͱ͹ in the server configuration file.

The security of EAP-PWD relies upon both the peer and server, producing quality secret random numbers. A poor
random number chosen by either side in a single exchange can compromise the shared secret from that exchange
and open up the possibility of dictionary attack.

ʹ.ʹ.Ͳ Real life application

EAP-PWD is supported on Android beginning with ʹ.Ͱ (Ice Cream Sandwich) and is supported by the FreeRA-
DIUS and Radiator RADIUS servers.ͳͳ hostapd and wpa_supplicant also support EAP-PWD. It also has plug-in that
provides EAP-PWD support for the Windows supplicant.

ʹ.͵ IēęĊėēĊę PėĔęĔĈĔđ SĊĈĚėĎęĞ (IPSĊĈ)

Internet Protocol Security (IPSec) is a set of protocols to provide IP security at the network layer. IPSec supports
network-level data integrity, data confidentiality, data origin authentication, and replay protection. IPSec is inte-
grated at the Internet layer (layer ͳ), so it provides security for almost all protocols in the TCP/IP suite, and because
IPSec is applied transparently to applications, there is no need to configure separate security for each application
that uses TCP/IP.

In order to setup an IPSec connection (Tunnel Modeͳʹ), there is a need to exchange tunnel parameters securely. The
Internet Key Exchangeͳ͵ (IKE) is responsible for letting two IPSec devices negotiate tunnel parameters (Phase ͱ). A
Certificate Authority (CA) can create a digital certificate for each device. The certificate has identifying information
about the IPSec device and their public key. When a device requests an IPSec session with another device, the
other device will send its certificate. Then the two devices will use asymmetric encryption to transfer the tunnel
parameters to each other.

Now each device participating in the tunnel will create a public and private key for a DH key exchange, then send a
copy of the public key to the peer (Phase Ͳ). Each device will then generate a shared secret key using its private key
and its peer’s public key.ͳͶ This shared secret key will be used for encrypting the communication.

The Phase ͱ proposal creates the key (the SKEYID_d key) from which all Phase Ͳ keys are derived. The SKEYID_d
key can generate Phase Ͳ keys with a minimum of CPU processing. Unfortunately, if an unauthorized party gains
access to the SKEYID_d key, all the encryption keys are compromised. However, if PFS is enabled at both the devices,
whenever the Phase Ͳ keys are regenerated after the key lifetime, the new keys generated will not be derived from
any of the specific keying material used to generate any preceding keys.

To provide PFS of both keys and all identities, two parties would perform the following:

• A Main Mode Exchange (Phase ͱ) to protect the identities of the Internet Security Association and Key Man-
agement Protocol (ISAKMP) peers. This establishes an ISAKMP Security Association (SA).ͳͷ

In main mode, the initiator and recipient send three two-way exchanges to accomplish the following services:

ͳͲhttp://tools.ietf.org/html/rfc5931#section-6.5
ͳͳhttp://www.open.com.au/pipermail/radiator-announce/2012-June/000018.html
ͳʹhttp://technet.microsoft.com/en-us/library/cc737154(v=ws.10).aspx
ͳ͵http://en.wikipedia.org/wiki/Internet_Key_Exchange
ͳͶFor more information on DH key exchange refer:subsection ͳ.ͱ — Diffie-Hellman key exchange protocol
ͳͷA security association (SA) is a unidirectional agreement between the participants regarding the methods and parameters to be used in

securing a communication channel. Through the SA, an IPSec tunnel can provide privacy, content integrity, sender authentication and non-
repudiation (if using certificates).
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– Propose and accept the encryption and authentication algorithms.

– Execute a Diffie-Hellman exchange, and the initiator and recipient each provide a pseudo-random num-
ber.

– Send and verify their identities.

• A Quick Mode Exchange (Phase Ͳ) to negotiate other security protocol protection. This establishes a SA on
each end for this protocol.

• Delete the ISAKMP SA and its associated state.

An IPSec policy defines a combination of security parameters (IPSec proposals) used during IPSec negotiation. It
defines PFS and the proposals required for the connection. During the IPSec negotiation, IPSec looks for a proposal
that is the same on both peers. The peer that initiates the negotiation sends all its policies to the remote peer, and
the remote peer tries to find a match.

Amatch ismadewhen both policies from the two peers have a proposal that contains the same configured attributes.
If the lifetimes are not identical, the shorter lifetime between the two policies (from the host and peer) is used.

We will look into Virtual Private Network (VPN) — an implementation of IPSec and see how PFS works.

ʹ.͵.ͱ Virtual Private Network (VPN)

AVirtual PrivateNetwork (VPN) connection is the extension of a private network that includes links across shared or
public networks, such as the Internet. A VPN is created by establishing a virtual point-to-point connection through
the use of dedicated connections, virtual tunneling protocols, or traffic encryption. VPN connections (VPNs) enable
organizations to send data between two computers across the Internet in a manner that emulates the properties of
a point-to-point private link.

Both sides of the VPN must be able to support PFS in order for PFS to work. When PFS is turned on, for every
negotiation of a new Phase Ͳ SA, the two gateways must generate a new set of Phase ͱ keys. This is an extra layer of
protection that PFS adds, which ensures if the Phase Ͳ SA’s have expired, the keys used for new phase Ͳ SA’s have
not been generated from the current Phase ͱ keying material. Of course if PFS is not turned on, then the current
keying material already established at Phase ͱ will be used again to generate Phase Ͳ SA’s. To enable PFS on a device,
configure the IPSec policy to support PFS.

[edit services ipsec-vpn ipsec policy policy-name]
perfect-forward-secrecy {
keys (group1 | group2 | group5 | group14 | group19 | group20 | group24);
}

Listing ʹ: Example configuration for IPSec Policies to enable PFS in Junos

The groups specify the size of the Diffie-Hellman prime modulus that the IKE will use. The key can be one of the
following when performing the new Diffie-Hellman exchange:

• groupͱ: ͷͶ͸-bit, groupͲ: ͱͰͲʹ-bit, group͵: ͱ͵ͳͶ-bit, groupͱʹ: ͲͰʹ͸-bit,

• groupͱ͹: Ͳ͵Ͷ-bit(ECDH), groupͲͰ: ͳ͸ʹ-bit(ECDH), groupͲʹ: ͲͰʹ͸-bit(DH/DSA)

At time of writing, the minimum acceptable security level would be groupͱʹ, and in some lower-security contexts,
group ͵.
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ʹ.͵.Ͳ What can go wrong

During the Phase Ͳ negotiation, both the peers exchange the policies to negotiate the encryption and algorithm
to use, SA life times, PFS etc. Both peers will choose the best configuration settings which are common in their
policies. Even if one peer supports PFS, it is not possible to choose PFS if the other peer does not support it. So
achieving PFS over VPN depends on both the peers.

Choosing weak groups also diminishes the security advantage that PFS provides. A weak PFS groupmay not provide
a strong enough level of security, such that it is possible to perform successful cryptanalysis.

VPNs provide Perfect Forward Security as both Phase ͱ and Phase Ͳ keys are used for every negotiation of a Phase Ͳ
SA. So a compromised Phase Ͳ key can only decrypt the content of the current session. However, compromise of a
long term key allows a rogue peer to perform an impersonation attack and compromise future sessions.

ʹ.͵.ͳ Real life application

IPSec is used widely for host-based packet filtering to provide limited firewall capabilities for end systems, end-to-
end security between specific hosts, Layer Two Tunneling Protocol (LͲTP) over IPSec (LͲTP/IPSec) for remote access
and site-to-site virtual private network (VPN) connections, and site-to-site IPSec tunneling with IPSec gateways
among others.

͵ CĔēĈđĚĘĎĔē

Perfect Forward Security provides confidentiality of past sessions even when long-term identity keys have been com-
promised. After a session is completed, all parties involved have destroyed the private keys, and it is computationally
difficult to recover the session, hence the “Perfect” part of Perfect Forward Security. While PFS is undoubtedly a
nice property to have, it does come at a cost. PFS requires DH computation, along with the computation using RSA
or (EC)DSA algorithm for the authentication mechanism.

Despite the increased computation cost, PFS is seen as an important security feature by several large Internet in-
formation providers. Since late ͲͰͱͱ, Google has provided Perfect Forward Security with TLS by default to users of
its Gmail service, along with Google Docs and encrypted search among other services. Since November ͲͰͱͳ, Twit-
ter has provided Forward Security with TLS to users of its service. As of July ͲͰͱʹ, ͵ͱ.ͳ% of TLS-enabled websites
support some of the cipher suites which provide Forward Security.ͳ͸

The impossibility of recovering the session depends on the fact that presently there is no effective algorithm to
solve factorization or discrete logarithmic problems with modern computational power. However, PFS cannot de-
fend against a successful cryptanalysis of the underlying ciphers or the (EC)DH exchange itself. In particular, Shor’s
algorithmͳ͹ combined with the potential power of future quantum computingʹͰ have the ability to solve the factor-
ing problemʹͱ and discrete logarithm problem, while also halving the effective key strength of symmetric ciphers.
Cryptographers are working on new post-quantum era cryptographic algorithms— Ring-LWEʹͲ and Supersingular
Isogeny Diffie-Hellman Key Exchangeʹͳ that can support forward security. Even though quantum computing can
be a threat to classical cryptographic algorithms, both quantum computing and post-quantum cryptography with
PFS support require time to mature. Until then, if implemented properly, PFS will provide the extra layer of privacy
on electronic communication.

ͳ͸https://www.trustworthyinternet.org/ssl-pulse/
ͳ͹https://en.wikipedia.org/wiki/Shor's_algorithm
ʹͰhttp://en.wikipedia.org/wiki/Quantum_computer
ʹͱhttp://en.wikipedia.org/wiki/Factoring_problem
ʹͲhttp://en.wikipedia.org/wiki/Ideal_lattice_cryptography#Ring-LWE
ʹͳhttp://en.wikipedia.org/wiki/Supersingular_Isogeny_Key_Exchange
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