Skip to content
Tool to automatically search for linear characteristics
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
build
examples
target
tinyxml2 @ 84bd962
tool
.gitignore
.gitmodules
Makefile
README.md

README.md

lineartrails

Tool to automatically search for linear characteristics. There exists a research paper about this tool called "Heuristic Tool for Linear Cryptanalysis with Applications to CAESAR Candidates", which is presented at AsiaCrypt 2015, an online version is available here. If you use this tool in your work, it would be nice to cite the research paper.

Authors

Build

lineartools requires tiny2xml as submodule, so do after git clone:

git submodule init && git submodule update

To build:

make

Usage

The folder ./examples contains example search configuration for Ascon, ICEPOLE, Keyak, Minalpher and Proest. To start a search simply call for instance:

./lin -I 10 -S 2 -i examples/ascon_3_rounds_typeI.xml
  • -I determines how often status information of the search is displayed. -I -1 deactivates it.
  • -S determines how often the current and probably partial determined linear characteristic is put out. -S -1 deactivates it.
  • -i specifies the used xml based search file.

The output of the search are linear characteristics, where Round 0 tags the linear mask of the input of the first round, Round 1 the output of the first round, which is also the input for the second round and so on. Half Rounds, e.g. 1.5 represent intermediate result within one round. For instance if one round consists of a substitution layer followed by a permutation layer, a half round marks the output of the substitution layer and the input of the permutation layer.

A search file looks like follows:

<config>
<parameters>
  <permutation value="ascon"/>
  <rounds value="3"/>
</parameters>
<char value="
????????????????????????????????????????????????????????????????
????????????????????????????????????????????????????????????????
????????????????????????????????????????????????????????????????
????????????????????????????????????????????????????????????????
????????????????????????????????????????????????????????????????

????????????????????????????????????????????????????????????????
????????????????????????????????????????????????????????????????
????????????????????????????????????????????????????????????????
????????????????????????????????????????????????????????????????
????????????????????????????????????????????????????????????????

????????????????????????????????????????????????????????????????
????????????????????????????????????????????????????????????????
????????????????????????????????????????????????????????????????
????????????????????????????????????????????????????????????????
????????????????????????????????????????????????????????????????

????????????????????????????????????????????????????????????????
????????????????????????????????????????????????????????????????
????????????????????????????????????????????????????????????????
????????????????????????????????????????????????????????????????
????????????????????????????????????????????????????????????????

????????????????????????????????????????????????????????????????
????????????????????????????????????????????????????????????????
????????????????????????????????????????????????????????????????
????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????1

????????????????????????????????????????????????????????????????
????????????????????????????????????????????????????????????????
????????????????????????????????????????????????????????????????
????????????????????????????????????????????????????????????????
????????????????????????????????????????????????????????????????

????????????????????????????????????????????????????????????????
????????????????????????????????????????????????????????????????
????????????????????????????????????????????????????????????????
????????????????????????????????????????????????????????????????
????????????????????????????????????????????????????????????????
"/>
<search credits = "10000" print_active = "0">
  <phase>
    <setting push_stack = "0.1" alternative_sbox_guesses = "10" sbox_weight_probability = "3"  sbox_weight_hamming = "1">
      <guess sbox_layer="0" active_weight="0" inactive_weight="100"/>
      <guess sbox_layer="1" active_weight="0" inactive_weight="500"/>
      <guess sbox_layer="2" active_weight="0" inactive_weight="500"/>
    </setting>
    <setting push_stack = "0.5" alternative_sbox_guesses = "5">
      <guess sbox_layer="0" active_weight="1" inactive_weight="0"/>
      <guess sbox_layer="1" active_weight="2" inactive_weight="0"/>
      <guess sbox_layer="2" active_weight="3" inactive_weight="0"/>
    </setting>
  </phase>
</search>
</config>

In this file, the field char value contains the starting point of the search, where all intermediate masks are considered. Incomplete starting points are padded with '?'.

The field credits determines, how often a contradiction during the search is backtracked until the current search is re-started. To provide a clear view, the search only prints better characteristics than already found. With print_active it is determined whether this "best" metric targets active S-boxes or the bias.

Settings define which S-boxes are guessed and are treated subsequently. So if there is no guessable S-box in a current setting, the next one is taken. push_stack defines the probability that the current characteristic is pushed to the stack for a possible later backtracking. alternative_sbox_guesses defines how many other contradicting assignments of linear masks than the best one defined according to sbox_weight_probability and sbox_weight_hamming have to be taken into account until the characteristic is treaded as impossible. sbox_weight_probability and sbox_weight_hamming are used to rate masks for S-boxes. A high value for sbox_weight_probability prefers masks that have a high bias, whereas a high value sbox_weight_hamming prefers masks that have a low hamming weight.

active_weight determines the probability that an active S-box will be guessed (higher values mean higher chance). inactive_weight does the same for inactive S-boxes.

The code snippets describing the behavior of the linear and S-box layer of the implemented ciphers are taken from their reference implementations, which are available at http://bench.cr.yp.to/ebash.html.

The tool is tested under

  • Xubuntu 14.04 (64 bit) using gcc version 4.8.2
  • Xubuntu 14.10 (64 bit) using gcc version 4.9.1
  • Xubuntu 14.10 (64 bit) using clang (3.8 trunk, Revision 254516)
  • Ubuntu 15.04 (64 bit) using gcc version 4.9.2
  • OSX Yosemite using Apple LLVM version 6.0
You can’t perform that action at this time.
You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session.