diff --git a/Solution/1143. Longest Common Subsequence/1143. Longest Common Subsequence.py b/Solution/1143. Longest Common Subsequence/1143. Longest Common Subsequence.py
new file mode 100644
index 0000000..cc8667d
--- /dev/null
+++ b/Solution/1143. Longest Common Subsequence/1143. Longest Common Subsequence.py
@@ -0,0 +1,11 @@
+class Solution:
+ def longestCommonSubsequence(self, text1: str, text2: str) -> int:
+ m, n = len(text1), len(text2)
+ f = [[0] * (n + 1) for _ in range(m + 1)]
+ for i in range(1, m + 1):
+ for j in range(1, n + 1):
+ if text1[i - 1] == text2[j - 1]:
+ f[i][j] = f[i - 1][j - 1] + 1
+ else:
+ f[i][j] = max(f[i - 1][j], f[i][j - 1])
+ return f[m][n]
\ No newline at end of file
diff --git a/Solution/1143. Longest Common Subsequence/readme.md b/Solution/1143. Longest Common Subsequence/readme.md
new file mode 100644
index 0000000..084bcff
--- /dev/null
+++ b/Solution/1143. Longest Common Subsequence/readme.md
@@ -0,0 +1,282 @@
+
+
+
+# [1143. Longest Common Subsequence](https://leetcode.com/problems/longest-common-subsequence)
+
+---
+- **comments**: true
+- **difficulty**: Medium
+- **tags**:
+ - String
+ - Dynamic Programming
+---
+
+
+## Description
+
+
+
+
Given two strings text1 and text2, return the length of their longest common subsequence. If there is no common subsequence, return 0.
+
+A subsequence of a string is a new string generated from the original string with some characters (can be none) deleted without changing the relative order of the remaining characters.
+
+
+ - For example,
"ace" is a subsequence of "abcde".
+
+
+A common subsequence of two strings is a subsequence that is common to both strings.
+
+
+Example 1:
+
+
+Input: text1 = "abcde", text2 = "ace"
+Output: 3
+Explanation: The longest common subsequence is "ace" and its length is 3.
+
+
+Example 2:
+
+
+Input: text1 = "abc", text2 = "abc"
+Output: 3
+Explanation: The longest common subsequence is "abc" and its length is 3.
+
+
+Example 3:
+
+
+Input: text1 = "abc", text2 = "def"
+Output: 0
+Explanation: There is no such common subsequence, so the result is 0.
+
+
+
+Constraints:
+
+
+ 1 <= text1.length, text2.length <= 1000
+ text1 and text2 consist of only lowercase English characters.
+
+
+
+
+## Solutions
+
+
+
+### Solution 1: Dynamic Programming
+
+We define $f[i][j]$ as the length of the longest common subsequence of the first $i$ characters of $text1$ and the first $j$ characters of $text2$. Therefore, the answer is $f[m][n]$, where $m$ and $n$ are the lengths of $text1$ and $text2$, respectively.
+
+If the $i$th character of $text1$ and the $j$th character of $text2$ are the same, then $f[i][j] = f[i - 1][j - 1] + 1$; if the $i$th character of $text1$ and the $j$th character of $text2$ are different, then $f[i][j] = max(f[i - 1][j], f[i][j - 1])$. The state transition equation is:
+
+$$
+f[i][j] =
+\begin{cases}
+f[i - 1][j - 1] + 1, & \textit{if } text1[i - 1] = text2[j - 1] \\
+\max(f[i - 1][j], f[i][j - 1]), & \textit{if } text1[i - 1] \neq text2[j - 1]
+\end{cases}
+$$
+
+The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Here, $m$ and $n$ are the lengths of $text1$ and $text2$, respectively.
+
+
+
+#### Python3
+
+```python
+class Solution:
+ def longestCommonSubsequence(self, text1: str, text2: str) -> int:
+ m, n = len(text1), len(text2)
+ f = [[0] * (n + 1) for _ in range(m + 1)]
+ for i in range(1, m + 1):
+ for j in range(1, n + 1):
+ if text1[i - 1] == text2[j - 1]:
+ f[i][j] = f[i - 1][j - 1] + 1
+ else:
+ f[i][j] = max(f[i - 1][j], f[i][j - 1])
+ return f[m][n]
+```
+
+#### Java
+
+```java
+class Solution {
+ public int longestCommonSubsequence(String text1, String text2) {
+ int m = text1.length(), n = text2.length();
+ int[][] f = new int[m + 1][n + 1];
+ for (int i = 1; i <= m; ++i) {
+ for (int j = 1; j <= n; ++j) {
+ if (text1.charAt(i - 1) == text2.charAt(j - 1)) {
+ f[i][j] = f[i - 1][j - 1] + 1;
+ } else {
+ f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
+ }
+ }
+ }
+ return f[m][n];
+ }
+}
+```
+
+#### C++
+
+```cpp
+class Solution {
+public:
+ int longestCommonSubsequence(string text1, string text2) {
+ int m = text1.size(), n = text2.size();
+ int f[m + 1][n + 1];
+ memset(f, 0, sizeof f);
+ for (int i = 1; i <= m; ++i) {
+ for (int j = 1; j <= n; ++j) {
+ if (text1[i - 1] == text2[j - 1]) {
+ f[i][j] = f[i - 1][j - 1] + 1;
+ } else {
+ f[i][j] = max(f[i - 1][j], f[i][j - 1]);
+ }
+ }
+ }
+ return f[m][n];
+ }
+};
+```
+
+#### Go
+
+```go
+func longestCommonSubsequence(text1 string, text2 string) int {
+ m, n := len(text1), len(text2)
+ f := make([][]int, m+1)
+ for i := range f {
+ f[i] = make([]int, n+1)
+ }
+ for i := 1; i <= m; i++ {
+ for j := 1; j <= n; j++ {
+ if text1[i-1] == text2[j-1] {
+ f[i][j] = f[i-1][j-1] + 1
+ } else {
+ f[i][j] = max(f[i-1][j], f[i][j-1])
+ }
+ }
+ }
+ return f[m][n]
+}
+```
+
+#### TypeScript
+
+```ts
+function longestCommonSubsequence(text1: string, text2: string): number {
+ const m = text1.length;
+ const n = text2.length;
+ const f = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0));
+ for (let i = 1; i <= m; i++) {
+ for (let j = 1; j <= n; j++) {
+ if (text1[i - 1] === text2[j - 1]) {
+ f[i][j] = f[i - 1][j - 1] + 1;
+ } else {
+ f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
+ }
+ }
+ }
+ return f[m][n];
+}
+```
+
+#### Rust
+
+```rust
+impl Solution {
+ pub fn longest_common_subsequence(text1: String, text2: String) -> i32 {
+ let (m, n) = (text1.len(), text2.len());
+ let (text1, text2) = (text1.as_bytes(), text2.as_bytes());
+ let mut f = vec![vec![0; n + 1]; m + 1];
+ for i in 1..=m {
+ for j in 1..=n {
+ f[i][j] = if text1[i - 1] == text2[j - 1] {
+ f[i - 1][j - 1] + 1
+ } else {
+ f[i - 1][j].max(f[i][j - 1])
+ };
+ }
+ }
+ f[m][n]
+ }
+}
+```
+
+#### JavaScript
+
+```js
+/**
+ * @param {string} text1
+ * @param {string} text2
+ * @return {number}
+ */
+var longestCommonSubsequence = function (text1, text2) {
+ const m = text1.length;
+ const n = text2.length;
+ const f = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0));
+ for (let i = 1; i <= m; ++i) {
+ for (let j = 1; j <= n; ++j) {
+ if (text1[i - 1] == text2[j - 1]) {
+ f[i][j] = f[i - 1][j - 1] + 1;
+ } else {
+ f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
+ }
+ }
+ }
+ return f[m][n];
+};
+```
+
+#### C#
+
+```cs
+public class Solution {
+ public int LongestCommonSubsequence(string text1, string text2) {
+ int m = text1.Length, n = text2.Length;
+ int[,] f = new int[m + 1, n + 1];
+ for (int i = 1; i <= m; ++i) {
+ for (int j = 1; j <= n; ++j) {
+ if (text1[i - 1] == text2[j - 1]) {
+ f[i, j] = f[i - 1, j - 1] + 1;
+ } else {
+ f[i, j] = Math.Max(f[i - 1, j], f[i, j - 1]);
+ }
+ }
+ }
+ return f[m, n];
+ }
+}
+```
+
+#### Kotlin
+
+```kotlin
+class Solution {
+ fun longestCommonSubsequence(text1: String, text2: String): Int {
+ val m = text1.length
+ val n = text2.length
+ val f = Array(m + 1) { IntArray(n + 1) }
+ for (i in 1..m) {
+ for (j in 1..n) {
+ if (text1[i - 1] == text2[j - 1]) {
+ f[i][j] = f[i - 1][j - 1] + 1
+ } else {
+ f[i][j] = Math.max(f[i - 1][j], f[i][j - 1])
+ }
+ }
+ }
+ return f[m][n]
+ }
+}
+```
+
+
+
+
+
+
\ No newline at end of file