diff --git a/Solution/72. Edit Distance/72. Edit Distance.py b/Solution/72. Edit Distance/72. Edit Distance.py
new file mode 100644
index 0000000..d0ce251
--- /dev/null
+++ b/Solution/72. Edit Distance/72. Edit Distance.py
@@ -0,0 +1,14 @@
+class Solution:
+ def minDistance(self, word1: str, word2: str) -> int:
+ m, n = len(word1), len(word2)
+ f = [[0] * (n + 1) for _ in range(m + 1)]
+ for j in range(1, n + 1):
+ f[0][j] = j
+ for i, a in enumerate(word1, 1):
+ f[i][0] = i
+ for j, b in enumerate(word2, 1):
+ if a == b:
+ f[i][j] = f[i - 1][j - 1]
+ else:
+ f[i][j] = min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1
+ return f[m][n]
\ No newline at end of file
diff --git a/Solution/72. Edit Distance/readme.md b/Solution/72. Edit Distance/readme.md
new file mode 100644
index 0000000..955318b
--- /dev/null
+++ b/Solution/72. Edit Distance/readme.md
@@ -0,0 +1,250 @@
+
+
+
+# [72. Edit Distance](https://leetcode.com/problems/edit-distance)
+
+---
+- **comments**: true
+- **difficulty**: Medium
+- **tags**:
+ - String
+ - Dynamic Programming
+---
+
+## Description
+
+
+
+
Given two strings word1 and word2, return the minimum number of operations required to convert word1 to word2.
+
+You have the following three operations permitted on a word:
+
+
+ - Insert a character
+ - Delete a character
+ - Replace a character
+
+
+
+Example 1:
+
+
+Input: word1 = "horse", word2 = "ros"
+Output: 3
+Explanation:
+horse -> rorse (replace 'h' with 'r')
+rorse -> rose (remove 'r')
+rose -> ros (remove 'e')
+
+
+Example 2:
+
+
+Input: word1 = "intention", word2 = "execution"
+Output: 5
+Explanation:
+intention -> inention (remove 't')
+inention -> enention (replace 'i' with 'e')
+enention -> exention (replace 'n' with 'x')
+exention -> exection (replace 'n' with 'c')
+exection -> execution (insert 'u')
+
+
+
+Constraints:
+
+
+ 0 <= word1.length, word2.length <= 500
+ word1 and word2 consist of lowercase English letters.
+
+
+
+
+## Solutions
+
+
+
+### Solution 1: Dynamic Programming
+
+We define $f[i][j]$ as the minimum number of operations to convert $word1$ of length $i$ to $word2$ of length $j$. $f[i][0] = i$, $f[0][j] = j$, $i \in [1, m], j \in [0, n]$.
+
+We consider $f[i][j]$:
+
+- If $word1[i - 1] = word2[j - 1]$, then we only need to consider the minimum number of operations to convert $word1$ of length $i - 1$ to $word2$ of length $j - 1$, so $f[i][j] = f[i - 1][j - 1]$;
+- Otherwise, we can consider insert, delete, and replace operations, then $f[i][j] = \min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1$.
+
+Finally, we can get the state transition equation:
+
+$$
+f[i][j] = \begin{cases}
+i, & \textit{if } j = 0 \\
+j, & \textit{if } i = 0 \\
+f[i - 1][j - 1], & \textit{if } word1[i - 1] = word2[j - 1] \\
+\min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1, & \textit{otherwise}
+\end{cases}
+$$
+
+Finally, we return $f[m][n]$.
+
+The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. $m$ and $n$ are the lengths of $word1$ and $word2$ respectively.
+
+
+
+#### Python3
+
+```python
+class Solution:
+ def minDistance(self, word1: str, word2: str) -> int:
+ m, n = len(word1), len(word2)
+ f = [[0] * (n + 1) for _ in range(m + 1)]
+ for j in range(1, n + 1):
+ f[0][j] = j
+ for i, a in enumerate(word1, 1):
+ f[i][0] = i
+ for j, b in enumerate(word2, 1):
+ if a == b:
+ f[i][j] = f[i - 1][j - 1]
+ else:
+ f[i][j] = min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1
+ return f[m][n]
+```
+
+#### Java
+
+```java
+class Solution {
+ public int minDistance(String word1, String word2) {
+ int m = word1.length(), n = word2.length();
+ int[][] f = new int[m + 1][n + 1];
+ for (int j = 1; j <= n; ++j) {
+ f[0][j] = j;
+ }
+ for (int i = 1; i <= m; ++i) {
+ f[i][0] = i;
+ for (int j = 1; j <= n; ++j) {
+ if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
+ f[i][j] = f[i - 1][j - 1];
+ } else {
+ f[i][j] = Math.min(f[i - 1][j], Math.min(f[i][j - 1], f[i - 1][j - 1])) + 1;
+ }
+ }
+ }
+ return f[m][n];
+ }
+}
+```
+
+#### C++
+
+```cpp
+class Solution {
+public:
+ int minDistance(string word1, string word2) {
+ int m = word1.size(), n = word2.size();
+ int f[m + 1][n + 1];
+ for (int j = 0; j <= n; ++j) {
+ f[0][j] = j;
+ }
+ for (int i = 1; i <= m; ++i) {
+ f[i][0] = i;
+ for (int j = 1; j <= n; ++j) {
+ if (word1[i - 1] == word2[j - 1]) {
+ f[i][j] = f[i - 1][j - 1];
+ } else {
+ f[i][j] = min({f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]}) + 1;
+ }
+ }
+ }
+ return f[m][n];
+ }
+};
+```
+
+#### Go
+
+```go
+func minDistance(word1 string, word2 string) int {
+ m, n := len(word1), len(word2)
+ f := make([][]int, m+1)
+ for i := range f {
+ f[i] = make([]int, n+1)
+ }
+ for j := 1; j <= n; j++ {
+ f[0][j] = j
+ }
+ for i := 1; i <= m; i++ {
+ f[i][0] = i
+ for j := 1; j <= n; j++ {
+ if word1[i-1] == word2[j-1] {
+ f[i][j] = f[i-1][j-1]
+ } else {
+ f[i][j] = min(f[i-1][j], min(f[i][j-1], f[i-1][j-1])) + 1
+ }
+ }
+ }
+ return f[m][n]
+}
+```
+
+#### TypeScript
+
+```ts
+function minDistance(word1: string, word2: string): number {
+ const m = word1.length;
+ const n = word2.length;
+ const f: number[][] = Array(m + 1)
+ .fill(0)
+ .map(() => Array(n + 1).fill(0));
+ for (let j = 1; j <= n; ++j) {
+ f[0][j] = j;
+ }
+ for (let i = 1; i <= m; ++i) {
+ f[i][0] = i;
+ for (let j = 1; j <= n; ++j) {
+ if (word1[i - 1] === word2[j - 1]) {
+ f[i][j] = f[i - 1][j - 1];
+ } else {
+ f[i][j] = Math.min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1;
+ }
+ }
+ }
+ return f[m][n];
+}
+```
+
+#### JavaScript
+
+```js
+/**
+ * @param {string} word1
+ * @param {string} word2
+ * @return {number}
+ */
+var minDistance = function (word1, word2) {
+ const m = word1.length;
+ const n = word2.length;
+ const f = Array(m + 1)
+ .fill(0)
+ .map(() => Array(n + 1).fill(0));
+ for (let j = 1; j <= n; ++j) {
+ f[0][j] = j;
+ }
+ for (let i = 1; i <= m; ++i) {
+ f[i][0] = i;
+ for (let j = 1; j <= n; ++j) {
+ if (word1[i - 1] === word2[j - 1]) {
+ f[i][j] = f[i - 1][j - 1];
+ } else {
+ f[i][j] = Math.min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1;
+ }
+ }
+ }
+ return f[m][n];
+};
+```
+
+
+
+
+
+
\ No newline at end of file