

Issue Refactoring - Code Smells

Hello,

We are students of the software design course, because of the content of our subject we have had to

identify possible "bad smells" in repository codes and some "refactoring" that would be a solution to

these bad smells that are fundamental basis for building a scalable, maintainable and readable code.

This is all for a practice and learning motive.

Thank you very much.

Code Smells

Hotel Managment

Class: DoubleRoom and SingleRoom

1. Object-Orientation Abusers -> Alternative Classes with Different Interfaces

Between these two classes we can notice the smell "Alternative Classes with Different

Interfaces" because if we look, the two classes are basically the same, thus having the same

behavior, the only slight change we have is that the "DoubleRoom" class has one more attribute

which is a person (attribute that already exists in the "SingleRoom" class). To avoid this, we

can apply the refactoring method "Extract Class" to convert these two classes into one, but they

can modify their behavior internally to be a "Single" or "Double" room.

Class: Holder

2. Dispensable -> Data Class

In the Holder class we can find that the only thing it is being used for is to define the

number of rooms available in the hotel.

The bad smell that can be noticed is that it only has its attributes that are used by other

classes, being the Holder class as a container of this data, besides it does not have any additional

functionality, nor can it operate independently.

Another way to notice a bad smell is that the amount of SingleRoom and DoubleRoom

available are values that are burned, that we will not be able to add more rooms in case of

expansion of the hotel or that the system works with another client, as a result we have a too

static program.

Class: Main

3. Dispensable -> Duplicated code

Due to the similarities of lines and actions along the switch and the different

conditionals present, there is the smell "Duplicate Code", this makes evident the use of copy-

paste and it would be better if it is grouped in some way or try to present better those

conditionals.

Class: NotAvailable

4. Dispensable -> Lazy Class

Because this class has as only objective to have a toString method (although it extends

exception), it is considered a "Lazy Class" because it does basically nothing, the responsibility

that this one has can be replaced easily with a String variable that can be printed if the room

that you want to reserve is not available (with the help of a conditional).

Refactoring

5. Extract Superclass

This refactoring is simple, we can make a single class "Room" which can have a list with

objects of a class of type "Person" which will have the attributes of name, gender and others

required (This helps to group them better and efficiently in the array), it will also have an

attribute isDouble, to know if it is a double room. Thus, it will not matter to have a different

class to know if it is double, it can be done with a simple validation according to the number of

people in the array:

We will not worry about the Person class having "Data Class" as more functionalities could be

added to this class later.

6. Consolidate Duplicate Conditional Fragments

7. Consolidate Conditional Expression

In the "Main" class there are code fragments that belong to the conditionals which are

repeated unnecessarily causing "Duplicate Code" this can be fixed with "Consolidate Duplicate

Conditional Fragments" removing those actions that are repeated in several conditionals (like

prints); and with Consolidate Conditional Expression, grouping certain actions in a method

since several conditionals return or make the same call to a method.

In the following image two things were done: first, a general method was made to analyze

the variable "choice1" to be able to group the choice between parts: if it is 6, the quit() method

is called to exit; if it is between 1 and 3, another method is called to try to perform an action

regarding the rooms (the print mentions them); and if it is none of these, it calls another method

(anotherAction()), to analyze and decide which action to perform.

Another thing that was done is to remove the actions that were repeated in several fragments

of the switch, for example, the print that showed the different types of rooms was placed in only

one part and where it is assured that the option that was chosen has to do with the rooms, also

the fact that there is no longer the repetition of call to methods of choice1 (for example

choice1.example1, choice1.example2, ...) and in this way a cleaner code is noticed.

