January 2003 Trevor Hastie, Stanford University

Boosting

Trevor Hastie
Statistics Department
Stanford University

Collaborators: Brad Efron, Jerome Friedman,
Saharon Rosset, Rob Tibshirani, Ji Zhu

http://www-stat.stanford.edu/~hastie/TALKS/boost.pdf

January 2003 Trevor Hastie, Stanford University

Outline I

e Model Averaging

e Bagging
e Boosting
e History of Boosting
e Stagewise Additive Modeling
e Boosting and Logistic Regression
e MART
e Boosting and Overfitting

e Summary of Boosting, and its place in the
toolbox.

Methods for improving the performance of weak
learners. Classification trees are adaptive and
robust, but do not generalize well. The techniques
discussed here enhance their performance

considerably.
g

Reference: ,_""":T"':’A:‘ Chapter 10.

January 2003 Trevor Hastie, Stanford University

Classification Problem I

Bayes Error Rate: 0.25

Data (X,Y) € RP x {0,1}.
X is predictor, feature; Y is class label, response.
(X,Y) have joint probability distribution D.

Goal: Based on N training pairs (X;, Y;) drawn
from D produce a classifier C'(X) € {0,1}

Goal: choose C to have low generalization error

R(C) Pp(C(X) #Y)

= Ep[liex)sv)

January 2003 Trevor Hastie, Stanford University

‘ Deterministic Concepts I

Bayes Error Rate: 0

o 1
1
1 | 4 1 11
1
11111, , &
N~ 1 1
1 11 | 1447 11 4
11 i T 1
111 lé%]ilj%fl]l“illii 11 11
- 111 gt gy 1 11 L
17 11
114 1 1l 14 |
1y 43 Ul
o 1 l'lL 1 o]1 1
x © - i 1 % il J1a
1 1 1 g
i] ﬁllll 171
4 Tk W11
o | 1 114 14
i 1101117 %1 lﬂjl 1
1 1 ufgi1 11 1 I
111111 11 1H
1 #i1 ¢ 1
o 1 1 8 lJJi 1
D 1 l111l 1
1 11 1 1
1
11
(‘:77
I I I I I I I
3 2 1 0 1 2 3

X € RP has distribution D.

C'(X) is deterministic function € concept class.

Goal: Based on N training pairs
(X;, V; = C(X;)) drawn from D produce a
classifier C'(X) € {0,1}

Goal: choose C to have low generalization error
R(C) = Pp(C(X)# C(X))

= Epllemnzox)]

January 2003 Trevor Hastie, Stanford University

Classification Tree

Sample of size 200

94/200
X.2<-1.06711
Xx.2>-1.06711
1
0/34 72/166
X.2<1.14988
X.2>1.14988
\
1
40/134 0/32
X.1<1.13632
x.1>1.13632
\
1
23/117 0/17
X.1<-0.900735
X.1>-0.900735
5/26 2/91
X.1<-1.1668 X.2<-0.823968
/ X.1>-1.1668 / X.2>-0.823968
\
1 0 0
0/12 5/14 2/8 0/83
x.1<-1.07831
/ X.1>-1.07831
\
1 1

1/5 4/9

January 2003 Trevor Hastie, Stanford University

Decision Boundary: Tree'

Error Rate: 0.073

X2
0
|

X1

When the nested spheres are in IR'Y, CART
produces a rather noisy and inaccurate rule
G(X), with error rates around 30%.

January 2003 Trevor Hastie, Stanford University

Model Averaging I

Classification trees can be simple, but often
produce noisy (bushy) or weak (stunted)

classifiers.

e Bagging (Breiman, 1996): Fit many large
trees to bootstrap-resampled versions of the

training data, and classify by majority vote.

e Boosting (Freund & Shapire, 1996): Fit many
large or small trees to reweighted versions of
the training data. Classify by weighted

majority vote.

In general Boosting > Bagging > Single Tree.

“AdaBoost - -+ best off-the-shelf classifier in the
world” — Leo Breiman, NIPS workshop, 1996.

January 2003 Trevor Hastie, Stanford University

‘ Bagging I

Bagging or bootstrap aggregation averages a

given procedure over many samples, to reduce its
o

variance — a poor man’s Bayes. See ‘ pp 246.

Suppose G(X, x) is a classifier, such as a tree,
producing a predicted class label at input point .

To bag GG, we draw bootstrap samples
X*1 .. X*B each of size N with replacement
from the training data. Then

Gloag(r) = Majority Vote {G(X*?, z)}Z_,.

Bagging can dramatically reduce the variance of
unstable procedures (like trees), leading to
improved prediction. However any simple

structure in G (e.g a tree) is lost.

January 2003 Trevor Hastie, Stanford University

Original Tree Bootstrap Tree 1
10/30 7130
X.2<0.39 X.2<0.36
x.2>0.39 x.2>0.36
1 1
1 219 1723 177
x.3<-1.575 X.1<-0.965
x.3>-1.575 x.1>-0.965
1 0 0 0
2/5 0/16 1/5 0/18
Bootstrap Tree 2 Bootstrap Tree 3
11730 0
x.2<0.39 x.4<0.395
x.2>0.39 x.4>0.395
1 0
3722 078 2125 2/5
x.3<-1.575 x.3<-1.575
x.3>-1.575 x.3>-1.575
1 0 0 0
25 0717 25 0720
Bootstrap Tree 4 Bootstrap Tree 5
13730 12/30
X.2<0.255 X.2<0.38
x.2>0.255 x.2>0.38
1 1
2/16 3/14 4720 2/10
x.3<-1.385 X.3<-1.61
x.3>-1.385 x.3>-1.61

2/5 0/11 2/6 0/14

January 2003 Trevor Hastie, Stanford University

Decision Boundary: Bagging'

Error Rate: 0.032

X2
0
|

X1

Bagging averages many trees, and produces

smoother decision boundaries.

January 2003 Trevor Hastie, Stanford University

‘ Boosting I

FINAL CLASSIFIER

G(x) = sign [2%21 A G, (:1:)}

Weighted Sample JEEEEENEsYIEq)

Weighted Sample JEEEEENENE)

Weighted Sample JEE=ENEsNEd

.—’.—’.—’“O.

Training Sample JEEEEENEITE))

11

January 2003 Trevor Hastie, Stanford University

Bagging and Boosting'

100 Node Trees

—— Bagging
— —— AdaBoost

0.4

0.3

Test Error

0.2

0.1

0.0

[T T T I
0 100 200 300 400

Number of Terms

2000 points from Nested Spheres in R!Y; Bayes

error rate is 0%.
Trees are grown Dest First without pruning.

Leftmost iteration is a single tree.

12

January 2003 Trevor Hastie, Stanford University 13

AdaBoost (Freund & Schapire, 1996)'

1. Initialize the observation weights
w; =1/N,i=1,2,... ,N.
2. For m = 1 to M repeat steps (a)—(d):
(a) Fit a classifier G,,,(x) to the training data

using weights w;.

(b) Compute

Doty wil (4: # Gon (1))
ij\;l Wi
(¢c) Compute au, = log((1 — err,,)/err,,).
(d) Update weights for ¢ =1,..., N:
w; +— w; - explam - I(Yyi # Gm(z:))]

and renormalize to w; to sum to 1.

3. Output G(x) = sign [2%21 oszm(a:)]

err,, =

January 2003 Trevor Hastie, Stanford University 14

‘History of Boosting'

[L.G.Valiant (1984) } Genesis of
PAC Learning Model

[R.E Schapire (1990)] Concept of

[Y. Freund (1995) } B:F‘)’;g:rg
S

Adaboost
} ishorn

\

L. Breiman(1996)
Bagging Experiments

with
Adaboost
[Freund& 3chapire(1996)j [R. Quinlan (1996)] [Breiman(1996, 1997)}
,, L
_ Schapire, Y. Singer (1998) Attempts to
[Schaplre, Freund, P. Bartlett, Lee(1997)} Schapire, Singer, Freund, lyer (1998) explain why
Adaboost works

| mprovements

[Friedman, Hastie, Tibshirani (1998) }

January 2003 Trevor Hastie, Stanford University 15

PAC Learning Model'

X ~ D: Instance Space
C': X — {0,1} Concept € C c
h: X — {0,1} Hypothesis € H
error(h) = Pp|C(X) # h(X)] X

Definition: Consider a concept class C defined
over a set X of length N. L is a learner
(algorithm) using hypothesis space H. C is PAC
learn-able by £ using H if for all C' € C, all
distributions D over X and all €, € (0, %),
learner L will, with Pr > (1 — §), output an

h € 'H s.t. errorp(h) < € in time polynomial in
1/€,1/6, N and size(C).

Such an L is called a strong Learner.

January 2003 Trevor Hastie, Stanford University 16

Boosting a Weak Learner'

Weak learner L produces an h with error rate

ﬁ:(%—g)<—W1thPr>(— ¢) for any D.

L has access to continuous stream of training

data and a class oracle.
1. L learns hq on first NV training points.

2. L randomly filters the next batch of training
points, extracting IN/2 points correctly
classified by hi, N/2 incorrectly classified,
and produces ho.

3. L builds a third training set of N points for
which hq and ho disagree, and produces hs.

4. L outputs h = Majority Vote(hy, ho, h3)

THEOREM (Schapire, 1990): “The Strength of
Weak Learnability”

errorp(h) < 36% —283° < f3

January 2003 Trevor Hastie, Stanford University
‘Boosting Stumps'
o _
o
Single Stump
U
o
M]
. O
o 400 Node Tree
I
O
|_

Q
o

0 100 200 300 400
Boosting Iterations

A stump is a two-node tree, after a single split.
Boosting stumps works remarkably well on the

nested-spheres problem.

17

January 2003 Trevor Hastie, Stanford University

‘Boosting & Training Error'

Nested spheres in R'® — Bayes error is 0%.

Stumps

0.5
\

0.4

Train and Test Error

[I I I I I I
0 100 200 300 400 500 600

Number of Terms

Boosting drives the training error to zero. Further
iterations continue to improve test error in many

examples.

18

January 2003 Trevor Hastie, Stanford University

Boosting Noisy Problems'

Nested Gaussians in R'Y — Bayes error is 25%.

Stumps

0.5

Bayes Error

Train and Test Error
0.2

0.1

0 100 200 300 400 500 600

Number of Terms

Here the test error does increase, but quite slowly.

19

January 2003 Trevor Hastie, Stanford University 20

‘Stagewise Additive Modeling'

Boosting builds an additive model

f(x) — Z 6mb(x§’7m)'

Here b(x,v,,) is a tree, and +,, parametrizes the
splits.

We do things like that in statistics all the time!
o GAMs: f(ZE) = Zj fj(ZEj)
e Basis expansions: f(z) = Z%:l O ()

Traditionally the parameters f,,, 6., are fit jointly

(i.e. least squares, maximum likelihood).

With boosting, the parameters (5,,, V) are fit in
a stagewise fashion. This slows the process down,
and tends to overfit less quickly.

January 2003 Trevor Hastie, Stanford University 21

Stagewise Least Squares'

Suppose we have available a basis family b(x;)

parametrized by . For example, a simple family
is b(w; ;) = ;.

o After m — 1 steps, suppose we have the model
m—1
fm—1(x) = 22521 Bb(@;7;)-
e At the mth step we solve

N

Iélin (Yi — Fm—1(2i) — Bb(zi57))°
v =

e Denoting the residuals at the mth stage by
Tim = Yi — fm—_1(x;), the previous step
amounts to

min(r;, — 6b(x;; 7))2,
B,y

e Thus the term (,,b(x;,,) that best fits the
current residuals is added to the expansion at

each step.

January 2003 Trevor Hastie, Stanford University 22

Adaboost: Stagewise Modeling'

e AdaBoost builds an additive logistic

regression model

Pr(Y = 1|x)

() =108 =15 = 2 anGn(®

by stagewise fitting using the loss function
L(y, f(z)) = exp(—y f(z)).

e Given the current fp; _1(x), our solution for
(Bm, Gm) 1s

N

arg %IIC'I;I - exp|—Yi(frm—1(x;) + BG(z))]

where G,,(z) € {—1,1} is a tree classifier and

Bm is a coefficient.

January 2003 Trevor Hastie, Stanford University

e With wgm) = exp(—v; frm—1(x;)), this can be
re-expressed as
N
argmin > w(™ exp(—By; G(z;))

G
B, 1=1

e We can show t}% this leads to the Adaboost

algorithm; See ‘ pp 305.

23

January 2003 Trevor Hastie, Stanford University

Why Exponential LOSS?I

o
™ . I
—— Misclassification
—— Exponential
3 7 —— Binomial Deviance
—— Squared Error
o | Support Vector
N
w0
3
Lo
— -
o
S
0|
o
o —
o
T T T I
-2 1 1 2

0

y-f

o ¢ ¥F() is a monotone, smooth upper bound
on misclassification loss at x.

e Leads to simple reweighting scheme.

e Has logit transform as population minimizer

Pr(Y = 1|z)
Pr(Y = —1|z)

() = 5 log

e Other more robust loss functions, like

binomial deviance.

January 2003 Trevor Hastie, Stanford University 25

General Stagewise Algorithm'

We can do the same for more general loss

functions, not only least squares.
1. Initialize fo(z) = 0.

2. Form =1 to M:
(a) Compute
By Ym) =
arg ming, Y01 L(Yis fno1 (1) +580(z4;7)).
(b) Set fm(x) = frm-1(x) + Bmb(@; ym).

Sometimes we replace step (b) in item 2 by

(b*) Set fin(x) = fin_1(x) + vBnb(x; Ym)

Here v is a shrinkage factor, and often v < 0.1.

See | pp 326. Shrinkage slows the stagewise
model-building even more, and typically leads to

better performance.

January 2003 Trevor Hastie, Stanford University

MART '

e General boosting algorithm that works with a
variety of different loss functions. Models
include regression, outlier-resistant regression,

K-class classification and risk modeling.

e MART uses gradient boosting to build
additive tree models, for example, for

representing the logits in logistic regression.

e Tree size is a parameter that determines the

order of interaction (next slide).

e MART inherits all the good features of trees
(variable selection, missing data, mixed
predictors), and improves on the weak

features, such as prediction performance.

e MART is described in detail in | |, section
10.10.

January 2003 Trevor Hastie, Stanford University 27

MART in detail.

Model

fau(x) =D T(z;0n)

m=1

where T'(x; ©) is a tree:
J
T(x;0) =) ~I(z € Ry)
j=1

with parameters © = {R;,v;}{
Fitting Criterion

Given @j, 3=1,...,m — 1, we obtain @m via,
stagewise optimization:

N
arg Igi@n ; L (yi, fm—1(z;) + T(2i;0.))

For general loss functions this is a very difficult
optimization problem. Gradient boosting is an
approximate gradient descent method.

January 2003 Trevor Hastie, Stanford University

‘ Gradient Boosting I

1. Initialize fo(x) = argmin,, Zf\il L(y;, 7).

2. Form =1 to M:
(a) For i =1,2,... , N compute

Tim = — [aLgy}’(i(;}i))] f=fmo1

(b) Fit a regression tree to the targets r;,,

giving terminal regions
Rim, J=1,2,...,Jpn.
(¢c) For j=1,2,...,J, compute

Yjm = argmin > Ly, frea (@) +7) .

szRgm

(d) Update

fm (@) = frm-1(z) + 23121 ’ij[(x = ij)'

3. Output f(z) = fu(z).

28

January 2003 Trevor Hastie, Stanford University

Tree Size I

The tree size J determines the interaction order
of the model:

J Jk
+E Nkt (X;, X, X1) + - -
Gkl
— Stumps
2-. 7 —— 10 Node
—— 100 Node
—— Adaboost
|
o
S
[
NI
o
]
o
o _|
o

0 100 200 300 400

Number of Terms

January 2003 Trevor Hastie, Stanford University 30

‘ Stumps win! I

Since the true decision boundary is the surface of
a sphere, the function that describes it has the

form
fFX)=X{+X5+...+ X —c=0.

Boosted stumps via MART returns reasonable
approximations to these quadratic functions.

Coordinate Functions for Additive Logistic Trees

f1(zH fa(z2) fa(zs fa(xq) f5(xs

fe(x fr(x Q fo(zog f1o(z10

January 2003 Trevor Hastie, Stanford University 31

Example: Predicting e-mail SpamI

e data from 4601 email messages

e goal: predict whether an email message is
spam (junk email) or good.

e input features: relative frequencies in a
message of 57 of the most commonly
occurring words and punctuation marks in all

the training the email messages.

e for this problem not all errors are equal; we
want to avoid filtering out good email, while
letting spam get through is not desirable but

less serious in its consequences.
e we coded spam as 1 and email as 0.

e A system like this would be trained for each
user separately (e.g. their word lists would be
different)

January 2003 Trevor Hastie, Stanford University 32

Predictors '

e 48 quantitative predictors—the percentage of

words in the email that match a given word.
Examples include business, address,
internet, free, and george. The idea was
that these could be customized for individual

users.

e 6 quantitative predictors—the percentage of
characters in the email that match a given
character. The characters are ch;, ch(, chl[,
ch!, ch$, and ch#.

e The average length of uninterrupted
sequences of capital letters: CAPAVE.

e The length of the longest uninterrupted
sequence of capital letters: CAPMAX.

e The sum of the length of uninterrupted
sequences of capital letters: CAPTOT.

January 2003 Trevor Hastie, Stanford University

Some important features'

39% of the training data were spam.

Average percentage of words or characters in an
email message equal to the indicated word or
character. We have chosen the words and
characters showing the largest difference between

spam and email.

george you your hp free hpl

spam 0.00 2.26 1.38 0.02 0.52 0.01
email 1.27 1.27 0.44 0.90 0.07 0.43
| our re edu remove

spam 0.51 0.1 0.13 0.01 0.28
email | 0.11 0.18 0.42 0.29 0.01

33

January 2003 Trevor Hastie, Stanford University

‘Spam Example Results'

With 3000 training and 1500 test observations,
MART fits an additive logistic model

Pr(spam|z)
Pr(email|x)

f(z) =log

using trees with J = 6 terminal-node trees.

MART achieves a test error of 4%, compared to
5.3% for an additive GAM, 5.5% for MARS, and
8.7% for CART.

34

January 2003

Trevor Hastie, Stanford University

addresses
labs

telnet

857

415

direct

cs
table

85

#

parts
crediE

lab
conference
report
original
data
prog'ect

ont

make
address
order

all

hpl
technology
people

pm

mail

over

650

meeting
email
000
internet
receive

re
business
1999

will
money
our

you

edu
CAPTOT
george
CAPMAX
your
CAPAVE
free
remoP]/e

p

3

Spam: Variable Importance

20 40 60 80 100

Relative importance

35

January 2003

Partial Dependence

Partial Dependence

-0.2 0.0 0.2 04 0.6 0.8 1.0

-0.2 0.0 0.2

-0.6

-1.0

Trevor Hastie, Stanford University 36

Spam: Partial Dependence

Partial Dependence

-0.2 0.0 0.2 04 0.6 0.8 1.0

0.0

0.2

0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6

! remove

-0.2 0.0 0.2

Partial Dependence
-0.6

I
0.0

-1.0

0.4 0.6 0.8 10 00 05 10 15 20 25 30

January 2003 Trevor Hastie, Stanford University

‘ Spam: Partial Dependence'

37

January 2003 Trevor Hastie, Stanford University 38

Margins I

1.0

20 lterations

. 50 lterations
g i 200 lterations

Cumulative Density
0.4
|
%
Tt

|
l '.r"
[g
| /‘

[qV] |

o ! /’

’,..o"'r _'/
o o o 327 Ton S
S ° ;
-1.0 -0.5 0.0 0.5 1.0
Margin

margin(X) = M(X) = QpC(X) —1

Freund & Schapire (1997): Boosting generalizes
because it pushes the training margins well above

zero, while keeping the VC dimension under
control (also Vapnik, 1996). With Pr > (1 — §)

Prest(M(X) <0) < Prrain(M(X) < 0)

L0 1 [log N log |H|
VN \ 0% +logl/é

January 2003 Trevor Hastie, Stanford University 39

o |
o
—— Real AdaBoost
g— — Discrete AdaBoost
S
7 O Lol W T e e e e - —
()]
e V.
- Bayes Error
© ~
S o 7|
o
}_
- |
o
O il
o

0 100 200 300 400 500 600

Number of Terms

How does Boosting avoid overfitting?

e As iterations proceed, impact of change is

localized.

e Parameters are not jointly optimized — stagewise

estimation slows down the learning process.

e Classifiers are hurt less by overfitting (Cover and
Hart, 1967).

e Margin theory of Schapire and Freund, Vapnik?
Disputed by Breiman (1997).

e Jury is still out!

January 2003 Trevor Hastie, Stanford University

Boosting and L; Penalized Fitting'

Lasso Forward Stagewise

Icavol Icavol

svi
lweight

pgg45
Ibph

“gleason

svi
lweight
pgg4s
Ibph

0.0

“Ngleason

age age

-0.2
-0.2

Coefficients

0.2 0.4 0.6
Coefficients

0.0 0.2 0.4 0.6

Icp lcp

2.0 2.5 0 50 100 150 200 250

00 05 10 15
t=>, ok lteration

e ¢ forward stagewise:(idealized boosting with
shrinkage). Given a family of basis functions
hi(x),...ha(z), and loss function L.

e Model at kth step is Fi(z) = 8% hy ().

e At step k + 1, identify coordinate m with
largest |OL/08,,|, and update &+ « 3F 4 e.

e Equivalent to the lasso: min L(8) + A¢||5]]1

January 2003 Trevor Hastie, Stanford University

‘Summary and Closing Comments'

The introduction of Boosting by Schapire,
Freund, and colleagues has brought us an
exciting and important set of new ideas.

Boosting fits additive logistic models, where
each component (base learner) is simple. The
complexity needed for the base learner
depends on the target function.

Little connection between weighted boosting
and bagging; boosting is primarily a bias
reduction procedure, while the goal of

bagging is variance reduction.

Boosting can of course overfit; stopping early
is a good way to regularize boosting.

Our view of boosting is stagewise and slow
optimization of a loss function. For example,
gradient boosting approximates the gradient
updates by small trees fit to the empirical
gradients.

41

January 2003 Trevor Hastie, Stanford University

e Modern versions of boosting use different loss
functions, and incorporate shrinkage. Can
handle a wide variety of regression modeling

scenarios.

e Later on we will compare boosting with

support vector machines.

42

January 2003 Trevor Hastie, Stanford University 43

Comparison of Learning Methods

Some characteristics of different learning methods.

Key: ® = good, « =fair, and e =poor.
Characteristic Neural SVM CART GAM KNN, MART
Nets kernels
Natural handling
[[} [J (] [} [J
of data of “mixed”
type
Handling of miss-
. ° ° ° ° °)
ing values
Robustness to
[[} [[} [J
outliers in input
space
Insensitive to
[[J [] [J []
monotone trans-
formations of
inputs
Computational
[[} [] [} [J
scalability (large
N)
Ability to deal
[] [J [[J []
with irrelevant
inputs
Ability to extract
[[} [J [}
linear combina-
tions of features
Interpretability
[[J o [J [J
Predictive power
[] [J [J [} [J []

