UNIVERSITY OF

Il WASHINGTON

Introduction to Boosted Trees

Tiangi Chen
Oct. 22 2014

Outline

e Review of key concepts of supervised learning

e Regression Tree and Ensemble (What are we Learning)

e Gradient Boosting (How do we Learn)

e Summary

Elements in Supervised Learning

e Notations: z; € R i-th training example

e Model: how to make prediction ¢; given z;
= Linear model: §; = >_; wjz;; (include linear/logistic regression)

= The prediction score 7; can have different interpretations
depending on the task
+ Linear regression: ;is the predicted score

+ Logistic regression: 1/(1 + exp(—y;))is predicted the probability
of the instance being positive

+ Others... for example in ranking ; can be the rank score

e Parameters: the things we need to learn from data

= Linear model: © = {w;|j =1,---,d}

Elements continued: Objective Function

e Objective function that is everywhere

0bj(©) = L(O) +

2(0)

\

Training Loss measures how
well model fit on training data

Regularization, measures
complexity of model

e Loss on training data: L =", l(vi, 9:)

= Square loss: 1(y;, 9;) = (y; — §;)*

= Logistic loss: I(y;, §;) = y; In(1 + e~ %) 4+ (1 — ;) In(1 + e¥%)

e Regularization: how complicated the model is?

* L2 norm: Q(w) = A|w|?
* L1 norm (lasso): Q(w) = A||lw]|;

Putting known knowledge into context

* Ridge regression: > (y; — wlz;)? + Ajw)|?
= Linear model, square loss, L2 regularization
e Lasso: > i (yi —wlaz)? + Awl

= Linear model, square loss, L1 regularization

e Logistic regression:
Sy (14 e) 4+ (1= ;) In(1+ e ™)) + M|
= Linear model, logistic loss, L2 regularization

e The conceptual separation between model, parameter,
objective also gives you engineering benefits.

= Think of how you can implement SGD for both ridge regression
and logistic regression

Objective and Bias Variance Trade-off

0bj(©) = L(©) +2(6)

/
Training Loss measures how Regularization, measures
well model fit on training data complexity of model

e \Why do we want to contain two component in the objective?

e Optimizing training loss encourages predictive models

= Fitting well in training data at least get you close to training data
which is hopefully close to the underlying distribution

e Optimizing regularization encourages simple models

= Simpler models tends to have smaller variance in future
predictions, making prediction stable

Outline

e Review of key concepts of supervised learning

e Regression Tree and Ensemble (What are we Learning)

e Gradient Boosting (How do we Learn)

e Summary

Regression Tree (CART)

e regression tree (also known as classification and regression tree):
= Decision rules same as in decision tree

= Contains one score in each leaf value

Input: age, gender, occupation, ... Like the computer game X

—

/7+2

prediction score in each leaf

Regression Tree Ensemble

treel tree2

Use Computer
Daily

Prediction of is sum of scores predicted by each of the tree

Tree Ensemble methods

e \Very widely used, look for GBM, random forest...

= Almost half of data mining competition are won by using some
variants of tree ensemble methods

e Invariant to scaling of inputs, so you do not need to do careful
features normalization.

e Learn higher order interaction between features.

e Can be scalable, and are used in Industry

Put into context: Model and Parameters

e Model: assuming we have K trees

_Zk fe(i), fr G@

Space of functions contalnlng all Regression trees

Think: regression tree is a function that maps the attributes to the score

e Parameters
= Including structure of each tree, and the score in the leaf

= Or simply use function as parameters

®:{f17f2:"'7fK}

= |nstead learning weights in R%, we are learning functions(trees)

Learning a tree on single variable

e How can we learn functions?
e Define objective (loss, regularization), and optimize it!!

e Example:
= Consider regression tree on single input t (time)

= | want to predict whether | like romantic music at time t

The model is regression tree that splits on time Piecewise step function over time

‘&' my rate over love songs

N EqU|Va|ent|y
I NENEE

1.0 - 1
L S
0.2 1.2 A timeline 7

When | met my girlfriend

Learning a step function

e Things we need to learn

‘&' my rate over love songs o L
= Splitting Positions

hmm...

o — The Height in each segment

-

—I—I—I—k

>
A timeline
When | met my girlfriend

e Objective for single variable regression tree(step functions)
= Training Loss: How will the function fit on the points?

= Regularization: How do we define complexity of the function?
+ Number of splitting points, 12 norm of the height in each segment?

Learning step function (visually)

A User's interest

Observed user’s interest on topic k
against time t

A User’s interest

> 1

ty
[%] Wrong split point, L(f) is high

> {1

A User’s interest

X%

%

> 1
t, Lty ty 15
Too many splits, Q(f) is high
A User’s interest
N h'd h'd
C A x
X
o]
x Pa NS
:
1
[P t
t

[v] Good balance of Q(f) and L(f)

Coming back: Objective for Tree Ensemble

e Model: assuming we have K trees

~ K
Ui = D 1 J(Ti), fe €F
e Objective

Obj = S 1yiy §i) + Sy Qfr)
7 N

Training loss Complexity of the Trees

e Possible ways to define () ?
= Number of nodes in the tree, depth
= L2 norm of the leaf weights

= ... detailed later

Objective vs Heuristic

e When you talk about (decision) trees, it is usually heuristics
= Split by information gain
= Prune the tree
= Maximum depth

= Smooth the leaf values

e Most heuristics maps well to objectives, taking the formal
(objective) view let us know what we are learning

= |nformation gain -> training loss
= Pruning -> regularization defined by #nodes
= Max depth -> constraint on the function space

= Smoothing leaf values -> L2 regularization on leaf weights

Regression Tree is not just for regression!

e Regression tree ensemble defines how you make the
prediction score, it can be used for

= Classification, Regression, Ranking....

e |t all depends on how you define the objective function!

e So far we have learned:
= Using Square loss [(yi, i) = (yi — 9i)?
+ Will results in common gradient boosted machine
= Using Logistic loss 1(yi, 9:) = yi In(1 4+ e7%) + (1 — y;) In(1 + %)
+ Will results in LogitBoost

Outline

e Review of key concepts of supervised learning

e Regression Tree and Ensemble (What are we Learning)

e Gradient Boosting (How do we Learn)

e Summary

Take Home Message for this section

e Bias-variance tradeoff is everywhere

e The loss + regularization objective pattern applies for
regression tree learning (function learning)

e \We want predictive and simple functions

e This defines what we want to learn (objective, model).

e But how do we learn it?

= Next section

So How do we Learn?

e Objective: > ", 1(yi, %i) + D) Qfw), fr € F

e We can not use methods such as SGD, to find f (since they are
trees, instead of just numerical vectors)
e Solution: Additive Training (Boosting)

= Start from constant prediction, add a new function each time

33,5” = fi(zi) = 331-(0) + fi(z;)
0 = (@) + fala) = 00V + fola)

Qi(t) — Zzzl fk(xz) — ﬁfgt_l) + ft(xz)\ New function
/

Model at training round t Keep functions added in previous round

Additive Training

e How do we decide which f to add?
= Optimize the objective!!
e The prediction at round t is 337@ = ?th—l) + ft(mi)\

This is what we need to decide in round t

Obj;)

+ N+ constant

Goal: find ft to minimize this
e Consider square loss ,
Obj) =377 | (yz — @Y+ ft(ﬂji))) + Q(f:) + const

= 2?21 t(x) + ft(CL’i)Q] + Q(f:) + const

This is usually called residual from previous round

Taylor Expansion Approximation of Loss

e Goal Obj®) =>"" 1 (yz-,ﬁg_l) + ft(ch,,)) + Q(f:) + constant

= Seems still complicated except for the case of square loss

e Take Taylor expansion of the objective
= Recall f(z+Azx) =~ f(z)+ f/(z)Az + 5 f"(x)Az?
« Define gi = 9yu—vl(y;, g Y), hy = 3§(t_1)l(yz'739(t_1))

Obj® ~ S {l(yi, @Z(t—l)) + gi fe(x:) + %hsz(xz)} + Q(f:) + constant

e [f you are not comfortable with this, think of square loss
gi = Oge-0 (7Y —)2 =2 —y;) hi =0 (yi —§TV)? =2

e Compare what we get to previous slide

Our New Goal

e Objective, with constants removed
>y |gife(xi) + shafE(x)]| + Qf)

- where ¢ = 95— l(y:, 9071), hi:ay%(t—l)l(yiag(t_l))

e Why spending s much efforts to derive the objective, why not
just grow trees ...

= Theoretical benefit: know what we are learning, convergence

= Engineering benefit, recall the elements of supervised learning
+ giand h;comes from definition of loss function
+ The learning of function only depend on the objective via g9i: and h;

+ Think of how you can separate modules of your code when you

are asked to implement boosted tree for both square loss and
logistic loss

Refine the definition of tree

e \We define tree by a vector of scores in leafs, and a leaf index
mapping function that maps an instance to a leaf

ft(:c) = Wy(z), W E RT,q :R% — {1,2,---,T}

\ The structure of the tree

N leaf weight of the tree

Define Complexity of a Tree (cont’)

e Define complexity as (this is not the only possible definition)

Q(ft) =T + %)\Z?:l w32

Number of leaves L2 norm of leaf scores

N
% N
CAD
oA
£l

Leaf 3

Q=73+ sA(4+0.01 +1)

wil=+2 w2=0.1 w3=-1

Our New Goal

e Objective, with constants removed

Soiq Lgife(@s) + shafE(@:)] + Q(f)

9i = Oge-vl(ys, 9 Y), hs = 3§(t_1>l(yz',?9(t_l))

e Define the instance setin leaf jas I; = {i|q¢(z;) = j}

= Regroup the objective by leaf

Obj)~ 3" [gifi(wi) + shafP(z:)] + Q(f)
n T
=2 iz Lgin(ﬁ?v:) T %hiwg(a:?;) +y1+)\% Zj:l wﬂz

T
= 2 j=1 _(Ziefj gi)wj + %(Ziefj hi + /\)’wﬂ +7

= This is sum of T independent quadratic function

The Structure Score

e Two facts about single variable quadratic function

. 2
argming Gr+ $Hz? =—% H >0 min, Gz + tHr? = — 1%

* Letusdefine G;=>ic; 90 Hj=3c; hi

Obj) =51 [(Sier, 000ws + $(Siey, b+ Aw?| + 7
=31 [Gywy + 5(Hj + Nwi| +4T

e Assume the structure of tree (g(x)) is fixed, the optimal

weight in each leaf, and the resulting objective value are

* _ Gy - _ 1T G
Wi = TH,+x Obj = =5 2.1 moax T L

;

This measures how good a tree structure is!

The Structure Score Calculation

Instance index

&

2 (1 /)
[0~ Y
1' “
Q T /)
3 S
4 @
5 g

gradient statistics

g1, hl

g2, h2

g3, h3

g4, h4

g5, h5

Is ={2,3,5}

G3=g2+9g3+9s
I ={1} Iy =14} Hy—= hy+ hs + he
G1=g1 G2:g4
H{ = hq Hy = hy

The smaller the score is, the better the structure is

Revisit the Objectives

e Define the instance set in leaf j as I; = {i|q(x;) = j}

e Regroup the objective by each leaf

Obj)~ 30 [gifi(xi) + shafE ()] + Q(f)
n T
=2 iz Lgiwq(wz') T %hiwg(a:?;) +y1+)\% Zj:l wﬂz

T
= 2 j=1 _(Zz‘efj gi)wj + %(Ziefj hi + /\)’wgz-] + T

e This is sum of T independent quadratic functions

The Structure Score

e Two facts about single variable quadratic function

. 2
argming Gr+ $Hz? =—% H >0 min, Gz + tHr? = — 1%

* Letusdefine G;=>ic; 90 Hj=3c; hi

Obj) =51 [(Sier, 000ws + $(Siey, b+ Aw?| + 7
=31 [Gywy + 5(Hj + Nwi| +4T

e Assume the structure of tree (g(x)) is fixed, the optimal

weight in each leaf, and the resulting objective value are

* _ Gy - _ 1T G
Wi = TH,+x Obj = =5 2.1 moax T L

;

This measures how good a tree structure is!

The Structure Score Calculation

Instance index

&

2 (1 /)
[0~ Y
1' “
Q T /)
3 S
4 @
5 g

gradient statistics

g1, hl

g2, h2

g3, h3

g4, h4

g5, h5

Is ={2,3,5}

G3=g2+9g3+9s
I ={1} Iy =14} Hy—= hy+ hs + he
G1=g1 G2:g4
H{ = hq Hy = hy

The smaller the score is, the better the structure is

Searching Algorithm for Single Tree

e Enumerate the possible tree structures q

e Calculate the structure score for the g, using the scoring eq.

.1 T G?
Obj - 2 J=1 H;+ X\ _I_P)/T

e Find the best tree structure, and use the optimal leaf weight

e But... there can be infinite possible tree structures..

Greedy Learning of the Tree

e In practice, we grow the tree greedily
= Start from tree with depth O

= For each leaf node of the tree, try to add a split. The change of

objective after adding the split is

The complexity cost by

introducing additional leaf

.17 &7 Gn (GL+Gr)*7 . —
Gain = 3lg 5 + mix — morEa N
the score of left child / the score of if we do not split

the score of right child

= Remaining question: how do we find the best split?

Efficient Finding of the Best Split

e What is the gain of a split rule ; < a ? Say z; is age

a

d =%
a D ‘@’
ee & 2

g1, hl g4, h4 g2, h2 g5,h5 g3, h3

GrL=0g1+ 9 Gr=92+93+ g5

e All we need is sum of g and h in each side, and calculate

. G G%, (GL+Gr)?
Gain = Hyp+X\ + Hr+X Hp+Hpr+X i

e Left to right linear scan over sorted instance is enough to
decide the best split along the feature

An Algorithm for Split Finding

e For each node, enumerate over all features
= For each feature, sorted the instances by feature value

= Use alinear scan to decide the best split along that feature

= Take the best split solution along all the features

e Time Complexity growing a tree of depth K

= |tis O(n d Klog n): or each level, need O(n log n) time to sort
There are d features, and we need to do it for K level

= This can be further optimized (e.g. use approximation or caching
the sorted features)

= Can scale to very large dataset

What about Categorical Variables?

e Some tree learning algorithm handles categorical variable and
continuous variable separately

= We can easily use the scoring formula we derived to score split
based on categorical variables.
e Actually it is not necessary to handle categorical separately.

= We can encode the categorical variables into numerical vector
using one-hot encoding. Allocate a #categorical length vector

{ 1 if z is in category j
Zj —

0 otherwise

= The vector will be sparse if there are lots of categories, the
learning algorithm is preferred to handle sparse data

Pruning and Regularization

e Recall the gain of split, it can be negative!

= When the training loss reduction is smaller than regularization

= Trade-off between simplicity and predictivness

e Pre-stopping
= Stop split if the best split have negative gain

= But maybe a split can benefit future splits..

e Post-Prunning

= Grow a tree to maximum depth, recursively prune all the leaf
splits with negative gain

Recap: Boosted Tree Algorithm

e Add a new tree in each iteration

e Beginning of each iteration, calculate

gi — g(t—l)l(yz’ag(t_l))a h _az(t 1) (yuy(t 1))

e Use the statistics to greedily grow a tree f:(z)

. G?
Obj = — 223 1H+)\+7T

e Add f;(z) to the model i =g+ fia)
= Usually, instead we do y(®) = y(t=Y) 4 ¢f, (x;)

= ¢ is called step-size or shrinkage, usually set around 0.1

= This means we do not do full optimization in each step and
reserve chance for future rounds, it helps prevent overfitting

Outline

e Review of key concepts of supervised learning

e Regression Tree and Ensemble (What are we Learning)

e Gradient Boosting (How do we Learn)

e Summary

Questions to check if you really get it

e How can we build a boosted tree classifier to do weighted
regression problem, such that each instance have a
importance weight?

e Back to the time series problem, if | want to learn step
functions over time. Is there other ways to learn the time
splits, other than the top down split approach?

‘&' my rate over love songs

® ¢ hmm...
s

BN an Bn B e

'._._.F

o
\ timeline
When | met my girlfriend

Questions to check if you really get it

e How can we build a boosted tree classifier to do weighted
regression problem, such that each instance have a
importance weight?

= Define objective, calculate gi, h;, feed it to the old tree learning

algorithm we have for un-weighted version
Wy i) = 30i(0; —vi)? 9= a0 — i) hi=a

= Again think of separation of model and objective, how does the
theory can help better organizing the machine learning toolkit

Questions to check if you really get it

e Time series problem

G[tOt1]=gl+g2+g3+g4 | G[tlt2]=g5+gb+g7 G[t2,t3]=g8+g9

gl g2 g3 g4 g5 g6 g7 g8 g%
o 0 0 L @ @ o———— L @ :
hi1h2 h3 h4 hS hée h7 h8 h9 timeline

H[tO,t1]=h1+h2+h3+hd

tl 2

e All that is important is the structure score of the splits
: T G2
Obj = —3 2 -1 g T

= Top-down greedy, same as trees

= Bottom-up greedy, start from individual points as each group,
greedily merge neighbors

= Dynamic programming, can find optimal solution for this case

Summary

e The separation between model, objective, parameters can be
helpful for us to understand and customize learning models

e The bias-variance trade-off applies everywhere, including
learning in functional space

Obj(0) = L(6) + Q(O)

e \We can be formal about what we learn and how we learn.

Clear understanding of theory can be used to guide cleaner
implementation.

Reference

e Greedy function approximation a gradient boosting machine. J.H. Friedman

= First paper about gradient boosting

e Stochastic Gradient Boosting. J.H. Friedman
= Introducing bagging trick to gradient boosting

e Elements of Statistical Learning. T. Hastie, R. Tibshirani and J.H. Friedman

= Contains a chapter about gradient boosted boosting

e Additive logistic regression a statistical view of boosting. J.H. Friedman T. Hastie R. Tibshirani

= Uses second-order statistics for tree splitting, which is closer to the view presented in this slide

e Learning Nonlinear Functions Using Regularized Greedy Forest. R. Johnson and T. Zhang

= Proposes to do fully corrective step, as well as regularizing the tree complexity. The reqularizing trick
is closed related to the view present in this slide

e Software implementing the model described in this slide: https://github.com/tqchen/xgboost

