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1 Flux from a monochromatic source and lumi-
nosity distance

We will consider the case of a monochromatic source located at redshift z. The
source emits N0 particles (be them photons or neutrinos) at a fixed energy E0

in a time interval ∆t. The luminosity of the source is defined as:

L′ =
E′

0N
′
0

∆t′
(1)

The flux measured by the observer has to take into account the energy redshift
and the time dilation due to the relative motion of the source:

E0 =
E′

0

1 + z
(2)

∆t = (1 + z)∆t′ (3)

The flux measured by the observer is then:

ϕ =
EdN

dAdt
=

E0N0

4πd2c ∆t
=

E′
0N

′
0

4πd2c (1 + z)2 ∆t′
(4)

Where we have assumed particle number conservation N0 = N ′
0 and dc is the

comoving distance between source and observer. We can still find a natural
relation between the luminosity in the source frame and the flux in the observer
frame by redefining the distance as luminosity distance:

dL = (1 + z)dc (5)

so that the flux can be re-defined as:

ϕ =
L′

4πd2L
(6)

2 General case

In practice, astronomical sources are rarely monochromatic, whereas observa-
tion instruments have limited bandwidth and non-flat response. In general, the
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observer measures (integrates) the source spectrum in a band [E0, E1] that cor-
responds to a band [E0(1 + z), E1(1 + z)] at the source. This shifting requires
to apply a so-called k-correction to the observed flux. In astronomy, the typical
definition of the k-correction refers to magnitudes. Consider a source observed
in a bandpass R with a magnitude mR:

mR = MQ +DM +KQR (7)

whereMQ is the source absolute magnitude in a bandpass Q (in general Q ̸= R).
The general derivation of the KQR factor is quite complicate as it depends on
the spectrum of the source and the energy-dependent (or wavelength-dependent)
instrument response function.

If we assume that the instrument response does not change dramatically
between E and (1 + z)E, we just need to account for the effect of the limited
integration interval (the shifting of the observed bandwidth w.r.t. the source
spectrum). For a generic particle energy spectrum, we write the luminosity as:

L′ =
d

dt′

∫ E1

E0

E′ dN
′

dE′ dE
′ (8)

We then need to find the relation between this luminosity and the particle
flux at Earth ( dN

dAdE dt ) when integrating an energy range [E0, E1]. We would
like to define a correction function k(E0, E1, z) so that:

L′ = k(E0, E1, z) 4πd
2
L

∫ E1

E0

Eϕ(E) dE (9)

3 Flux from a power-law spectrum

We consider a power-law spectrum with spectral index γ:

dN ′

dE′ = N0

(
E′

E0

)−γ

(10)

replacing:

L′ =
d

dt′

∫ E1

E0

E′N0

(
E′

E0

)−γ

dE′ (11)

We now consider the usual conversions between the rest frame of the source
and the observer:

t′ =
t

1 + z
; dt′ =

dt

1 + z
(12)

E′ = (1 + z)E ; dE′ = (1 + z)dE (13)
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and replace in (3):

L′ = (1 + z)
d

dt

∫ E1

E0

(1 + z)EN0

(
(1 + z)E

E0

)−γ

(1 + z) dE =

= (1 + z)3−γ d

dt

∫ E1

E0

EN0

(
E

E0

)−γ

dE =

= (1 + z)3−γ d

dt

∫
S

d

dA

(∫ E1

E0

N0E

(
E

E0

)−γ

dE

)
dA =

= (1 + z)3−γ (4πd2c)
d

dt dA

(∫ E1

E0

N0E

(
E

E0

)−γ

dE

)
. (14)

Where dc is the comoving distance separating the source and the observer. Using
the definition of luminosity distance:

dL = (1 + z)dc (15)

we can rewrite once again:

L′ = 4πd2L(1 + z)1−γ d

dt dA

∫ E1

E0

N0E

(
E

E0

)−γ

dE =

= 4πd2L(1 + z)1−γ d

dt dA

∫ E1

E0

dN

dE
dE =

= 4πd2L(1 + z)1−γ

∫ E1

E0

dN

dt dAdE
dE (16)

For the peculiar case of an unbroken power law, we find the k-correction
depends only on the redshift and not on [E0, E1].
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