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1 Flux from a monochromatic source and lumi-
nosity distance

We will consider the case of a monochromatic source located at redshift z. The
source emits Ny particles (be them photons or neutrinos) at a fixed energy Fy
in a time interval At. The luminosity of the source is defined as:
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The flux measured by the observer has to take into account the energy redshift
and the time dilation due to the relative motion of the source:
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The flux measured by the observer is then:
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Where we have assumed particle number conservation Ny = N{j and d,. is the
comoving distance between source and observer. We can still find a natural
relation between the luminosity in the source frame and the flux in the observer
frame by redefining the distance as luminosity distance:
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so that the flux can be re-defined as:
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2 General case

In practice, astronomical sources are rarely monochromatic, whereas observa-
tion instruments have limited bandwidth and non-flat response. In general, the



observer measures (integrates) the source spectrum in a band [Ey, F1] that cor-
responds to a band [Eo(1 + z), E1(1 + z)] at the source. This shifting requires
to apply a so-called k-correction to the observed flux. In astronomy, the typical
definition of the k-correction refers to magnitudes. Consider a source observed
in a bandpass R with a magnitude mg:
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where Mg, is the source absolute magnitude in a bandpass @ (in general @ # R).
The general derivation of the Kgg factor is quite complicate as it depends on
the spectrum of the source and the energy-dependent (or wavelength-dependent)
instrument response function.

If we assume that the instrument response does not change dramatically
between E and (1 + 2)E, we just need to account for the effect of the limited
integration interval (the shifting of the observed bandwidth w.r.t. the source
spectrum). For a generic particle energy spectrum, we write the luminosity as:
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We then need to find the relation between this luminosity and the particle
flux at Earth (%) when integrating an energy range [Ep, E1]. We would

like to define a correction function k(Ey, E1,z) so that:
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3 Flux from a power-law spectrum

We consider a power-law spectrum with spectral index ~:
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‘We now consider the usual conversions between the rest frame of the source
and the observer:
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and replace in (3):
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Where d.. is the comoving distance separating the source and the observer. Using
the definition of luminosity distance:

dy = (1+ 2)d, (15)

we can rewrite once again:
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For the peculiar case of an unbroken power law, we find the k-correction
depends only on the redshift and not on [Ey, F1].
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