Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with
or
.
Download ZIP
Tree: 70951bc71b
Fetching contributors…

Cannot retrieve contributors at this time

1419 lines (1178 sloc) 36.59 kB
/*
===========================================================================
Return to Castle Wolfenstein single player GPL Source Code
Copyright (C) 1999-2010 id Software LLC, a ZeniMax Media company.
This file is part of the Return to Castle Wolfenstein single player GPL Source Code (“RTCW SP Source Code”).
RTCW SP Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
RTCW SP Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with RTCW SP Source Code. If not, see <http://www.gnu.org/licenses/>.
In addition, the RTCW SP Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the RTCW SP Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#include "q_splineshared.h"
#include "splines.h"
extern "C" {
int FS_Write( const void *buffer, int len, fileHandle_t h );
int FS_ReadFile( const char *qpath, void **buffer );
void FS_FreeFile( void *buffer );
fileHandle_t FS_FOpenFileWrite( const char *filename );
void FS_FCloseFile( fileHandle_t f );
void Cbuf_AddText( const char *text );
void Cbuf_Execute( void );
}
float Q_fabs( float f ) {
int tmp = *( int * ) &f;
tmp &= 0x7FFFFFFF;
return *( float * ) &tmp;
}
// (SA) making a list of cameras so I can use
// the splines as targets for other things.
// Certainly better ways to do this, but this lets
// me get underway quickly with ents that need spline
// targets.
#define MAX_CAMERAS 64
idCameraDef camera[MAX_CAMERAS];
extern "C" {
qboolean loadCamera( int camNum, const char *name ) {
if ( camNum < 0 || camNum >= MAX_CAMERAS ) {
return qfalse;
}
camera[camNum].clear();
// TTimo static_cast confused gcc, went for C-style casting
return (qboolean)( camera[camNum].load( name ) );
}
qboolean getCameraInfo( int camNum, int time, float *origin, float *angles, float *fov ) {
idVec3 dir, org;
if ( camNum < 0 || camNum >= MAX_CAMERAS ) {
return qfalse;
}
org[0] = origin[0];
org[1] = origin[1];
org[2] = origin[2];
if ( camera[camNum].getCameraInfo( time, org, dir, fov ) ) {
origin[0] = org[0];
origin[1] = org[1];
origin[2] = org[2];
angles[1] = atan2( dir[1], dir[0] ) * 180 / 3.14159;
angles[0] = asin( dir[2] ) * 180 / 3.14159;
return qtrue;
}
return qfalse;
}
void startCamera( int camNum, int time ) {
if ( camNum < 0 || camNum >= MAX_CAMERAS ) {
return;
}
camera[camNum].startCamera( time );
}
}
//#include "../shared/windings.h"
//#include "../qcommon/qcommon.h"
//#include "../sys/sys_public.h"
//#include "../game/game_entity.h"
idCameraDef splineList;
idCameraDef *g_splineList = &splineList;
idVec3 idSplineList::zero( 0,0,0 );
void glLabeledPoint( idVec3 &color, idVec3 &point, float size, const char *label ) {
qglColor3fv( color );
qglPointSize( size );
qglBegin( GL_POINTS );
qglVertex3fv( point );
qglEnd();
idVec3 v = point;
v.x += 1;
v.y += 1;
v.z += 1;
qglRasterPos3fv( v );
qglCallLists( strlen( label ), GL_UNSIGNED_BYTE, label );
}
void glBox( idVec3 &color, idVec3 &point, float size ) {
idVec3 mins( point );
idVec3 maxs( point );
mins[0] -= size;
mins[1] += size;
mins[2] -= size;
maxs[0] += size;
maxs[1] -= size;
maxs[2] += size;
qglColor3fv( color );
qglBegin( GL_LINE_LOOP );
qglVertex3f( mins[0],mins[1],mins[2] );
qglVertex3f( maxs[0],mins[1],mins[2] );
qglVertex3f( maxs[0],maxs[1],mins[2] );
qglVertex3f( mins[0],maxs[1],mins[2] );
qglEnd();
qglBegin( GL_LINE_LOOP );
qglVertex3f( mins[0],mins[1],maxs[2] );
qglVertex3f( maxs[0],mins[1],maxs[2] );
qglVertex3f( maxs[0],maxs[1],maxs[2] );
qglVertex3f( mins[0],maxs[1],maxs[2] );
qglEnd();
qglBegin( GL_LINES );
qglVertex3f( mins[0],mins[1],mins[2] );
qglVertex3f( mins[0],mins[1],maxs[2] );
qglVertex3f( mins[0],maxs[1],maxs[2] );
qglVertex3f( mins[0],maxs[1],mins[2] );
qglVertex3f( maxs[0],mins[1],mins[2] );
qglVertex3f( maxs[0],mins[1],maxs[2] );
qglVertex3f( maxs[0],maxs[1],maxs[2] );
qglVertex3f( maxs[0],maxs[1],mins[2] );
qglEnd();
}
void splineTest() {
//g_splineList->load("p:/doom/base/maps/test_base1.camera");
}
void splineDraw() {
//g_splineList->addToRenderer();
}
//extern void D_DebugLine( const idVec3 &color, const idVec3 &start, const idVec3 &end );
void debugLine( idVec3 &color, float x, float y, float z, float x2, float y2, float z2 ) {
// idVec3 from(x, y, z);
// idVec3 to(x2, y2, z2);
//D_DebugLine(color, from, to);
}
void idSplineList::addToRenderer() {
if ( controlPoints.Num() == 0 ) {
return;
}
idVec3 mins, maxs;
idVec3 yellow( 1.0, 1.0, 0 );
idVec3 white( 1.0, 1.0, 1.0 );
int i;
for ( i = 0; i < controlPoints.Num(); i++ ) {
VectorCopy( *controlPoints[i], mins );
VectorCopy( mins, maxs );
mins[0] -= 8;
mins[1] += 8;
mins[2] -= 8;
maxs[0] += 8;
maxs[1] -= 8;
maxs[2] += 8;
debugLine( yellow, mins[0], mins[1], mins[2], maxs[0], mins[1], mins[2] );
debugLine( yellow, maxs[0], mins[1], mins[2], maxs[0], maxs[1], mins[2] );
debugLine( yellow, maxs[0], maxs[1], mins[2], mins[0], maxs[1], mins[2] );
debugLine( yellow, mins[0], maxs[1], mins[2], mins[0], mins[1], mins[2] );
debugLine( yellow, mins[0], mins[1], maxs[2], maxs[0], mins[1], maxs[2] );
debugLine( yellow, maxs[0], mins[1], maxs[2], maxs[0], maxs[1], maxs[2] );
debugLine( yellow, maxs[0], maxs[1], maxs[2], mins[0], maxs[1], maxs[2] );
debugLine( yellow, mins[0], maxs[1], maxs[2], mins[0], mins[1], maxs[2] );
}
int step = 0;
idVec3 step1;
for ( i = 3; i < controlPoints.Num(); i++ ) {
for ( float tension = 0.0f; tension < 1.001f; tension += 0.1f ) {
float x = 0;
float y = 0;
float z = 0;
for ( int j = 0; j < 4; j++ ) {
x += controlPoints[i - ( 3 - j )]->x * calcSpline( j, tension );
y += controlPoints[i - ( 3 - j )]->y * calcSpline( j, tension );
z += controlPoints[i - ( 3 - j )]->z * calcSpline( j, tension );
}
if ( step == 0 ) {
step1[0] = x;
step1[1] = y;
step1[2] = z;
step = 1;
} else {
debugLine( white, step1[0], step1[1], step1[2], x, y, z );
step = 0;
}
}
}
}
void idSplineList::buildSpline() {
//int start = Sys_Milliseconds();
clearSpline();
for ( int i = 3; i < controlPoints.Num(); i++ ) {
for ( float tension = 0.0f; tension < 1.001f; tension += granularity ) {
float x = 0;
float y = 0;
float z = 0;
for ( int j = 0; j < 4; j++ ) {
x += controlPoints[i - ( 3 - j )]->x * calcSpline( j, tension );
y += controlPoints[i - ( 3 - j )]->y * calcSpline( j, tension );
z += controlPoints[i - ( 3 - j )]->z * calcSpline( j, tension );
}
splinePoints.Append( new idVec3( x, y, z ) );
}
}
dirty = false;
//Com_Printf("Spline build took %f seconds\n", (float)(Sys_Milliseconds() - start) / 1000);
}
void idSplineList::draw( bool editMode ) {
int i;
idVec4 yellow( 1, 1, 0, 1 );
if ( controlPoints.Num() == 0 ) {
return;
}
if ( dirty ) {
buildSpline();
}
qglColor3fv( controlColor );
qglPointSize( 5 );
qglBegin( GL_POINTS );
for ( i = 0; i < controlPoints.Num(); i++ ) {
qglVertex3fv( *controlPoints[i] );
}
qglEnd();
if ( editMode ) {
for ( i = 0; i < controlPoints.Num(); i++ ) {
glBox( activeColor, *controlPoints[i], 4 );
}
}
//Draw the curve
qglColor3fv( pathColor );
qglBegin( GL_LINE_STRIP );
int count = splinePoints.Num();
for ( i = 0; i < count; i++ ) {
qglVertex3fv( *splinePoints[i] );
}
qglEnd();
if ( editMode ) {
qglColor3fv( segmentColor );
qglPointSize( 3 );
qglBegin( GL_POINTS );
for ( i = 0; i < count; i++ ) {
qglVertex3fv( *splinePoints[i] );
}
qglEnd();
}
if ( count > 0 ) {
//assert(activeSegment >=0 && activeSegment < count);
if ( activeSegment >= 0 && activeSegment < count ) {
glBox( activeColor, *splinePoints[activeSegment], 6 );
glBox( yellow, *splinePoints[activeSegment], 8 );
}
}
}
float idSplineList::totalDistance() {
// FIXME: save dist and return
//
if ( controlPoints.Num() == 0 ) {
return 0.0;
}
if ( dirty ) {
buildSpline();
}
float dist = 0.0;
idVec3 temp;
int count = splinePoints.Num();
for ( int i = 1; i < count; i++ ) {
temp = *splinePoints[i - 1];
temp -= *splinePoints[i];
dist += temp.Length();
}
return dist;
}
void idSplineList::initPosition( long bt, long totalTime ) {
if ( dirty ) {
buildSpline();
}
if ( splinePoints.Num() == 0 ) {
return;
}
baseTime = bt;
time = totalTime;
// calc distance to travel ( this will soon be broken into time segments )
splineTime.Clear();
splineTime.Append( bt );
double dist = totalDistance();
double distSoFar = 0.0;
idVec3 temp;
int count = splinePoints.Num();
//for(int i = 2; i < count - 1; i++) {
for ( int i = 1; i < count; i++ ) {
temp = *splinePoints[i - 1];
temp -= *splinePoints[i];
distSoFar += temp.Length();
double percent = distSoFar / dist;
percent *= totalTime;
splineTime.Append( percent + bt );
}
assert( splineTime.Num() == splinePoints.Num() );
activeSegment = 0;
}
float idSplineList::calcSpline( int step, float tension ) {
switch ( step ) {
case 0: return ( pow( 1 - tension, 3 ) ) / 6;
case 1: return ( 3 * pow( tension, 3 ) - 6 * pow( tension, 2 ) + 4 ) / 6;
case 2: return ( -3 * pow( tension, 3 ) + 3 * pow( tension, 2 ) + 3 * tension + 1 ) / 6;
case 3: return pow( tension, 3 ) / 6;
}
return 0.0;
}
void idSplineList::updateSelection( const idVec3 &move ) {
if ( selected ) {
dirty = true;
VectorAdd( *selected, move, *selected );
}
}
void idSplineList::setSelectedPoint( idVec3 *p ) {
if ( p ) {
p->Snap();
for ( int i = 0; i < controlPoints.Num(); i++ ) {
if ( *p == *controlPoints[i] ) {
selected = controlPoints[i];
}
}
} else {
selected = NULL;
}
}
const idVec3 *idSplineList::getPosition( long t ) {
static idVec3 interpolatedPos;
// static long lastTime = -1; // TTimo unused
int count = splineTime.Num();
if ( count == 0 ) {
return &zero;
}
// Com_Printf("Time: %d\n", t);
assert( splineTime.Num() == splinePoints.Num() );
while ( activeSegment < count ) {
if ( splineTime[activeSegment] >= t ) {
if ( activeSegment > 0 && activeSegment < count - 1 ) {
double timeHi = splineTime[activeSegment + 1];
double timeLo = splineTime[activeSegment - 1];
double percent = ( timeHi - t ) / ( timeHi - timeLo );
// pick two bounding points
idVec3 v1 = *splinePoints[activeSegment - 1];
idVec3 v2 = *splinePoints[activeSegment + 1];
v2 *= ( 1.0 - percent );
v1 *= percent;
v2 += v1;
interpolatedPos = v2;
return &interpolatedPos;
}
return splinePoints[activeSegment];
} else {
activeSegment++;
}
}
return splinePoints[count - 1];
}
void idSplineList::parse( const char *( *text ) ) {
const char *token;
//Com_MatchToken( text, "{" );
do {
token = Com_Parse( text );
if ( !token[0] ) {
break;
}
if ( !Q_stricmp( token, "}" ) ) {
break;
}
do {
// if token is not a brace, it is a key for a key/value pair
if ( !token[0] || !Q_stricmp( token, "(" ) || !Q_stricmp( token, "}" ) ) {
break;
}
Com_UngetToken();
idStr key = Com_ParseOnLine( text );
const char *token = Com_Parse( text );
if ( Q_stricmp( key.c_str(), "granularity" ) == 0 ) {
granularity = atof( token );
} else if ( Q_stricmp( key.c_str(), "name" ) == 0 ) {
name = token;
}
token = Com_Parse( text );
} while ( 1 );
if ( !Q_stricmp( token, "}" ) ) {
break;
}
Com_UngetToken();
// read the control point
idVec3 point;
Com_Parse1DMatrix( text, 3, point );
addPoint( point.x, point.y, point.z );
} while ( 1 );
//Com_UngetToken();
//Com_MatchToken( text, "}" );
dirty = true;
}
void idSplineList::write( fileHandle_t file, const char *p ) {
idStr s = va( "\t\t%s {\n", p );
FS_Write( s.c_str(), s.length(), file );
//s = va("\t\tname %s\n", name.c_str());
//FS_Write(s.c_str(), s.length(), file);
s = va( "\t\t\tgranularity %f\n", granularity );
FS_Write( s.c_str(), s.length(), file );
int count = controlPoints.Num();
for ( int i = 0; i < count; i++ ) {
s = va( "\t\t\t( %f %f %f )\n", controlPoints[i]->x, controlPoints[i]->y, controlPoints[i]->z );
FS_Write( s.c_str(), s.length(), file );
}
s = "\t\t}\n";
FS_Write( s.c_str(), s.length(), file );
}
void idCameraDef::getActiveSegmentInfo( int segment, idVec3 &origin, idVec3 &direction, float *fov ) {
#if 0
if ( !cameraSpline.validTime() ) {
buildCamera();
}
double d = (double)segment / numSegments();
getCameraInfo( d * totalTime * 1000, origin, direction, fov );
#endif
/*
if (!cameraSpline.validTime()) {
buildCamera();
}
origin = *cameraSpline.getSegmentPoint(segment);
idVec3 temp;
int numTargets = getTargetSpline()->controlPoints.Num();
int count = cameraSpline.splineTime.Num();
if (numTargets == 0) {
// follow the path
if (cameraSpline.getActiveSegment() < count - 1) {
temp = *cameraSpline.splinePoints[cameraSpline.getActiveSegment()+1];
}
} else if (numTargets == 1) {
temp = *getTargetSpline()->controlPoints[0];
} else {
temp = *getTargetSpline()->getSegmentPoint(segment);
}
temp -= origin;
temp.Normalize();
direction = temp;
*/
}
bool idCameraDef::getCameraInfo( long time, idVec3 &origin, idVec3 &direction, float *fv ) {
char buff[1024];
if ( ( time - startTime ) / 1000 > totalTime ) {
return false;
}
for ( int i = 0; i < events.Num(); i++ ) {
if ( time >= startTime + events[i]->getTime() && !events[i]->getTriggered() ) {
events[i]->setTriggered( true );
if ( events[i]->getType() == idCameraEvent::EVENT_TARGET ) {
setActiveTargetByName( events[i]->getParam() );
getActiveTarget()->start( startTime + events[i]->getTime() );
//Com_Printf("Triggered event switch to target: %s\n",events[i]->getParam());
} else if ( events[i]->getType() == idCameraEvent::EVENT_TRIGGER ) {
// empty!
} else if ( events[i]->getType() == idCameraEvent::EVENT_FOV ) {
memset( buff, 0, sizeof( buff ) );
strcpy( buff, events[i]->getParam() );
const char *param1 = strtok( buff, " \t,\0" );
const char *param2 = strtok( NULL, " \t,\0" );
float len = ( param2 ) ? atof( param2 ) : 0;
float newfov = ( param1 ) ? atof( param1 ) : 90;
fov.reset( fov.getFOV( time ), newfov, time, len );
//*fv = fov = atof(events[i]->getParam());
} else if ( events[i]->getType() == idCameraEvent::EVENT_FADEIN ) {
float time = atof( events[i]->getParam() );
Cbuf_AddText( va( "fade 0 0 0 0 %f", time ) );
Cbuf_Execute();
} else if ( events[i]->getType() == idCameraEvent::EVENT_FADEOUT ) {
float time = atof( events[i]->getParam() );
Cbuf_AddText( va( "fade 0 0 0 255 %f", time ) );
Cbuf_Execute();
} else if ( events[i]->getType() == idCameraEvent::EVENT_CAMERA ) {
memset( buff, 0, sizeof( buff ) );
strcpy( buff, events[i]->getParam() );
const char *param1 = strtok( buff, " \t,\0" );
const char *param2 = strtok( NULL, " \t,\0" );
if ( param2 ) {
loadCamera( atoi( param1 ), va( "cameras/%s.camera", param2 ) );
startCamera( time );
} else {
loadCamera( 0, va( "cameras/%s.camera", events[i]->getParam() ) );
startCamera( time );
}
return true;
} else if ( events[i]->getType() == idCameraEvent::EVENT_STOP ) {
return false;
}
}
}
origin = *cameraPosition->getPosition( time );
CHECK_NAN_VEC( origin );
*fv = fov.getFOV( time );
idVec3 temp = origin;
int numTargets = targetPositions.Num();
if ( numTargets == 0 ) {
// empty!
} else {
temp = *getActiveTarget()->getPosition( time );
}
temp -= origin;
temp.Normalize();
direction = temp;
return true;
}
bool idCameraDef::waitEvent( int index ) {
//for (int i = 0; i < events.Num(); i++) {
// if (events[i]->getSegment() == index && events[i]->getType() == idCameraEvent::EVENT_WAIT) {
// return true;
// }
//}
return false;
}
#define NUM_CCELERATION_SEGS 10
#define CELL_AMT 5
void idCameraDef::buildCamera() {
int i;
//int lastSwitch = 0; // TTimo: unused
idList<float> waits;
idList<int> targets;
totalTime = baseTime;
cameraPosition->setTime( totalTime * 1000 );
// we have a base time layout for the path and the target path
// now we need to layer on any wait or speed changes
for ( i = 0; i < events.Num(); i++ ) {
//idCameraEvent *ev = events[i]; // TTimo: unused
events[i]->setTriggered( false );
switch ( events[i]->getType() ) {
case idCameraEvent::EVENT_TARGET: {
targets.Append( i );
break;
}
case idCameraEvent::EVENT_FEATHER: {
long startTime = 0;
float speed = 0;
long loopTime = 10;
float stepGoal = cameraPosition->getBaseVelocity() / ( 1000 / loopTime );
while ( startTime <= 1000 ) {
cameraPosition->addVelocity( startTime, loopTime, speed );
speed += stepGoal;
if ( speed > cameraPosition->getBaseVelocity() ) {
speed = cameraPosition->getBaseVelocity();
}
startTime += loopTime;
}
// TTimo gcc warns: assignment to `long int' from `float'
// more efficient to do (long int)(totalTime) * 1000 - 1000
// safer to (long int)(totalTime * 1000 - 1000)
startTime = ( long int )( totalTime * 1000 - 1000 );
long endTime = startTime + 1000;
speed = cameraPosition->getBaseVelocity();
while ( startTime < endTime ) {
speed -= stepGoal;
if ( speed < 0 ) {
speed = 0;
}
cameraPosition->addVelocity( startTime, loopTime, speed );
startTime += loopTime;
}
break;
}
case idCameraEvent::EVENT_WAIT: {
waits.Append( atof( events[i]->getParam() ) );
//FIXME: this is quite hacky for Wolf E3, accel and decel needs
// do be parameter based etc..
long startTime = events[i]->getTime() - 1000;
if ( startTime < 0 ) {
startTime = 0;
}
float speed = cameraPosition->getBaseVelocity();
long loopTime = 10;
float steps = speed / ( ( events[i]->getTime() - startTime ) / loopTime );
while ( startTime <= events[i]->getTime() - loopTime ) {
cameraPosition->addVelocity( startTime, loopTime, speed );
speed -= steps;
startTime += loopTime;
}
cameraPosition->addVelocity( events[i]->getTime(), atof( events[i]->getParam() ) * 1000, 0 );
startTime = ( long int )( events[i]->getTime() + atof( events[i]->getParam() ) * 1000 );
long endTime = startTime + 1000;
speed = 0;
while ( startTime <= endTime ) {
cameraPosition->addVelocity( startTime, loopTime, speed );
speed += steps;
startTime += loopTime;
}
break;
}
case idCameraEvent::EVENT_TARGETWAIT: {
//targetWaits.Append(i);
break;
}
case idCameraEvent::EVENT_SPEED: {
/*
// take the average delay between up to the next five segments
float adjust = atof(events[i]->getParam());
int index = events[i]->getSegment();
total = 0;
count = 0;
// get total amount of time over the remainder of the segment
for (j = index; j < cameraSpline.numSegments() - 1; j++) {
total += cameraSpline.getSegmentTime(j + 1) - cameraSpline.getSegmentTime(j);
count++;
}
// multiply that by the adjustment
double newTotal = total * adjust;
// what is the difference..
newTotal -= total;
totalTime += newTotal / 1000;
// per segment difference
newTotal /= count;
int additive = newTotal;
// now propogate that difference out to each segment
for (j = index; j < cameraSpline.numSegments(); j++) {
cameraSpline.addSegmentTime(j, additive);
additive += newTotal;
}
break;
*/
default:
break;
}
}
}
for ( i = 0; i < waits.Num(); i++ ) {
totalTime += waits[i];
}
// on a new target switch, we need to take time to this point ( since last target switch )
// and allocate it across the active target, then reset time to this point
long timeSoFar = 0;
long total = ( long int )( totalTime * 1000 );
for ( i = 0; i < targets.Num(); i++ ) {
long t;
if ( i < targets.Num() - 1 ) {
t = events[targets[i + 1]]->getTime();
} else {
t = total - timeSoFar;
}
// t is how much time to use for this target
setActiveTargetByName( events[targets[i]]->getParam() );
getActiveTarget()->setTime( t );
timeSoFar += t;
}
}
void idCameraDef::startCamera( long t ) {
cameraPosition->clearVelocities();
cameraPosition->start( t );
buildCamera();
fov.reset( 90, 90, t, 0 );
//for (int i = 0; i < targetPositions.Num(); i++) {
// targetPositions[i]->
//}
startTime = t;
cameraRunning = true;
}
void idCameraDef::parse( const char *( *text ) ) {
const char *token;
do {
token = Com_Parse( text );
if ( !token[0] ) {
break;
}
if ( !Q_stricmp( token, "}" ) ) {
break;
}
if ( Q_stricmp( token, "time" ) == 0 ) {
baseTime = Com_ParseFloat( text );
} else if ( Q_stricmp( token, "camera_fixed" ) == 0 ) {
cameraPosition = new idFixedPosition();
cameraPosition->parse( text );
} else if ( Q_stricmp( token, "camera_interpolated" ) == 0 ) {
cameraPosition = new idInterpolatedPosition();
cameraPosition->parse( text );
} else if ( Q_stricmp( token, "camera_spline" ) == 0 ) {
cameraPosition = new idSplinePosition();
cameraPosition->parse( text );
} else if ( Q_stricmp( token, "target_fixed" ) == 0 ) {
idFixedPosition *pos = new idFixedPosition();
pos->parse( text );
targetPositions.Append( pos );
} else if ( Q_stricmp( token, "target_interpolated" ) == 0 ) {
idInterpolatedPosition *pos = new idInterpolatedPosition();
pos->parse( text );
targetPositions.Append( pos );
} else if ( Q_stricmp( token, "target_spline" ) == 0 ) {
idSplinePosition *pos = new idSplinePosition();
pos->parse( text );
targetPositions.Append( pos );
} else if ( Q_stricmp( token, "fov" ) == 0 ) {
fov.parse( text );
} else if ( Q_stricmp( token, "event" ) == 0 ) {
idCameraEvent *event = new idCameraEvent();
event->parse( text );
addEvent( event );
}
} while ( 1 );
if ( !cameraPosition ) {
Com_Printf( "no camera position specified\n" );
// prevent a crash later on
cameraPosition = new idFixedPosition();
}
Com_UngetToken();
Com_MatchToken( text, "}" );
}
bool idCameraDef::load( const char *filename ) {
char *buf;
const char *buf_p;
// TTimo: unused (int length = FS_ReadFile( filename, (void **)&buf );)
FS_ReadFile( filename, (void **)&buf );
if ( !buf ) {
return false;
}
clear();
Com_BeginParseSession( filename );
buf_p = buf;
parse( &buf_p );
Com_EndParseSession();
FS_FreeFile( buf );
return true;
}
void idCameraDef::save( const char *filename ) {
fileHandle_t file = FS_FOpenFileWrite( filename );
if ( file ) {
int i;
idStr s = "cameraPathDef { \n";
FS_Write( s.c_str(), s.length(), file );
s = va( "\ttime %f\n", baseTime );
FS_Write( s.c_str(), s.length(), file );
cameraPosition->write( file, va( "camera_%s",cameraPosition->typeStr() ) );
for ( i = 0; i < numTargets(); i++ ) {
targetPositions[i]->write( file, va( "target_%s", targetPositions[i]->typeStr() ) );
}
for ( i = 0; i < events.Num(); i++ ) {
events[i]->write( file, "event" );
}
fov.write( file, "fov" );
s = "}\n";
FS_Write( s.c_str(), s.length(), file );
}
FS_FCloseFile( file );
}
int idCameraDef::sortEvents( const void *p1, const void *p2 ) {
idCameraEvent *ev1 = ( idCameraEvent* )( p1 );
idCameraEvent *ev2 = ( idCameraEvent* )( p2 );
if ( ev1->getTime() > ev2->getTime() ) {
return -1;
}
if ( ev1->getTime() < ev2->getTime() ) {
return 1;
}
return 0;
}
void idCameraDef::addEvent( idCameraEvent *event ) {
events.Append( event );
//events.Sort(&sortEvents);
}
void idCameraDef::addEvent( idCameraEvent::eventType t, const char *param, long time ) {
addEvent( new idCameraEvent( t, param, time ) );
buildCamera();
}
const char *idCameraEvent::eventStr[] = {
"NA",
"WAIT",
"TARGETWAIT",
"SPEED",
"TARGET",
"SNAPTARGET",
"FOV",
"CMD",
"TRIGGER",
"STOP",
"CAMERA",
"FADEOUT",
"FADEIN",
"FEATHER"
};
void idCameraEvent::parse( const char *( *text ) ) {
const char *token;
Com_MatchToken( text, "{" );
do {
token = Com_Parse( text );
if ( !token[0] ) {
break;
}
if ( !strcmp( token, "}" ) ) {
break;
}
// here we may have to jump over brush epairs ( only used in editor )
do {
// if token is not a brace, it is a key for a key/value pair
if ( !token[0] || !strcmp( token, "(" ) || !strcmp( token, "}" ) ) {
break;
}
Com_UngetToken();
idStr key = Com_ParseOnLine( text );
const char *token = Com_Parse( text );
if ( Q_stricmp( key.c_str(), "type" ) == 0 ) {
type = static_cast<idCameraEvent::eventType>( atoi( token ) );
} else if ( Q_stricmp( key.c_str(), "param" ) == 0 ) {
paramStr = token;
} else if ( Q_stricmp( key.c_str(), "time" ) == 0 ) {
time = atoi( token );
}
token = Com_Parse( text );
} while ( 1 );
if ( !strcmp( token, "}" ) ) {
break;
}
} while ( 1 );
Com_UngetToken();
Com_MatchToken( text, "}" );
}
void idCameraEvent::write( fileHandle_t file, const char *name ) {
idStr s = va( "\t%s {\n", name );
FS_Write( s.c_str(), s.length(), file );
s = va( "\t\ttype %d\n", static_cast<int>( type ) );
FS_Write( s.c_str(), s.length(), file );
s = va( "\t\tparam \"%s\"\n", paramStr.c_str() );
FS_Write( s.c_str(), s.length(), file );
s = va( "\t\ttime %d\n", time );
FS_Write( s.c_str(), s.length(), file );
s = "\t}\n";
FS_Write( s.c_str(), s.length(), file );
}
const char *idCameraPosition::positionStr[] = {
"Fixed",
"Interpolated",
"Spline",
};
const idVec3 *idInterpolatedPosition::getPosition( long t ) {
static idVec3 interpolatedPos;
float percent = 0.0;
float velocity = getVelocity( t );
float timePassed = t - lastTime;
lastTime = t;
// convert to seconds
timePassed /= 1000;
float distToTravel = timePassed * velocity;
idVec3 temp = startPos;
temp -= endPos;
float distance = temp.Length();
distSoFar += distToTravel;
// TTimo
// show_bug.cgi?id=409
// avoid NaN on fixed cameras
if ( distance != 0.0 ) { //DAJ added to protect DBZ
percent = (float)( distSoFar ) / distance;
}
if ( percent > 1.0 ) {
percent = 1.0;
} else if ( percent < 0.0 ) {
percent = 0.0;
}
// the following line does a straigt calc on percentage of time
// float percent = (float)(startTime + time - t) / time;
idVec3 v1 = startPos;
idVec3 v2 = endPos;
v1 *= ( 1.0 - percent );
v2 *= percent;
v1 += v2;
interpolatedPos = v1;
return &interpolatedPos;
}
void idCameraFOV::parse( const char *( *text ) ) {
const char *token;
Com_MatchToken( text, "{" );
do {
token = Com_Parse( text );
if ( !token[0] ) {
break;
}
if ( !strcmp( token, "}" ) ) {
break;
}
// here we may have to jump over brush epairs ( only used in editor )
do {
// if token is not a brace, it is a key for a key/value pair
if ( !token[0] || !strcmp( token, "(" ) || !strcmp( token, "}" ) ) {
break;
}
Com_UngetToken();
idStr key = Com_ParseOnLine( text );
const char *token = Com_Parse( text );
if ( Q_stricmp( key.c_str(), "fov" ) == 0 ) {
fov = atof( token );
} else if ( Q_stricmp( key.c_str(), "startFOV" ) == 0 ) {
startFOV = atof( token );
} else if ( Q_stricmp( key.c_str(), "endFOV" ) == 0 ) {
endFOV = atof( token );
} else if ( Q_stricmp( key.c_str(), "time" ) == 0 ) {
time = atoi( token );
}
token = Com_Parse( text );
} while ( 1 );
if ( !strcmp( token, "}" ) ) {
break;
}
} while ( 1 );
Com_UngetToken();
Com_MatchToken( text, "}" );
}
bool idCameraPosition::parseToken( const char *key, const char *( *text ) ) {
const char *token = Com_Parse( text );
if ( Q_stricmp( key, "time" ) == 0 ) {
time = atol( token );
return true;
} else if ( Q_stricmp( key, "type" ) == 0 ) {
type = static_cast<idCameraPosition::positionType>( atoi( token ) );
return true;
} else if ( Q_stricmp( key, "velocity" ) == 0 ) {
long t = atol( token );
token = Com_Parse( text );
long d = atol( token );
token = Com_Parse( text );
float s = atof( token );
addVelocity( t, d, s );
return true;
} else if ( Q_stricmp( key, "baseVelocity" ) == 0 ) {
baseVelocity = atof( token );
return true;
} else if ( Q_stricmp( key, "name" ) == 0 ) {
name = token;
return true;
} else if ( Q_stricmp( key, "time" ) == 0 ) {
time = atoi( token );
return true;
}
Com_UngetToken();
return false;
}
void idFixedPosition::parse( const char *( *text ) ) {
const char *token;
Com_MatchToken( text, "{" );
do {
token = Com_Parse( text );
if ( !token[0] ) {
break;
}
if ( !strcmp( token, "}" ) ) {
break;
}
// here we may have to jump over brush epairs ( only used in editor )
do {
// if token is not a brace, it is a key for a key/value pair
if ( !token[0] || !strcmp( token, "(" ) || !strcmp( token, "}" ) ) {
break;
}
Com_UngetToken();
idStr key = Com_ParseOnLine( text );
const char *token = Com_Parse( text );
if ( Q_stricmp( key.c_str(), "pos" ) == 0 ) {
Com_UngetToken();
Com_Parse1DMatrix( text, 3, pos );
} else {
Com_UngetToken();
idCameraPosition::parseToken( key.c_str(), text );
}
token = Com_Parse( text );
} while ( 1 );
if ( !strcmp( token, "}" ) ) {
break;
}
} while ( 1 );
Com_UngetToken();
Com_MatchToken( text, "}" );
}
void idInterpolatedPosition::parse( const char *( *text ) ) {
const char *token;
Com_MatchToken( text, "{" );
do {
token = Com_Parse( text );
if ( !token[0] ) {
break;
}
if ( !strcmp( token, "}" ) ) {
break;
}
// here we may have to jump over brush epairs ( only used in editor )
do {
// if token is not a brace, it is a key for a key/value pair
if ( !token[0] || !strcmp( token, "(" ) || !strcmp( token, "}" ) ) {
break;
}
Com_UngetToken();
idStr key = Com_ParseOnLine( text );
const char *token = Com_Parse( text );
if ( Q_stricmp( key.c_str(), "startPos" ) == 0 ) {
Com_UngetToken();
Com_Parse1DMatrix( text, 3, startPos );
} else if ( Q_stricmp( key.c_str(), "endPos" ) == 0 ) {
Com_UngetToken();
Com_Parse1DMatrix( text, 3, endPos );
} else {
Com_UngetToken();
idCameraPosition::parseToken( key.c_str(), text );
}
token = Com_Parse( text );
} while ( 1 );
if ( !strcmp( token, "}" ) ) {
break;
}
} while ( 1 );
Com_UngetToken();
Com_MatchToken( text, "}" );
}
void idSplinePosition::parse( const char *( *text ) ) {
const char *token;
Com_MatchToken( text, "{" );
do {
token = Com_Parse( text );
if ( !token[0] ) {
break;
}
if ( !strcmp( token, "}" ) ) {
break;
}
// here we may have to jump over brush epairs ( only used in editor )
do {
// if token is not a brace, it is a key for a key/value pair
if ( !token[0] || !strcmp( token, "(" ) || !strcmp( token, "}" ) ) {
break;
}
Com_UngetToken();
idStr key = Com_ParseOnLine( text );
const char *token = Com_Parse( text );
if ( Q_stricmp( key.c_str(), "target" ) == 0 ) {
target.parse( text );
} else {
Com_UngetToken();
idCameraPosition::parseToken( key.c_str(), text );
}
token = Com_Parse( text );
} while ( 1 );
if ( !strcmp( token, "}" ) ) {
break;
}
} while ( 1 );
Com_UngetToken();
Com_MatchToken( text, "}" );
}
void idCameraFOV::write( fileHandle_t file, const char *p ) {
idStr s = va( "\t%s {\n", p );
FS_Write( s.c_str(), s.length(), file );
s = va( "\t\tfov %f\n", fov );
FS_Write( s.c_str(), s.length(), file );
s = va( "\t\tstartFOV %f\n", startFOV );
FS_Write( s.c_str(), s.length(), file );
s = va( "\t\tendFOV %f\n", endFOV );
FS_Write( s.c_str(), s.length(), file );
s = va( "\t\ttime %i\n", time );
FS_Write( s.c_str(), s.length(), file );
s = "\t}\n";
FS_Write( s.c_str(), s.length(), file );
}
void idCameraPosition::write( fileHandle_t file, const char *p ) {
idStr s = va( "\t\ttime %i\n", time );
FS_Write( s.c_str(), s.length(), file );
s = va( "\t\ttype %i\n", static_cast<int>( type ) );
FS_Write( s.c_str(), s.length(), file );
s = va( "\t\tname %s\n", name.c_str() );
FS_Write( s.c_str(), s.length(), file );
s = va( "\t\tbaseVelocity %f\n", baseVelocity );
FS_Write( s.c_str(), s.length(), file );
for ( int i = 0; i < velocities.Num(); i++ ) {
s = va( "\t\tvelocity %i %i %f\n", velocities[i]->startTime, velocities[i]->time, velocities[i]->speed );
FS_Write( s.c_str(), s.length(), file );
}
}
void idFixedPosition::write( fileHandle_t file, const char *p ) {
idStr s = va( "\t%s {\n", p );
FS_Write( s.c_str(), s.length(), file );
idCameraPosition::write( file, p );
s = va( "\t\tpos ( %f %f %f )\n", pos.x, pos.y, pos.z );
FS_Write( s.c_str(), s.length(), file );
s = "\t}\n";
FS_Write( s.c_str(), s.length(), file );
}
void idInterpolatedPosition::write( fileHandle_t file, const char *p ) {
idStr s = va( "\t%s {\n", p );
FS_Write( s.c_str(), s.length(), file );
idCameraPosition::write( file, p );
s = va( "\t\tstartPos ( %f %f %f )\n", startPos.x, startPos.y, startPos.z );
FS_Write( s.c_str(), s.length(), file );
s = va( "\t\tendPos ( %f %f %f )\n", endPos.x, endPos.y, endPos.z );
FS_Write( s.c_str(), s.length(), file );
s = "\t}\n";
FS_Write( s.c_str(), s.length(), file );
}
void idSplinePosition::write( fileHandle_t file, const char *p ) {
idStr s = va( "\t%s {\n", p );
FS_Write( s.c_str(), s.length(), file );
idCameraPosition::write( file, p );
target.write( file, "target" );
s = "\t}\n";
FS_Write( s.c_str(), s.length(), file );
}
void idCameraDef::addTarget( const char *name, idCameraPosition::positionType type ) {
// TTimo: unused
//const char *text = (name == NULL) ? va("target0%d", numTargets()+1) : name;
idCameraPosition *pos = newFromType( type );
if ( pos ) {
pos->setName( name );
targetPositions.Append( pos );
activeTarget = numTargets() - 1;
if ( activeTarget == 0 ) {
// first one
addEvent( idCameraEvent::EVENT_TARGET, name, 0 );
}
}
}
const idVec3 *idSplinePosition::getPosition( long t ) {
static idVec3 interpolatedPos;
float velocity = getVelocity( t );
float timePassed = t - lastTime;
lastTime = t;
// convert to seconds
timePassed /= 1000;
float distToTravel = timePassed * velocity;
distSoFar += distToTravel;
double tempDistance = target.totalDistance();
double percent = (double)( distSoFar ) / tempDistance;
double targetDistance = percent * tempDistance;
tempDistance = 0;
double lastDistance1,lastDistance2;
lastDistance1 = lastDistance2 = 0;
//FIXME: calc distances on spline build
idVec3 temp;
int count = target.numSegments();
// TTimo fixed MSVCism
int i;
for ( i = 1; i < count; i++ ) {
temp = *target.getSegmentPoint( i - 1 );
temp -= *target.getSegmentPoint( i );
tempDistance += temp.Length();
if ( i & 1 ) {
lastDistance1 = tempDistance;
} else {
lastDistance2 = tempDistance;
}
if ( tempDistance >= targetDistance ) {
break;
}
}
if ( i >= count - 1 ) {
interpolatedPos = *target.getSegmentPoint( i - 1 );
} else {
#if 0
double timeHi = target.getSegmentTime( i + 1 );
double timeLo = target.getSegmentTime( i - 1 );
double percent = ( timeHi - t ) / ( timeHi - timeLo );
idVec3 v1 = *target.getSegmentPoint( i - 1 );
idVec3 v2 = *target.getSegmentPoint( i + 1 );
v2 *= ( 1.0 - percent );
v1 *= percent;
v2 += v1;
interpolatedPos = v2;
#else
if ( lastDistance1 > lastDistance2 ) {
double d = lastDistance2;
lastDistance2 = lastDistance1;
lastDistance1 = d;
}
idVec3 v1 = *target.getSegmentPoint( i - 1 );
idVec3 v2 = *target.getSegmentPoint( i );
double percent = ( lastDistance2 - targetDistance ) / ( lastDistance2 - lastDistance1 );
v2 *= ( 1.0 - percent );
v1 *= percent;
v2 += v1;
interpolatedPos = v2;
#endif
}
return &interpolatedPos;
}
Jump to Line
Something went wrong with that request. Please try again.