
Appendix 2

Numerical Methods

Here we give additional details about well-known numerical methods

which are commonly-used in conjunction with finite element codes.

2.1 The ✓-Method

The ✓-method is a standard technique for time-discretization of sys-

tems of first-order ODEs. While it is not usually considered “adaptive” in

the strictest sense, in practice we can choose the parameter ✓ dynamically to

achieve additional “stability” (implicit Euler, ✓ = 1), or conversely additional

accuracy (Crank-Nicolson, ✓ = 1/2). (While all of the implicit ✓-methods are

unconditionally “A
0

” stable, the Crank-Nicolson method lacks so-called “L
0

”

stability, and is known to su↵er from the phenomenon of “ringing” (as is well-

described in the reference work by Smith [192]) in cases where the boundary

and initial conditions do not coincide. This tendency for unwanted oscillations

to grow in size is exacerbated by decreasing the spatial grid size h — clearly

an undesirable property on adaptively-refined grids.

While the ✓-method (or any of the subsidiary methods derivable from
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the ✓-method) is typically derived for standard systems of ODEs in the form

U̇ = f(U , t) (B-2.1)

where U is an N ⇥ 1 vector of unknowns and f : RN ⇥ R ! RN is a given

function. In the course of studying systems of nonlinear natural convection

PDEs discretized by the finite element method in space, it is actually much

more common to deal with systems of ODEs of the form

M (U )U̇ = f(U , t) (B-2.2)

where M is the so-called “mass matrix,” which may depend on the unknown

U (as in some stabilized schemes) and may not be invertible due to the pres-

ence of time-independent constraint equations, such as e.g. the incompress-

ibility constraint. Obviously if M is constant and formally invertible then

Eqn. (B-2.2) can be rewritten in the same form as Eqn. (B-2.1) and the usual

techniques can be applied. Here, we focus entirely on deriving methods for

the non-constant mass matrix case of Eqn. (B-2.2).

To motivate the ✓-method, we consider time interval n, for which

t 2 [t
n

, t
n+1

] and for which t
n+1

= t
n

+�t defines the timestep �t. Assuming

U is smooth enough in this time interval, we can expand U in independent

Taylor series about t
n

and t
n+1

as

U

n+1 = U

n +�tU̇
n

+
�t2

2
Ü

n

+O(�t3) (B-2.3)

U

n = U

n+1 ��tU̇
n+1

+
�t2

2
Ü

n+1

+O(�t3) (B-2.4)
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The explicit (resp. implicit) Euler method is obtained from Eqn. (B-2.3) (resp.

Eqn. (B-2.4)) by dropping terms of O(�t3) and higher, and substituting for U̇

from Eqn. (B-2.1) or (B-2.2). In the first-order case, the mass matrix inverse

is used formally during this substitution step, but is subsequently “multiplied

out” in the final step so that it does not appear in the final scheme. For

completeness, we give the explicit and implicit Euler schemes for Eqn. (B-2.2)

here

Explicit: M (Un)

✓
U

n+1 �U

n

�t

◆
= f(Un, t

n

) +O(�t) (B-2.5)

Implicit: M

�
U

n+1

�✓
U

n+1 �U

n

�t

◆
= f(Un+1, t

n+1

) +O(�t) (B-2.6)

The ✓-method is derived for the constant mass matrix case by observ-

ing that an advantageous cancellation of the Taylor series truncation error is

obtained when selecting a particular linear combination of Eqns. (B-2.3) and

(B-2.4). A similar procedure is possible in the non-constant mass matrix case

as well, but additional requirements on M are necessary to ensure that the re-

sulting method will indeed be second-order. For simplicity, letMn := M (Un)

and f

n := f(Un, t
n

). Then, by multiplying Eqn. (B-2.3) by (1 � ✓)Mn and

Eqn. (B-2.4) by �✓Mn+1 and adding them together, we obtain

�
(1� ✓)Mn + ✓Mn+1

�✓
U

n+1 �U

n

�t

◆
= (1� ✓)fn + ✓fn+1

+ T.E. (B-2.7)
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where the truncation error has the particular form

T.E. := �t

✓
(1� ✓)

2
M

n � ✓

2
M

n+1

◆
Ü

n+1

+O(�t)

�
(B-2.8)

Unlike the constant mass matrix case, setting ✓ = 1/2 (the Crank-Nicolson

scheme) is not su�cient to obtain a second-order accurate method in time

unless we can also show that

M

n+1 = (1 +O(�t))Mn (B-2.9)

For the nonlinear natural convection problems of interest here, the restriction

of Eqn. (B-2.9) will obviously be satisfied for any constant mass matrix (or

even mass matrices with zero blocks, as in the case of unstabilized Rayleigh-

Bénard-Marangoni flows and double-di↵usive convection in porous media.)

It is more di�cult to analyze the mass matrices which arise due to

nonlinear stabilization terms. In general, the stabilization parameter ⌧ can

depend on the unknown U in a highly-nonlinear way, and these e↵ects must

be analyzed on a case-by-case basis. We note that these considerations on

M in no way a↵ect the accuracy of the first-order schemes, and so one must

carefully justify the expense of assembling the additional right-hand side terms

for the Crank-Nicolson method by showing (either analytically or by numerical

experimentation) that the resulting scheme is truly second-order accurate.

A variation on the preceding scheme is obtained by considering Taylor

series not about the end points t 2 [t
n

, t
n+1

] of the time interval, but instead

about a somewhat arbitrary intermediate time

t
✓

:= ✓t
n+1

+ (1� ✓) t
n

(B-2.10)
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Figure B-2.1: Definition of the intermediate value U

✓.

where 0  ✓  1 as before. By assuming the solution dependence is linear

between the two endpoint values (see Fig. B-2.1) it follows that the solution

at time t
✓

is given by

U

✓ := ✓Un+1 + (1� ✓)Un (B-2.11)

The selection of t
✓

in this manner splits the full timestep �t up into two parts

of size ✓�t and (1 � ✓)�t, as shown in the figure. We may now once again

construct two Taylor series expansions of U , this time both will be centered

about the U

✓ solution.

U

n+1 = U

✓ + (1� ✓)�tU̇
✓

+
(1� ✓)2�t2

2
Ü

✓

+O(�t3) (B-2.12)

U

n = U

✓ � ✓ �tU̇
✓

+
✓2�t2

2
Ü

✓

+O(�t3) (B-2.13)

Subtracting Eqn. (B-2.13) from Eqn. (B-2.12) we find

U

n+1 �U

n = �tU̇
✓

+
�t2

2
(1� 2✓)Ü

✓

+O(�t3) (B-2.14)
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Finally, multiplying Eqn. (B-2.14) through by 1

�t

M

✓

, and substituting

M

✓

U̇

✓

= f(U ✓, t
✓

) (B-2.15)

from the original ODE of Eqn. (B-2.2), we obtain

M

✓

✓
U

n+1 �U

n

�t

◆
= f(U ✓, t

✓

) + (1� 2✓)O(�t) +O(�t2) (B-2.16)

Clearly, the method is second-order accurate in time only for the specific choice

of ✓ = 1/2, the truncation error here having a much simpler form than for

Eqn. (B-2.8). This would appear to be the more useful of the two schemes,

especially for problems with nonlinear mass matrices.

2.2 Step-Doubling Methods

An interesting aspect of “step-doubling” methods is that they do not

depend on a particular underlying timestepping scheme (such as in the case

of predictor-corrector methods like ABTR) and they do not require larger

“stencils” i.e. more saved old solutions, which some predictors require in order

to maintain a reasonable level of accuracy.

Step-doubling methods have been used with some success with ex-

plicit Runge-Kutta methods (see §16.2 of the Numerical Recipes book [159],

or Gear’s book [83]) where they are sometimes called RK45 methods. Step-

doubling methods are particularly e�cient in this case due to their ability to di-

rectly reuse computed information e↵ectively. In this work, we have employed

step-doubling primarily in the context of an underlying implicit (first-order)
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