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Motivation

Numerical solution of transport equation prone to spurious
oscillations and negativities in regions of discontinuities
and sharp gradients:
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Objective and Plan

The Objective is to obtain a solution to the transport
equation that

uses CFEM - not a traditional discretization for transport,
but recent efforts have used CFEM for shock
hydrodynamics
is non-negative
is free of spurious oscillations
has high-order accuracy (2nd order)

The Plan is the following:
Use a low-order, monotone, non-negative scheme in
conjunction with a high-order scheme via the
flux-corrected transport (FCT) algorithm to produce a
high-order, non-negative scheme

monotonicity not guaranteed but demonstrated for most
cases
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Problem Formulation

Model transport equation:

1

v

∂ψ

∂t
+ Ω · ∇ψ(x, t) + Σ(x)ψ(x, t) = q(x, t) (1)

Σ(x) ≥ 0, q(x, t) ≥ 0

Define problem:

ψ(x, 0) = ψ0(x) ∀x ∈ D (2)

ψ(x, t) = ψinc(x) ∀x ∈ ∂Dinc (3)

CFEM solution:

ψh(x, t) =
N∑
j=1

Uj(t)ϕj(x), ϕj(x) ∈ P1
h (4)
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Temporal Discretization

Fully explicit temporal schemes used here:
Forward Euler (FE)
Explicit Strong Stability Preserving Runge-Kutta methods,
which can be expressed as a number of FE steps

Forward Euler scheme:

MC Un+1 −Un

∆t
+ AUn = bn (5)

MC
i ,j ≡

∫
Si,j

ϕi (x)ϕj(x)dx (6)

Ai ,j ≡ v

∫
Si,j

(Ω · ∇ϕj(x) + Σ(x)ϕj(x))ϕi (x)dx (7)

bni ≡ v

∫
Si

q(x, tn)ϕi (x)dx (8)
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Low-Order Scheme
Definition

Lump mass matrix and add artificial viscosity:

ML UL,n+1 −Un

∆t
+ (A + DL)Un = bn (9)

DL
i ,j =

∑
K⊂Si,j

νLKbK (ϕj , ϕi ) (10)

bK (ϕj , ϕi ) ≡


− 1

nK−1 |K | i 6= j , i , j ∈ I(K )

|K | i = j , i , j ∈ I(K )
0 i /∈ I(K ) | j /∈ I(K )

(11)

νLK ≡ max
i 6=j∈I(K)

max(0,Ai ,j)

−
∑

T⊂Si,j
bT (ϕj , ϕi )

(12)
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Low-Order Scheme
Properties

These definitions make (A + DL) an M-matrix, which has
the following desirable consequences for the low-order
solution UL,n+1:

monotonicity
non-negativity
satisfaction of a discrete maximum principle (DMP):

W−
i (Un) ≤ UL,n+1

i ≤W+
i (Un) ∀i (13)

W±
i (Un) ≡ Un

max
min,i

1− ∆t

mi

∑
j

AL
i,j

+
∆t

mi
bni (14)

Undesirable consequence: first-order accuracy
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Low-Order Scheme
Results Example
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High-Order Scheme
Definition

Add high-order artificial viscosity:

MC UH,n+1 −Un

∆t
+ (A + DH,n)Un = bn (15)

DH,n
i ,j =

∑
K⊂Si,j

νH,n
K bK (ϕj , ϕi ) (16)

νH,n
K = min(νLK , ν

E ,n
K ) (17)

The entropy-based artificial viscosity νE ,n
K is proportional

to local “entropy” production.
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High-Order Scheme
Entropy Viscosity Definition

One chooses a convex entropy function E (ψ) such as
E (ψ) = 1

2ψ
2 and manipulates the transport equation to

get an entropy residual:

RK (ψ) =

∥∥∥∥∂E∂t +
dE

dψ
(Ω · ∇ψ + σψ − q)

∥∥∥∥
L∞(K)

(18)

Entropy-based artificial viscosity is proportional to an
entropy residual Rn

K (ψh):

νE ,n
K =

cER
n
K (ψh) + cJ max

F∈∂K
JF (ψn

h)

‖E (ψn
h)− Ē (ψn

h)‖L∞(D)
(19)
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High-Order Scheme
Results Example
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Flux Corrected Transport (FCT) Scheme
Introduction

Initially developed in 1973 for finite difference
discretizations of transport/conservation law problems and
recently applied to finite element method

Works by adding conservative fluxes to satisfy physical
bounds on the solution

Employs low-order scheme and high-order scheme

Defines a correction, or antidiffusion, flux, which when
added to the low-order scheme, produces the high-order
scheme

Limits this correction flux to enforce the physical bounds
imposed



Introduction

Motivation

Objective and
Plan

Methodology

Problem
Formulation

Temporal
Discretization

Low-Order
Scheme

High-Order
Scheme

FCT Scheme

Results

Conclusions

13/ 21

Flux Corrected Transport (FCT) Scheme
Correction Flux Definition

Define a correction flux f:

f Def.: ML UH,n+1 −Un

∆t
+ (A + DL)Un = bn + fn

Low-order: ML UL,n+1 −Un

∆t
+ (A + DL)Un = bn

High-order: MC UH,n+1 −Un

∆t
+ (A + DH,n)Un = bn

Thus f is

fn ≡ −(MC −ML)
UH,n+1 −Un

∆t
+ (DL −DH,n)Un (20)
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Flux Corrected Transport (FCT) Scheme
FCT Overview

Decompose f into internodal fluxes Fi ,j : fi =
∑
j
Fi ,j :

Fi ,j = −MC
i ,j

(
dUj

dt

H,n+1

− dUi

dt

H,n+1
)

+ (DL
i ,j − DH

i ,j)(Un
j − Un

i ) (21)

The FCT scheme limits these fluxes with a limiter L:

ML Un+1 −Un

∆t
+ ALUn = b + L[F] (22)

The limiter L enforces the discrete maximum principle:

W−
i (Un) ≤ Un+1

i ≤W+
i (Un) ∀i (23)
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Flux Corrected Transport (FCT) Scheme
Limiting Coefficient Definition

Each correction flux Fi ,j has an associated limiting
coefficient Li ,j : L[F]i =

∑
j
Li ,jFi ,j :

P+
i ≡

∑
j

max(0,Fi ,j) P−i ≡
∑
j

min(0,Fi ,j) (24)

Q±i ≡ mi
W±

i − Un
i

∆t
+
∑
j

AL
i ,jU

n
j − bi (25)

R±i ≡

{
1 P±i = 0

min
(

1,
Q±i
P±i

)
P±i 6= 0

(26)

Li ,j ≡
{

min(R+
i ,R

−
j ) Fi ,j ≥ 0

min(R−i ,R
+
j ) Fi ,j < 0

(27)
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Flux Corrected Transport (FCT) Scheme
Results Example
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Results
Source Problem Results
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Results
Smooth Problem Convergence Results (Using FE)
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Results
Non-smooth Problem Convergence Results (Using SSPRK33)
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Conclusions

guaranteed non-negative, DMP-satisfying scheme

monotonicity for problems tested, but not guaranteed

theoretical convergence rates observed

future work:

implicit time discretizations
steady-state
more complicated physics
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