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Motivation

Introduction

m Numerical solution of transport equation prone to spurious
oscillations and negativities in regions of discontinuities Wittty
and sharp gradients:
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Objective and Plan

Introduction

m The Objective is to obtain a solution to the transport
equation that Methodology
m uses CFEM - not a traditional discretization for transport,
but recent efforts have used CFEM for shock
hydrodynamics
B is non-negative
m is free of spurious oscillations Results
m has high-order accuracy (2nd order) AN

m The Plan is the following:

m Use a low-order, monotone, non-negative scheme in
conjunction with a high-order scheme via the
flux-corrected transport (FCT) algorithm to produce a
high-order, non-negative scheme

B monotonicity not guaranteed but demonstrated for most
cases



Problem Formulation

Introduction

m Model transport equation:
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m Define problem:
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m CFEM solution:
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Temporal Discretization

m Fully explicit temporal schemes used here:
m Forward Euler (FE)

m Explicit Strong Stability Preserving Runge-Kutta methods,

which can be expressed as a number of FE steps
m Forward Euler scheme:
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Low-Order Scheme

Definition

Introduction

m Lump mass matrix and add artificial viscosity:
Methodology
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Low-Order Scheme

Properties

Introduction

m These definitions make (A + DL) an M-matrix, which has Methodology
the following desirable consequences for the low-order
solution UL+
® monotonicity
B non-negativity
m satisfaction of a discrete maximum principle (DMP):

Results
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m Undesirable consequence: first-order accuracy



Low-Order Scheme

Results Example
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High-Order Scheme

Definition

Introduction

Methodology

m Add high-order artificial viscosity:
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m The entropy-based artificial viscosity yﬁ’" is proportional
to local “entropy” production.



High-Order Scheme

Entropy Viscosity Definition

Introduction

m One chooses a convex entropy function E(1)) such as
E(y) = %zﬁ and manipulates the transport equation to
get an entropy residual:

Methodology
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m Entropy-based artificial viscosity is proportional to an
entropy residual Rg(vp):
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High-Order Scheme

Results Example

Introduction
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Flux Corrected Transport (FCT) Scheme AT*

Introduction

Introduction

m Initially developed in 1973 for finite difference Methodology
discretizations of transport/conservation law problems and
recently applied to finite element method

m Works by adding conservative fluxes to satisfy physical
bounds on the solution

Results

m Employs low-order scheme and high-order scheme

Conclusions

m Defines a correction, or antidiffusion, flux, which when
added to the low-order scheme, produces the high-order
scheme

m Limits this correction flux to enforce the physical bounds
imposed



Flux Corrected Transport (FCT) Scheme - I| y
Correction Flux Definition p ( ) A M

Introduction

m Define a correction flux f: o
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Low-order: MLT +(A+DHU"=b"
UH,H+1 . Un Resu\ts.
High-order: MCT + (A+D""U” =b” Conclusions
m Thusfis

UH,n+1 —uy”

f1= (M€ — ML
( N

+ (D" —D"mu” (20)



Flux Corrected Transport (FCT) Scheme

FCT Overview

Introduction

m Decompose f into internodal fluxes F;j: fi =" F;;:
Jj
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m The FCT scheme limits these fluxes with a limiter £:
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m The limiter £ enforces the discrete maximum principle:
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Flux Corrected Transport (FCT) Scheme

Limiting Coefficient Definition

Introduction
m Each correction flux F;; has an associated limiting
coefficient ﬁ,"j: ﬁ[F],' = E E,‘JF;J'
Jj

Methodology
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Flux Corrected Transport (FCT) Scheme

Results Example

Introduction
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Results

Source Problem Results
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Results

Smooth Problem ce Results (Using FE)

Introduction
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Results

Non-smooth Problem Convergence Results (Using SSPRK33)
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Conclusions

Introduction

Methodology

m guaranteed non-negative, DMP-satisfying scheme
m monotonicity for problems tested, but not guaranteed

m theoretical convergence rates observed
Results

m future work:

m implicit time discretizations
m steady-state
m more complicated physics
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