
The ComputeFullJacobianThread calls ONLY the computeOffDiagJacobian method, so you need to handle the computeJacobian when on the diagonal-

The ComputeJacobianThread calls ONLY the computeJacobian method, but some methods will ALSO provide coupling parts between its multiple primary variables-

In SHORT:

Kernel
For Kernel, there is one primary variable, and for solid mechanics the other variables happen as off diagonal
Assembly method for Jacobian (ComputeJacobianThread, computeJacobian) and for Full Jacobian (ComputeFullJacobianThread)

Field-Field Field-Scalar Field-Other_field Field-Other_scalar

Scalar-Field Scalar-Scalar Scalar-Other_field Scalar-Other_scalar

The green methods were added in the KernelScalarBase; others already are in existence
For AD Kernel, the scalar method is blank but could be added back in derived classes; otherwise handles all the same parts as regular

Integrated BC
For Integrated BC, the lower variable is treated as off diagonal, and so assembly happens in 4 groups for the full Jacobian (ComputeFullJacobianThread) or the two diagonal blocks for
Jacobian only (ComputeJacobianThread, computeFaceJacobian)

Primary-Primary Primary-Lower Primary-Scalar Primary-Other_field Primary-Other_scalar

Lower-Primary Lower-Lower Lower-Scalar Lower-Other_field Lower-Other_scalar

Scalar-Primary Scalar-Lower Scalar-Scalar Scalar-Other_field Scalar-Other_scalar

The orange are not yet given and would be needed for a scalar IBC and a scalar I Lower BC
The BC assembly does have a scalar connection already
For AD Kernel, the scalar method is blank but could be added back in derived classes; otherwise handles all the same parts as regular

Interface Kernel
For Interface Kernel, the element and neighbor are treated as both primary variables of that object, so there is a (ComputeJacobianThread, computeInternalInterFaceJacobian) call and
a ComputeFullJacobianThread call to

 const auto & ce = _fe_problem.couplingEntries(_tid);
 for (const auto & it : ce)
 {
 MooseVariableFieldBase & ivariable = *(it.first);
 MooseVariableFieldBase & jvariable = *(it.second);

 if (ivariable.isFV())
 continue;

 unsigned int ivar = ivariable.number(); (row-variable number)
 unsigned int jvar = jvariable.number(); (column-variable number)

 if (interface_kernel->variable().number() == ivar)
 interface_kernel->computeElementOffDiagJacobian(jvar);

 if (interface_kernel->neighborVariable().number() == ivar)
 interface_kernel->computeNeighborOffDiagJacobian(jvar);

Then internally, it checks if you are an interface variable or not:
InterfaceKernelTempl<T>
 bool is_jvar_not_interface_var = true;
 if (jvar == _var.number())
 {
 computeElemNeighJacobian(Moose::ElementElement);
 is_jvar_not_interface_var = false;
 }
 if (jvar == _neighbor_var.number())
 {
 computeElemNeighJacobian(Moose::ElementNeighbor);
 is_jvar_not_interface_var = false;
 }

 if (is_jvar_not_interface_var)
 {
 computeOffDiagElemNeighJacobian(Moose::ElementElement, jvar);
 computeOffDiagElemNeighJacobian(Moose::ElementNeighbor, jvar);
 }

For Jacobian, just call its computeJacobian and the scalar one

_var, on the interface (Element or Neighbor, handled inside by calling computeElementOffDiagJacobian(jvar) or computeNeighborOffDiagJacobian(jvar) respectively, i.e. have 2
method calls, since ivar is LOCAL) along with a field-to-scalar for the Element and Neighbor); field-field and scalar-field

-

_kappa_var, do nothing since not a field variable-

Jvar, a different variable (Element or Neighbor, handled inside by calling computeElementOffDiagJacobian(jvar) or computeNeighborOffDiagJacobian(jvar) respectively, i.e. have
2 method calls, since ivar is LOCAL) along with a field-to-scalar for jvar, which if jvar is on both sides (likely for CZM), then you also want to pass Element and Neighbor); field-

-

So: THIS one can get set up like the Kernel is for off diagonal Jac *-to-field, where you are either:

220922 Plan for assembly and scalar wrapping objects
Thursday, September 22, 2022 6:36 PM

 HeatDiffusionMRDG Page 1

2 method calls, since ivar is LOCAL) along with a field-to-scalar for jvar, which if jvar is on both sides (likely for CZM), then you also want to pass Element and Neighbor); field-
other_field and scalar-other_field

_var, do nothing since handled above-

_kappa_var, then add an Element, Neighbor, and Scalar contribution; field-scalar and scalar-scalar-

Jvar, a different scalar (these don't have a concept of element or neighbor side); add an Element, Neighbor, and Scalar contribution; field-other_scalar and scalar-other_scalar-

And you implement off diagonal scalar (*-to-scalar) with similar ideas, treating Element and Neighbor as a unit

To provide the overall matrix:

Element-Element Element-Neighbor Element-Scalar Element-Other_Element Element-Other_Neighbor Element-Other_scalar

Neighbor-Element Neighbor-Neighbor Neighbor-Scalar Neighbor-Other_Element Neighbor-Other_Neighbor Neighbor-Other_scalar

Scalar-Element Scalar-Neighbor Scalar-Scalar Scalar-Other_Element Scalar-Other_Neighbor Scalar-Other_scalar

The orange are not yet given and would be needed for a scalar Interface Kernel
The yellow are missing methods that are NOT in the code at all yet
AD version integrates the same features as IK, handles same parts

DG Kernel
For DG, I don't know what scalar would need to be connected to it yet… but nothing is in place yet
It is like IK, it treats all variables as primary, so a Jacobian call is to all 4:
void
DGKernelBase::computeJacobian()
{
 if (!excludeBoundary())
 {
 precalculateJacobian();

 // Compute element-element Jacobian
 computeElemNeighJacobian(Moose::ElementElement);

 // Compute element-neighbor Jacobian
 computeElemNeighJacobian(Moose::ElementNeighbor);

 // Compute neighbor-element Jacobian
 computeElemNeighJacobian(Moose::NeighborElement);

 // Compute neighbor-neighbor Jacobian
 computeElemNeighJacobian(Moose::NeighborNeighbor);
 }
}
So does the off diagonal variable, the jvar is assumed to be on Element and Neighbor sides

Element-Element Element-Neighbor Element-Scalar Element-Other_Element Element-Other_Neighbor Element-Other_scalar

Neighbor-Element Neighbor-Neighbor Neighbor-Scalar Neighbor-Other_Element Neighbor-Other_Neighbor Neighbor-Other_scalar

Scalar-Element Scalar-Neighbor Scalar-Scalar Scalar-Other_Element Scalar-Other_Neighbor Scalar-Other_scalar

The orange are not yet given and would be needed for a scalar DG Kernel
The yellow are missing methods that are NOT in the code at all yet
AD version is the same as the regular DG, handles same parts
So basically, the same as IK…
Well, it should look like this then:
For Jacobian, just call its computeJacobian (which gets all 4) and the scalar one

_var, on the interface (Element and Neighbor, handled inside by calling computeJacobian, i.e. have 1 method call which gets all 4) along with a field-to-scalar for the Element and
Neighbor); field-field and scalar-field

-

_kappa_var, do nothing since not a field variable-

Jvar, a different variable (Element or Neighbor, handled inside by calling computeOffDiagJacobian, i.e. have 1 method call which gets all 4) along with a field-to-scalar for jvar,
which if jvar is on both sides (likely for CZM), then you also want to pass Element and Neighbor); field-other_field and scalar-other_field

-

So: THIS one can get set up like the Kernel is for off diagonal Jac *-to-field, where you are either:

_var, do nothing since handled above-

_kappa_var, then add an Element, Neighbor, and Scalar contribution; field-scalar and scalar-scalar-

If there IS supposed to be a scalar on both sides, THAT is just a constant DG function because EVERY element would have its o wn scalar…○

So probably, this is like the temperature of the whole model on average, which evolves in time somehow○

Jvar, a different scalar (these don't have a concept of element or neighbor side); add an Element, Neighbor, and Scalar contribution; field-other_scalar and scalar-other_scalar-

And you implement off diagonal scalar (*-to-scalar) with similar ideas, treating Element and Neighbor as a unit

For lower DG, then the Jacobian case has E-N and N-E but only L-L part. The full Jacobian call will all 9.
So, basically like IBC lower: the LOWER is an OTHER variable type that is considered owned by this element

Element-Element Element-Neighbor Element-Lower Element-Scalar Element-Other_Element Element-Other_Neighbor Element-Other_Lower Element-Other_scalar

Neighbor-Element Neighbor-Neighbor Neighbor-Lower Neighbor-Scalar Neighbor-Other_Element Neighbor-Other_Neighbor Neighbor-Other_Lower Neighbor-Other_scalar

Lower-Element Lower-Neighbor Lower-Lower Lower-Scalar Lower-Other_Element Lower-Other_Neighbor Lower-Other_Lower Neighbor-Other_scalar

Scalar-Element Scalar-Neighbor Scalar-Lower Scalar-Scalar Scalar-Other_Element Scalar-Other_Neighbor Scalar-Other_Lower Scalar-Other_scalar

For Jacobian, just call its computeJacobian (which gets all 5) and the scalar one
The yellow are missing methods that are NOT in the code at all yet
No AD version of this exists yet

_var or _lower, on the interface (Element and Neighbor, handled inside by calling computeOffDiagJacobian, i.e. have 1 method call which gets all 9) along with a field-to-scalar
for the Element and Neighbor); field-field and scalar-field

-

_lower-

_kappa_var, do nothing since not a field variable-

So: THIS one can get set up like the Kernel is for off diagonal Jac *-to-field, where you are either:

 HeatDiffusionMRDG Page 2

_kappa_var, do nothing since not a field variable-

Jvar, a different variable (Element or Neighbor, handled inside by calling computeOffDiagJacobian, i.e. have 1 method call which gets all 4) along with a field-to-scalar for jvar,
which if jvar is on both sides (likely for CZM), then you also want to pass Element and Neighbor); field-other_field and scalar-other_field

-

_var, do nothing since handled above-

_lower, do nothing since handled above-

_kappa_var, then add an Element, Neighbor, and Scalar contribution; field-scalar and scalar-scalar-

If there IS supposed to be a scalar on both sides, THAT is just a constant DG function because EVERY element would have its o wn scalar…○

So probably, this is like the temperature of the whole model on average, which evolves in time somehow○

Jvar, a different scalar (these don't have a concept of element or neighbor side); add an Element, Neighbor, and Scalar contribution; field-other_scalar and scalar-other_scalar-

And you implement off diagonal scalar (*-to-scalar) with similar ideas, treating Element and Neighbor as a unit

The mortar case is like DG and IK, but doesn't seem to have any OTHER variables yet; recall Element = Secondary and Neighbor = Primary

Element-Element Element-Neighbor Element-Lower Element-Scalar Element-Other_Element Element-Other_Neighbor Element-Other_Lower Element-Other_scalar

Neighbor-Element Neighbor-Neighbor Neighbor-Lower Neighbor-Scalar Neighbor-Other_Element Neighbor-Other_Neighbor Neighbor-Other_Lower Neighbor-Other_scalar

Lower-Element Lower-Neighbor Lower-Lower Lower-Scalar Lower-Other_Element Lower-Other_Neighbor Lower-Other_Lower Neighbor-Other_scalar

Scalar-Element Scalar-Neighbor Scalar-Lower Scalar-Scalar Scalar-Other_Element Scalar-Other_Neighbor Scalar-Other_Lower Scalar-Other_scalar

The AD mortar objects DO handle the other variable couplings, and this happens in the computeJacobian call; so the whole K contribution is ALWAYS provided
So, the tagging system should cover those variables naturally as well, and we could add that into the non-AD version in the computeJacobian routine
The yellow are missing methods that are NOT in the code at all yet
The orange are not yet given and would be needed for a scalar Mortar constraint
I would need to hear from MOOSE guys whether following the idea of LowerDG or the idea of IK (i.e. how primary is the lower variable) would be the approach for adding off diagonal
field and off diagonal scalar. Since the AD objects assemble off diagonal variables for all problems (no Jacobian or Full Jacobian distinction), then likely the non-AD version should be
taken for how to do the off diagonal field

 HeatDiffusionMRDG Page 3

