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1 Introduction

RAVEN [1] [2] [3] [4] is a software framework that allows the user to perform parametric and
stochastic analysis based on the response of complex system codes. The initial development
was designed to provide dynamic probabilistic risk analysis capabilities (DPRA) to the thermal-
hydraulic code RELAP-7 [5], currently under development at Idaho National Laboratory (INL).
Now, RAVEN is not only a framework to perform DPRA but it is a multi-purpose stochastic and
uncertainty quantification platform, capable of communicating with any system code.

This report serves as a theoretical manual for selected algorithms implemented within the
RAVEN framework. It is intended to provide some theorectical treatments of the selected al-
gorithms in the areas of sensitivity and uncertainty analysis, reduced order modeling, statistical
analysus, data mining and DPRA that can help the user to understand the theory behind the key
concepts.
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2 RAVEN Mathematical Background

2.1 System and Control Model

The first step is the derivation of the mathematical model representing, with a high level of abstrac-
tion, the plant and control system model. Let θ (t) be a vector describing the system status in the
phase space, characterized by the following governing equation:

∂θ

∂t
= H

(
θ (t) , t

)
(1)

In Equation above, the assumption of time differentiability of the trajectory equation H
(
θ (t) , t

)
in the phase space has been taken. This assumption is not fully correct and generally required and
it is used here, without missing of generality, for compactness of the notation.
It can now be performed an arbitrary decomposition of the phase space:

θ =

(
x

v

)
(2)

The decomposition is made in such a way that x represent the unknowns solved by a system code
(such as RELAP5-3D [6], RELAP7 [5], etc.) while v are the variables directly controlled by the
control system (e.g., automatic mitigation systems, operator actions, etc.).
The governing equation can be now cast in the following system of equations:{

∂x
∂t

= F (x, v, t)
∂v
∂t

= V (x, v, t)
(3)

Consequentially to this splitting, x contains the state variables of the phase space that are con-
tinuous while v contains discrete state variables that are usually handled by the control system
(consequentially, named control variables). It can be noticed that the function V (x, v, t), repre-
senting the control system, does not depend on the knowledge of the complete status of the system
but on a restricted subset that can be named monitored variables C:


∂x
∂t

= F (x, v, t)
C = G(x, t)

∂v
∂t

= V (x, v, t)

(4)

where C is a vector of smaller dimensionality than x and, therefore, more convenient to handle.
As it can be noticed, the standard nomenclature of signals (monitored variables) and status (control
variables) is not adopted. Two principal reasons justify this decision:

• The definition of signals is tight to the definition of the control logic for each component
and, therefore, relative rather than absolute in the overall system analysis. For example, it
is possible the the signals for a component represent status of another one, determining an
in-unique definition.
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• The standard nomenclature becomes meaningless when this derivation is applied to Uncer-
tainty Quantification (UQ).

2.1.1 Splitting Approach for the Simulation of the Control System

Equation 4 represents a fully coupled system of Partial Differential Equations (PDEs). To solve
this system, an operator splitting approach is employed. This method is preferable in this context
for several reasons, among which the following:

• In reality, the control system (automatic mitigation systems, operator actions, etc.) is always
characterized by an intrinsic delay

• The reaction of the control system might make the system “move” among different discrete
states; therefore, numerical errors will be always of first order unless the discontinuity is
explicitly treated.

Employing the operator splitting approach, Equation 4 can be cast as follows:
∂x
∂t

= F
(
x, vti−1

, t
)

C = G(x, t) ti−1 ≤ t ≤ ti = ti−1 + ∆ti
∂v
∂t

= V
(
x, vti−1

, t
) (5)

Hence, the system of equations in solved decomposing it into simpler sub-problems that are treated
individually using specialized numerical algorithms.

2.1.2 Definition of the Monitored Variable Space

The contraction of the information from the x space to the C space is a crucial step. Since C
represents an arbitrary middle step, it is needed to define a set of rules that make this choice
unique. C is chosen such that:

• The solution of ∂v
∂t

∣∣ = V
(
x, vti−1

, t
)

can be carried along without any knowledge of the
solution algorithm of ∂x

∂t
=
∣∣F (x, vti−1

, t
)
. This requirement determines the minimum in-

formation contraction from x to C.

• All actions represented by C = G(x, t) require knowledge of the solution algorithm of
∂x
∂t

=
∣∣F (x, vti−1

, t
)
. This requirement determines the maximum information contraction

from x to C.

The intersection of the two sub-spaces defined above create a minimal unique set.
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2.1.3 Definition of the Auxiliary Variable Space

In the previous sections, it has been determined that the needed information to model the dynamic
system is contained in the solution vectors x and v. Even if x and v are sufficient to assess the
system status at every point in time, it can result in an unpractical way to model the eventual
control system. Let’s suppose to model a component of a particular system that presents different
behavior depending on other systems or operation behaviors. In order to define the status of this
component in every point in time, the whole history of the system needs to be tracked. In order to
remove these inefficiency, a set of auxiliary variables a can be introduced. These variables are the
ones that in the analysis of stochastic dynamics are artificially added into the phase space to a non-
Markovian system to obtain back a Markovian behavior. In this way only the previous time-step
information is needed to determine the status of the system.
Adding this additional system of variables, Equation 5 can be casted as follows:


∂x
∂t

= F
(
x, vti−1

, t
)

C = G(x, t) ti−1 ≤ t ≤ ti = ti−1 + ∆ti
∂a
∂t

= A
(
x,C, a, vti−1

, t
)

∂v
∂t

= V
(
C, a, vti−1

, t
) (6)

2.2 Dynamic Systems Stochastic Modeling

2.2.1 General system of equations and variable classification

In Section 2.1, the derivation of the governing equations for a controllable system have been
reported. In this section, the mathematical framework of the modeling of dynamic stochastic sys-
tems, under uncertainties, is derived.
Dynamic stochastic systems are the ones whose dynamic is characterized by intrinsic randomness.
Random behaviors, although present in nature, are often artificially introduced into physical mod-
els to account for the incapability of fully modeling part of the nature of the system behavior and/or
of the phenomena bounding the physical problem.
The distinction between variables that are artificially considered aleatory and the ones intrinsically
aleatory corresponds with the classical definition of epistemic and aleatory uncertainties. From a
system simulation point of view it is more relevant how these variables, the sources of aleatory
behavior, change in time. Possible examples of random elements are:

• random variability of parameters (e.g., uncertainty in physical parameters)

• presence of noise (background noise due to intrinsically stochastic behaviors or lack of detail
in the simulation)
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• Uncertainty in the initial and boundary conditions

• Random failure of components

• aging effects.

Before introducing the mathematical models for uncertainty, it can beneficial to recall Equation 1,
adding the initial conditions: {

∂θ(t)
∂t

= H
(
θ (t) , t

)
θ (t0) = θ0

(7)

At this point, each source of uncertainty or stochastic behavior is considered and progressively
added in Equation 7. For the scope of this derivation, it is convenient to split the phase space
into continuous (e.g.,temperature, pressure, hentalpy, etc.) and discrete (e.g.,status of components,
such as operational and failure states) variables as follows:

• θ
c ∈ Φ ⊆ RC , the set of continuous variables

• θ
d ∈ Ψ ⊆ ND, the set of discrete variables

• θ(t) = θ
c ⊕ θd.

Consequentially, Equation 7 assumes the following form:

∂θ
c
(t)

∂t
= f

(
θ
c
, θ
d
, t
)

∂θ
d
(t)

∂t
= g

(
θ
c
, θ
d
, t
)

θ
c
(t0) = θ

c

0

θ
d

(t0) = θ
d

0

(8)

Note that the time derivative operator has been also used for the time discontinuous variables,
even if this is allowed only introducing complex extension of the time derivative operator. In this
context, the ∂

∂t
on the discontinuous space is employed for simplifying the notation only.

2.2.2 Probabilistic Nature of the Parameters Characterizing the Equation

As shown in Equation 9, The first stochastic behaviors to be introduced are the uncertainties
associated with the:

• initial conditions (i.e. θ
c

and θ
d

at time t0), and

• parameters characteristic of f
(
θ
c
, θ
d
, t
)

and g
(
θ
c
, θ
d
, t
)

.
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

∂θ
c
(t)

∂t
= f

(
θ
c
, θ
d
, αstaz, t

)
∂θ
d
(t)

∂t
= g

(
θ
c
, θ
d
, αstaz, t

)
Π
(
θ
c
, t0

)
∼ pdf

(
θ
c

0|, σ2
c

)
Π
(
θ
d
, t0

)
∼ pdf

(
θ
d

0|, σ2
d

)
αstaz (t) = αstaz (t0) ∼ pdf (α0

staz|, σ2
staz)

(9)

In Equation 9, Π
(
θ
c
, t0

)
indicates the probability distribution of θ

c
at the initial time t = t0 while

pdf (µ|, σ2) represents a generic probability distribution function having mean value µ and sigma
σ.The term αstaz is the vector of parameters affected by uncertainty but not varying over time.
As already mentioned, Equation 9 considers uncertainties whose values do not change during the
dynamic evolution of the system. This set of uncertainties accounts for most of the common source
of aleatory behaviors. Examples of this kind of uncertainties are:

• Uncertainty associated with the heat conduction coefficient: This value is known (but uncer-
tain) and has no physical reason to change during the simulation;

• Uncertainty on failure temperature for a pipe: This value is usually characterized by a prob-
ability distribution function but once the value has been set (like through random sampling)
it will not change during the simulation.

From a modeling perspective, all the probabilistic behaviors connected to Π
(
θ
c
, t0

)
, Π
(
θ
d
, t0

)
and αstaz(t) can be modeled without changing the dimensionality of the phase space (hence, no
alteration of the solution algorithm is required), simply performing sampling of the input space. In
addition, the Markovian assumption is still preserved.

2.2.3 Variables Subject to Random Motion

The next aleatory component to be accounted for is the set of parameters that continuously change
over time (i.e. αbrow). In other words, these parameters are referred as if they behave like a
Brownian motion. While what commonly is indicated as Brownian motion has not impact at the
character the space and time scales (characteristic of a physical system), there are parameters that
have (or appear to have) such behavior. The Brownian motion characteristic of some variables can
be completely synthetic, due to the lack of modeling details in the simulation model.
For instance, two examples of these randomly varying variables are:

• Cumulative damage growth in material. Experimental data and models representing this
phenomenon show large uncertainties. There is also an intrinsic natural stochasticity driving
the accumulation of the damage (natural Brownian motion);
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• Heat conductivity in the fuel gap during heating of fuel. During some transients there are
situations where the fuel is in contact with the clad while in others where there is the presence
of a gap. While in nature this is a discontinuous transition, it is not usually possible to
model in such a way, especially if vibrations of the fuel lead to high frequency oscillations.
In this case, it would be helpful to introduce directly into the simulation a random noise
characterizing the thermal conductivity when these transitions occur (synthetic Brownian
motion).

The system of Equations 9 can be rewritten in the following form:



∂θ
c
(t)

∂t
= f

(
θ
c
, θ
d
, αstaz, αbrow, t

)
∂θ
d
(t)

∂t
= g

(
θ
c
, θ
d
, αstaz, αbrow, t

)
∂αbrow
∂t

= b
(
θ
c
, θ
d
, αstaz, αbrow, t

)
Γ (t)

Π
(
θ
c
, t0

)
∼ pdf

(
θ
c

0|, σ2
c

)
Π
(
θ
d
, t0

)
∼ pdf

(
θ
d

0|, σ2
d

)
αstaz (t) = αstaz (t0) ∼ pdf (α0

staz|, σ2
staz)

αbrow (t0) ∼ α0
browΓ (t0)

(10)

where Γ (t) is 0-mean random noise and αbrow is the set of parameters subject to Brownian motion.
Clearly, the equation referring to the time change of the parameters subject to the Brownian motion
should be interpreted in the Ito sense [C. Gardiner, Stochastic Methods, Springer (2009)].

2.2.4 Discontinuously and Stochastically varying variables

The last and probably most difficult step is the introduction of parameters that are neither constant
during the simulation nor continuously vary over time. As an example, consider a valve that,
provided set of operating conditions, opens or closes. If this set of conditions is reached n times
during the simulation, the probability of the valve correctly operating should be sampled n times.
It is also foreseeable that the history of failure/success of the valve will impact future probability
of failure/success. In this case the time evolution of such parameters (discontinuously stochastic
changing parameters αDS) is governed by the following equation:

∂αDS (t)

∂t
= δ

(
αDS, θ

c
, θ
d
, αstaz, αbrow, t

)
×V

(
αDS, θ

c
, θ
d
, αstaz, αbrow, t

)
×p
(∫ t

t0

S
(
θ
(
t
′
)
, t
′
)
dt
′
)

(11)
where:
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• The function δ
(
αDS, θ

c
, θ
d
, αstaz, αbrow, t

)
is the delta of Dirac of the instant on which the

transition need to be evaluated (control logic signaling to the valve to open/close).

• The term p
(∫ t

t0
S
(
θ
(
t
′)
, t
′))

= p
(∫ t

t0
αDS, θ

c
, θ
d
, αstaz, αbrow, tdt

)
represents the transi-

tion probability between different states (in case of the valve: open/close). Note that the time
integral of the parameter history accounts for the memory of the component via the kernel
S
(
θ
(
t
′)
, t
′).

• The term V
(
αDS, θ

c
, θ
d
, αstaz, αbrow, t

)
is the rate of change of αDS . For a discrete param-

eter, it is defined as the value of the instantaneous αDS change.

The introduction of the history dependency introduced in the term p determines that the system
cannot be considered Markovian if “countermeasures” are not taken. In order to make the system
return to be Markovian, the phase space needs to be expanded (i.e., increase its dimensionality):
the time at which the parameters changed status and their corresponding values {(αDS, t)i} =
{αDS, ti} = αDS, t (for i = 1, ..., n).
Equation 11 now assumes the form:

∂αDS(t)
∂t

= δ
(
αDS, θ

c
, θ
d
, αstaz, αbrow, t

)
× V

(
αDS, θ

c
, θ
d
, αstaz, αbrow, t

)
× p

(
αDS, t, θ

c
, θ
d
, αstaz, αbrow, t

)
for t ≥ tn

(12)
This formulation introduces a phase space that is continuously growing over time n→∞. In this
respect, it is useful to introduce and discuss possible assumptions:

1. The memory of the past is not affected by the time distance; in this case:

p
(
αDS, t, θ

c
, θ
d
, αstaz, αbrow, t

)
= p

(
αDS, θ

c
, θ
d
, αstaz, αbrow, t

)
(13)

The dimensionality of the phase space is still growing during the simulation since more and
more sampling is performed, but the time integral is removed from the transition probability.
A simple example of this situation is a component activated on demand in which failure is a
function of all previous sampling, but not of when the component was sampled or in which
sequence the outcome occurred.

2. The number of samples is determined before the simulation itself takes place (e.g.,n times)
In this case the different αDSi could be treated explicitly as αstaz while t would still re-
main a variable to be added to the phase space (if simplification 1 is not valid) but of fixed
dimension. In this case t still needs to be computed and its expression is:

t (t) =

∫ t

t0

t δ
(
αDS, θ

c
, θ
d
, αstaz, αbrow, t

)
dt (14)
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The transition probability becomes:

p

(∫ t

t0

dt S
(
t
)
, αDS, θ

c
, θ
d
, αstaz, αbrow, t

)
(15)

For example, this is the case of a component that is sampled a fixed number of times for
a given simulation while the contribution of the history to the transition probability might
decay exponentially over time. This approximation might eliminate the memory from the
system by adding n variables to the phase space ti (for i = 1, ..., n) thus restoring the
Markovian characteristic.

3. Another possible approximation alternative to the previous one is that the memory of the sys-
tem (here explicitly represented by

∫ t
t0
αDSdt) is limited only to a fixed number of steps back

in the past. In this case n is always bounded. Therefore, adding {αDSi , ti} , (for i = 1, ..., n)
would possibly preserve the system Markovian properties of the system. This approxima-
tion allows for eliminating the memory from the system by expanding the phase space 2n
variables. From a software implementation point of view, this is the most complex situation
since without any simplification we would have to deal with a system that is never reducible
to a Markovian one and therefore forced to use the whole history of the system to forecast
its evolution at each time step.

Assumption 1 limits this cost by restraining it to the set of values assumed by the variable but would
still lead to very difficult to deal with situation. Assumption 2 would require an expansion of phase
space to introduce the time at which the transitions happens but the value that the parameter will
assume at each sampling could be treated as initial condition. Assumption 3 would instead require
the expansion of the phase space for both the time and the values of the transitioning variables.
Based on the this simplifications, the system of Equations 10, accounting also for αDS can be cast
into the form:

∂θ
c
(t)

∂t
= f

(
θ
c
, θ
d
, αstaz, αbrow, t

)
∂θ
d
(t)

∂t
= g

(
θ
c
, θ
d
, αstaz, αbrow, t

)
∂αbrow
∂t

= b
(
θ
c
, θ
d
, αstaz, αbrow, t

)
Γ (t)

∂αDS(t)
∂t

= δ
(
αDS, θ

c
, θ
d
, αstaz, αbrow, t

)
× V

(
αDS, θ

c
, θ
d
, αstaz, αbrow, t

)
×

×p
(∫ t

t0
dt αDS, θ

c
, θ
d
, αstaz, αbrow, t

)
Π
(
θ
c
, t0

)
∼ pdf

(
θ
c

0|, σ2
c

)
Π
(
θ
d
, t0

)
∼ pdf

(
θ
d

0|, σ2
d

)
αstaz (t) = αstaz (t0) ∼ pdf (α0

staz|, σ2
staz)

αbrow (t0) ∼ α0
browΓ (t0)

αDS (t0) = α0
DS

(16)
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Introducing the Simplifications 1 and 3 ( the most appropriated in this context), Equation 16
becomes:

∂θ
c
(t)

∂t
= f

(
θ
c
, θ
d
, αstaz, αbrow, t

)
∂θ
d
(t)

∂t
= g

(
θ
c
, θ
d
, αstaz, αbrow, t

)
∂αbrow
∂t

= b
(
θ
c
, θ
d
, αstaz, αbrow, t

)
Γ (t)

∂αDS(t)
∂t

= δ
(
αDS, θ

c
, θ
d
, αstaz, αbrow, t

)
× V

(
αDS, θ

c
, θ
d
, αstaz, αbrow, t

)
×

×p
(
αDS, θ

c
, θ
d
, αstaz, αbrow, t

)
Π
(
θ
c
, t0

)
∼ pdf

(
θ
c

0|, σ2
c

)
Π
(
θ
d
, t0

)
∼ pdf

(
θ
d

0|, σ2
d

)
αstaz (t) = αstaz (t0) ∼ pdf (α0

staz|, σ2
staz)

αbrow (t0) ∼ α0
browΓ (t0)

αDS (t0) = α0
DS

(17)

This dissertation does not cover all the possible phenomena, but it provides a sufficient mathemat-
ical framework for extrapolating toward cases that are not explicitly treated.
Given the presence of all these sources of stochastic behaviors, every exploration of the uncertain-
ties (through sampling strategies) only represents a possible trajectory of the system in the phase
space. Hence, it is much more informative the assessment of the probability of a particular re-
sponse, rather than the response itself.
The explanation of these concepts is demanded to next section.

2.3 Formulation of the equation set in a statistical framework

Based on the premises reported in the previous sections and assuming that at least one of the sim-
plifications mentioned in Section 2.2.1 is applicable (i.e. the system can be casted as Markovian),
it is needed to investigate the system evolution in terms of its probability density function in the
global phase space θ via the Chapman-Kolmogorov equation [7].
The integral form of the Chapman-Kolmogorov is the following:

Π
(
θ3, t3|θ1, t1

)
=
∫
dθ2Π

(
θ2, t2|θ1, t1

)
Π
(
θ3, t3|θ2, t2

)
where t1 < t2 < t3 (18)

while its differential form is:

∂Π
(
θ, t|θ0, t0

)
∂t

= LCK
(
Π
(
θ, t|θ0, t0

))
(19)

The transition from the integral to the differential form is possible under the following assumptions:

lim
∆t→0

1

∆t

∫
|θ2−θ1|<ε

Π
(
θ2, t+ ∆t|θ1, t

)
dθ2 = 0 (20)
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lim
∆t→0

1

∆t
Π
(
θ2, t+ ∆t|θ1, t

)
= W

(
θ2|θ1, t

)
(21)

lim
∆t→0

1

∆t

∫
|θ2−θ1|<ε

(
θ2,i − θ1,i

)
Π
(
θ2, t+ ∆t|θ1, t

)
dθ2 = Ai

(
θ1, t

)
+O (ε) (22)

lim
∆t→0

1

∆t

∫
|θ2−θ1|<ε

(
θ2,i − θ1,i

) (
θ2,j − θ1,j

)
Π
(
θ2, t+ ∆t|θ1, t

)
dθ2 = Bi,j

(
θ1, t

)
+O (ε) (23)

The first condition guarantees the continuity of Π
(
θ, t|θ0, t0

)
, while the other three force the

finite existence of three parameters. Equation 25 can be furthermore decomposed into the contin-
uous and discrete components:

Π
(
θ
c

3, t3|θ
c

1, t1

)
=
∫

Π
(
θ
c

2, t2|θ
c

1, t1

)
Π
(
θ
c

3, t3|θ
c

2, t2

)
dθ

c

2

Π
(
θ
d

3, t3|θ
d

1, t1

)
=
∫

Π
(
θ
d

2, t2|θ
d

1, t1

)
Π
(
θ
d

3, t3|θ
d

2, t2

)
dθ

d

2

where t1 < t2 < t3 (24)

and its differential form is as follows:
∂Π(θc,t|θc0,t0)

∂t
= LcCK

(
Π
(
θ
c
, t|θc0, t0

)
, θ
d
, αbrow, αstaz, αDS, t

)
∂Π
(
θ
d
,t|θd0,t0

)
∂t

= LdCK
(

Π
(
θ
d
, t|θd0, t0

)
, θ
c
, t
) (25)

where:

• Π
(
θ
c
, t|θc0, t0

)
of the system to be in state θ

c
at time t given that the system was in θ

c

0 at time
t0;

• Π
(
θ
d
, t|θd0, t0

)
of the system to be in state θ

d
at time t given that the system was in θ

d

0 at
time t0;

• LcCK (·) and LdCK (·) are specific Chapman- Kolmogorov operators that will be described in
the following section.

2.4 The Chapman-Kolmogorov Equation

The system of equations 2, written in integral form, can be solved in a differential form through
the Chapman-Kolmogorov (C-K) operator [7]:
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∂Π(θc,t|θc0,t0)
∂t

= −
∑

i
∂
∂θ
c
i

(
Ai

(
θ
c
, θ
d
, t
)

Π
(
θ
c
, t|θc0, t0

))
+

+1
2

∑
i,j

∂2

∂θ
c
i∂θ

c
j

(
Bi,j

(
θ
c
, θ
d
, t
)

Π
(
θ
c
, t|θc0, t0

))
+

+
∫ (

W
(
θ
c|θ
′c
, θ
d
, t
)

Π
(
θ
′c
, t|θc0, t0

)
−W

(
θ
′c|θc, θd, t

)
Π
(
θ
c
, t|θc0, t0

))
dθ
′c

(26)

∂Π
(
θ
d
, t|θd0, t0

)
∂t

=
∑
i

W
(
θ
d|θdi , θ

c
, t
)

Π
(
θ
d

i , t|θ
d
, t0

)
−W

(
θ
d

i |θ
d
, θ
c
, t
)

Π
(
θ
d
, t|θd0, t0

)
(27)

where:

Ai
(
θ, t
)

=

 0 if θi ∈ θ
d

f
(
θ
c
, θ
d
, αstaz, αbrow, t

)
+ 1

2

∂b(θc,t)
∂θ
c Qb

(
θ
c
, t
)

if θi /∈ θ
d

Bi,j

(
θ, t
)

=

{
0 if θi or θj ∈ θ

d

b
(
θ
c
, t
)
QbT

(
θ
c
, t
)

if θi or θj /∈ θ
d

(28)

This system of equations is composed of four main terms that identify four different types of
processes:

• Drift process

• Diffusion process

• Jumps in continuous space

• Jumps in discrete space (component state transitions).

These four processes are described in the following sub-sections.

2.4.1 Drift Process

The drift process is defined by the Lioville’s equation:

∂ Π
(
θ
c
, t|θc0, t0

)
∂t

=
∑
i

∂

∂θ
c

i

(
Ai

(
θ
c
, θ
d
, t
)

Π
(
θ
c
, t|θc0, t0

))
(29)

It is important to note that this equation describes a completely deterministic motion, indicated by
the equation:

∂ θ
c
(t)

∂t
= Ai

(
θ
c
, θ
d
, t
)

(30)
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If θ
c
(
θ
c

0, θ
d
, t
)

is the solution of Equation 30, then then the solution of the Lioville’s equation is:

Π
(
θ
c
, t|θc0, t0

)
= δ

(
θ
c − θc

(
θ
c

0, θ
d
, t
))

(31)

provided the initial condition:

Π
(
θ
c
, t|θc0, t0

)
= δ

(
θ
c − θc0

)
(32)

2.4.2 Diffusion Process

This process is described by the Fokker-Plank equation:

∂Π(θc,t|θc0,t0)
∂t

=
∑

i
∂
∂θ
c
i

(
Ai

(
θ
c
, θ
d
, t
)

Π
(
θ
c
, t|θc0, t0

))
+

+1
2

∑
i,j

∂2

∂θ
c
i∂θ

c
j

(
Bi,j

(
θ
c
, θ
d
, t
)

Π
(
θ
c
, t|θc0, t0

)) (33)

where Ai
(
θ
c
, θ
d
, t
)

is the drift vector and Bi,j

(
θ
c
, θ
d
, t
)

is the diffusion matrix.
Provided the initial condition in Equation 32, the Fokker-Plank equation describes a system mov-
ing with drift whose velocity is A

(
θ
c
, θ
d
, t
)

on which is imposed a Gaussian fluctuation with

covariance matrix B
(
θ
c
, θ
d
, t
)

.

2.4.3 Jumps in Continuous Space

This process is described by the Master equation:

∂ Π
(
θ
c
, t|θc0, t0

)
∂t

=

∫ (
W
(
θ
c|θ
′c
, θ
d
, t
)

Π
(
θ
′c
, t|θc0, t0

)
−W

(
θ
′c|θc, θd, t

)
Π
(
θ
c
, t|θc0, t0

))
dθ
′c

(34)
Provided the initial condition in Equation 32, it describes a process characterized by straight lines
interspersed with discontinuous jumps whose distribution is given by W

(
θ
c|θ
′c
, θ
d
, t
)

2.4.4 Jumps in Discrete Space

Transitions in the discrete space can occur in terms of jumps, then the formulation of

∂ Π
(
θ
d
, t|θd0, t0

)
∂t

= LdCK
(

Π
(
θ
d
, t|θd0, t0

))
(35)
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is similar to the Master equation, recasted for a discrete phase space:

∂ Π
(
θ
d
, t|θd0, t0

)
∂t

=
∑
i

(
W
(
θ
d|θdi , θ

c
, t
)

Π
(
θ
d

i , t|θ
d

0, t0

)
−W

(
θ
d

i |θ
d
, θ
c
, t
)

Π
(
θ
d
, t|θd0, t0

))
(36)
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3 Forward Sampling Strategies

In order to perform UQ and dynamic probabilistic risk assessment (DPRA), a sampling strategy
needs to be employed. The sampling strategy perturbs the input space (domain of the uncertainties)
to explore the response of a complex system in relation to selected figure of merits (FOMs).

The most widely used strategies to perform UQ and PRA are generally collected in RAVEN as
Forward samplers. Forward samplers include all the strategies that simply perform the sampling
of the input space. These strategies sample without exploiting, through learning approaches, the
information made available from the outcomes of evaluation previously performed (adaptive sam-
pling) and the common system evolution (patterns) that different sampled calculations can generate
in the phase space (Dynamic Event Tree).

RAVEN has several different Forward samplers:

• Monte-Carlo

• Grid-based

• Stratified and its specialization named Latin Hyper Cube.

In addition, RAVEN posses advanced Forward sampling strategies that:

• Build a grid in the input space selecting evaluation points based on characteristic quadratures
as part of stochastic collocation for generalized polynomial chaos method (Sparse Grid Col-
location sampler);

• Use high-density model reduction (HDMR) a.k.a. Sobol decomposition to approximate a
function as the sum of interactions with increasing complexity (Sobol sampler).

In the following subsections, the theory behind these sampling methodologies is explained.

3.1 Monte-Carlo

The Monte-Carlo method is one of the most-used methodologies in several mathematic disciplines.
It approximates an expectation by the sample mean of a function of simulated random variables.
It is based on the laws of large numbers in order to approximate expectations. In order words, it
approximates the average response of multiple FOMs relying on multiple random sampling of the
input space.
Consider a random variable (eventually multidimensional) X having probability mass function or
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probability density function pdfX(x), which is greater than zero on a set of values χ. Then the
expected value of a function f of X is as follows:

E(f(X)) =
∑

x∈χ f(x)pdfX(x) ifX discrete

E(f(X)) =
∫
x∈χ f(x)pdfX(x) ifX continuous

(37)

Now consider n samples of X , (x1, ..., xn), and compute the mean of f(x) over the samples. This
computation represents the Monte-Carlo estimate:

E(f(X)) ≈ f̃n(x) =
1

n

n∑
i=1

f(xi) (38)

If E(f(X)) exists, then the law of large numbers determines that for any arbitrarily small ε:

lim
n→∞

P (
∣∣∣f̃n(X)− E(f(X))

∣∣∣ ≥ ε) = 0 (39)

The above equation suggests that as n gets larger, then the probability that f̃n(X) deviates from
the E(f(X)) becomes smaller. In other words, the more samples are spooned, the more closer the
Monte-Carlo estimate of X gets to the real value.
In addition, f̃n(X) represent an unbiased estimate for E(f(X)):

E(f̃n(X)) = E

(
1

n

n∑
i=1

f(xi)

)
=

1

n

n∑
i=1

E(f(xi)) = E(f(X)) (40)

3.2 Grid

The Grid sampling method (also known as Full Factorial Design of Experiment) represents one of
the simplest methodologies that can be employed in order to explore the interaction of multiple
random variables with respect selected FOMs. The goal of the Grid-based sampling strategy is
to explore the interaction of multiple random variables (i.e.,uncertainties) with respect to selected
FOMs. Indeed, this method is mainly used to perform parametric analysis of the system response
rather than a probabilistic one. This method discretizes the domain of the uncertainties in a user-
defined number of intervals (see Figure 1) and record the response of the model (e.g. a system
code) at each coordinate (i.e., combination of the uncertainties) of the grid.
This method starts from the assumption that each coordinate on the grid is representative, with
respect to the FOMs of interest, of the surrounding grid cell. In other words, it is assumed that the
response of a system does not significantly change within the hyper-volume surrounding each grid
coordinate (red square in Figure 1).

Similarly to what has been already reported for the Monte-Carlo sampling, consider a random
variable X having PDF pdfX(x) and, consequentially, CDF cdfX(x) in the domain χ. Then the
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Figure 1. Example of 2-Dimensional grid discretization.

expected value of a function f of X is as follows:

E(f(X)) =
∑

x∈χ f(x)pdfX(x) ifX discrete

E(f(X)) =
∫
x∈χ f(x)pdfX(x) ifX continuous

(41)

In the Grid approach, the domain of X is discretized in a finite number of intervals. Recall that
each node of this discretization is representative of the surrounding hyper-volume. This means that
a weight needs to be associated with each coordinate of the resulting grid:

wi = cdfX(xi+1/2)− cdfX(xi−1/2) (42)

Now consider a n−discretization of the domain of X , (x1, ..., xn) and compute the mean of f(x)
over the discretization. Based on the previous equation, the computation of the expected value of
f(x) is as follows:

E(f(X)) ≈ f̃n(x) =
1∑n
i=1wi

n∑
i=1

f(xi)× wi (43)

If the number of uncertainties under consideration is greater than one (m), the above equation
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becomes:

E(f(X)) ≈ f̃n(x) =
1∑n

i=1

∏m
j=1 wi,j

n∑
i=1

f(xi)×
m∏
j=1

wi,j (44)

3.3 Stratified

The Stratified sampling is a class of methods that relies on the assumption that the input space
(i.e.,uncertainties) can be separated in regions (strata) based on similarity of the response of the
system for input set within the same strata. Following this assumption, the most rewarding (in
terms of computational cost vs. knowledge gain) sampling strategy would be to place one sample
for each region. In this way, the same information is not collected more than once and all the
prototypical behavior are sampled at least once. In Figure 2, the Stratified sampling approach is
exemplified.

Figure 2. Example of Stratified sampling approach.

The Stratified sampling approach is a method for the exploration of the input space that consists
of dividing the uncertain domain into subgroups before sampling. In the Stratified sampling, these
subgroups must be:

• Mutually exclusive: every element in the population must be assigned to only one stratum
(subgroup)

• Collectively exhaustive: no population element can be excluded.
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Then, simple random sampling or systematic sampling is applied within each stratum. The Latin
Hyper-Cube sampling represents a specialized version of the stratified approach, when the domain
strata are constructed in equally-probable CDF bins.
Similarly to what has been already reported for the Grid sampling, consider a set of m random
variables Xj, j = 1, ..,m having PDFs pdfXj(xj) and, consequentially, CDF cdfXj(xj) in the
domain χj . Then the expected value of a function f of Xj, j = 1, ..,m is as follows:

E(f(X)) =
∑
f(x)

∏m
j=1 pdfXj(xj) ifX discrete

E(f(X)) =
∫
f(x)

∏m
j=1 pdfXj(xj) ifX continuous

(45)

In the Stratified approach, the domain of X is discretized in a set of strata. Consequentially,
similarly to the Grid sampling, a weight needs to be associated with each realization in the input
space:

wi =
∏m
j=1[cdfXj (xi,j+1)−cdfXj (xi,j)]∑

points

∏m
j=1[cdfXj (xi,j+1)−cdfXj (xi,j)]

(46)

Each realization carries a weight representative of each stratum.
Now consider an n−strata of the domain of X , and compute the expected value of f(x) over the
discretization. Based on the previous equation, the computation of the expected value of f(x) is as
follows:

E(f(X)) ≈ f̃n(x) =
1∑n
i=1wi

n∑
i=1

f(xi)× wi (47)

3.4 Sparse Grid Collocation

The Sparse Grid Collocation sampler represents an advanced methodology to perform Uncertainty
Quantification. They aim to explore the input space leveraging the information contained in the
associated probability density functions. It builds on generic Grid sampling by selecting evaluation
points based on characteristic quadratures as part of stochastic collocation for generalized polyno-
mial chaos uncertainty quantification. In collocation an N-D grid is constructed, with each uncer-
tain variable providing an axis. Along each axis, the points of evaluation correspond to quadrature
points necessary to integrate polynomials. In the simplest (and most naive) case, a N-D tensor
product of all possible combinations of points from each dimension’s quadrature is constructed
as sampling points. The number of necessary samples can be reduced by employing Smolyak-
like sparse grid algorithms, which use reduced combinations of polynomial orders to reduce the
necessary sampling space.

3.4.1 Generalized Polynomial Chaos

In general, polynomial chaos expansion (PCE) methods seek to interpolate the simulation code as
a combination of polynomials of varying degree in each dimension of the input space. Originally
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Wiener proposed expanding in Hermite polynomials for Gaussian-normal distributed variables [8].
Askey and Wilson generalized Hermite polynomials to include Jacobi polynomials, including Leg-
endre and Laguerre polynomials [9]. Xiu and Karniadakis combines these concepts to perform
PCE for a range of Gaussian-based distributions with corresponding polynomials, including Leg-
endre polynomials for uniform distributions, Laguerre polynomials for Gamma distributions, and
Jacobi polynomials for Beta distributions [10].

In each of these cases, a probability-weighted integral over the distribution can be cast in a way
that the corresponding polynomials are orthogonal over the same weight and interval. These chaos
Wiener-Askey polynomials were used by Xiu and Karniadakis to develop the generalized polyno-
mial chaos expansion method (gPC), including a transformation for applying the same method to
arbitrary distributions (as long as they have a known inverse CDF) [10]. Two significant method-
ologies have grown from gPC application. The first makes use of Lagrange polynomials to expand
the original function or simulation code, as they can be made orthogonal over the same domain as
the distributions [11]; the other uses the Wiener-Askey polynomials [10].

Consider a simulation code that produces a quantity of interest u as a function u(Y ) whose
arguments are the uncertain, distributed input parameters Y = (Y1, . . . , Yn, . . . , YN). A particular
realization ω of Yn is expressed by Yn(ω), and a single realization of the entire input space results
in a solution to the function as u(Y (ω)). Obtaining a realization of u(Y ) may take considerable
computation time and effort. u(Y ) gets expanded in orthonormal multidimensional polynomials
Φk(Y ), where k is a multi-index tracking the polynomial order in each axis of the polynomial
Hilbert space, and Φk(Y ) is constructed as

Φk(Y ) =
N∏
n=1

φkn(Yn), (48)

where φkn(Yn) is a single-dimension Wiener-Askey orthonormal polynomial of order kn and k =
(k1, . . . , kn, . . . , kN), kn ∈ N0. For example, given u(y1, y2, y3), k = (2, 1, 4) is the multi-index of
the product of a second-order polynomial in y1, a first-order polynomial in y2, and a fourth-order
polynomial in y4. The gPC for u(Y ) using this notation is

u(Y ) ≈
∑

k∈Λ(L)

ukΦk(Y ), (49)

where uk is a scalar weighting polynomial coefficient. The polynomials used in the expansion
are determined by the set of multi-indices Λ(L), where L is a truncation order. In the limit that
Λ contains all possible combinations of polynomials of any order, Eq. 48 is exact. Practically,
however, Λ is truncated to some finite set of combinations, discussed in section 3.4.2.

Using the orthonormal properties of the Wiener-Askey polynomials,∫
Ω

Φk(Y )Φk̂(Y )ρ(Y )dY = δkk̂, (50)
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where ρ(Y ) is the combined PDF of Y , Ω is the multidimensional domain of Y , and δnm is the
Dirac delta, an expression of the polynomial expansion coefficients can be isolated. We multiply
both sides of Eq. 48 by Φk̂(Y ), integrate both sides over the probability-weighted input domain,
and sum over all k̂ to obtain the coefficients, sometimes referred to as polynomial expansion mo-
ments,

uk =
〈u(Y )Φk(Y )〉
〈Φk(Y )2〉

, (51)

= 〈u(Y )Φk(Y )〉, (52)

where we use the angled bracket notation to denote the probability-weighted inner product,

〈f(Y )〉 ≡
∫

Ω

f(Y )ρ(Y )dY. (53)

When u(Y ) has an analytic form, these coefficients can be solved by integration; however, in gen-
eral other methods must be applied to numerically perform the integral. While tools such as Monte
Carlo integration can be used to evaluate the integral, the properties of Gaussian quadratures, be-
cause of the probability weights and domain, can be harnessed. This stochastic collocation method
is discussed in section 3.4.4.

3.4.2 Polynomial Index Set Construction

The main concern in expanding a function in interpolating multidimensional polynomials is choos-
ing appropriate polynomials to make up the expansion. There are many generic ways by which a
polynomial set can be constructed. Here three static approaches are presented:

• Tensor Product

• Total Degree

• Hyperbolic Cross.

In the nominal tensor product case, Λ(L) contains all possible combinations of polynomial indices
up to truncation order L in each dimension, as:

ΛTP(L) =
{
p̄ = (p1, · · · , pN) : max

1≤n≤N
pn ≤ L

}
. (54)

The cardinality of this index set is |ΛTP(L)| = (L + 1)N . For example, for a two-dimensional
input space (N=2) and truncation limit L = 3, the index set ΛTP(3) is given in Table 1, where the
notation (1, 2) signifies the product of a polynomial that is first order in Y1 and second order in Y2.
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(3,0) (3,1) (3,2) (3,3)
(2,0) (2,1) (2,2) (2,3)
(1,0) (1,1) (1,2) (1,3)
(0,0) (0,1) (0,2) (0,3)

Table 1. Tensor Product Index Set, N = 2, L = 3.

It is evident there is some inefficiencies in this index set. First, it suffers dramatically from
the curse of dimensionality; that is, the number of polynomials required grows exponentially with
increasing dimensions. Second, the total order of polynomials is not considered. Assuming the
contribution of each higher-order polynomial is smaller than lower-order polynomials, the (3,3)
term is contributing sixth-order corrections that are likely smaller than the error introduced by
ignoring fourth-order corrections (4,0) and (0,4). This leads to the development of the total degree
(TD) and hyperbolic cross (HC) polynomial index set construction strategies [12].

In TD, only multidimensional polynomials whose total order at most L are permitted,

ΛTD(L) =
{
p̄ = (p1, · · · , pN) :

N∑
n=1

pn ≤ L
}
. (55)

The cardinality of this index set is |ΛTD(L)| =
(
L+N
N

)
, which grows with increasing dimensions

much more slowly than TP. For the same N = 2, L = 3 case above, the TD index set is given in
Table 2.

(3,0)
(2,0) (2,1)
(1,0) (1,1) (1,2)
(0,0) (0,1) (0,2) (0,3)

Table 2. Total Degree Index Set, N = 2, L = 3

In HC, the product of polynomial orders is used to restrict allowed polynomials in the index
set. This tends to polarize the expansion, emphasizing higher-order polynomials in each dimension
but lower-order polynomials in combinations of dimensions, as:

ΛHC(L) =
{
p̄ = (p1, . . . , pN) :

N∏
n=1

pn + 1 ≤ L+ 1
}
. (56)

The cardinality of this index set is bounded by |ΛHC(L)| ≤ (L+ 1)(1 + log(L+ 1))N−1. It grows
even more slowly than TD with increasing dimension, as shown in Table 3 for N = 2, L = 3.
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(3,0)
(2,0)
(1,0) (1,1)
(0,0) (0,1) (0,2) (0,3)

Table 3. Hyperbolic Cross Index Set, N = 2, L = 3

It has been shown that the effectiveness of TD and HC as index set choices depends strongly on
the regularity of the responce [12]. TD tends to be most effective for infinitely-continuous response
surfaces, while HC is more effective for surfaces with limited smoothness or discontinuities.

3.4.3 Anisotropy

While using TD or HC to construct the polynomial index set combats the curse of dimensionality
present in TP, it is not eliminated and continues to be an issue for problems of large dimensionality.
Another method that can be applied to mitigate this issue is index set anisotropy, or the unequal
treatment of various dimensions. In this strategy, weighting factors α = (α1, . . . , αn, . . . , αN) are
applied in each dimension to allow additional polynomials in some dimensions and less in others.
This change adjusts the TD and HC construction rules as follows, where |α|1 is the one-norm of α.

Λ̃TD(L) =
{
p̄ = (p1, . . . , pN) :

N∑
n=1

αnpn ≤ |α|1L
}
, (57)

Λ̃HC(L) =
{
p̄ = (p1, · · · , pN) :

N∏
n=1

(pn + 1)αn ≤ (L+ 1)|α|1
}

(58)

As it is desirable to obtain the isotropic case from a reduction of the anisotropic cases, define the
one-norm for the weights is defined as:

|α|1 =

∑N
n=1 αn
N

. (59)

Considering the same case above (N = 2, L = 3), it can be applied weights α1 = 5, α2 = 3, and
the resulting index sets are Tables 4 (TD) and 5 (HC).

There are many methods by which anisotropy weights can be assigned. Often, if a problem
is well-known to an analyst, it may be enough to use heuristics to assign importance arbitrarily.
Otherwise, a smaller uncertainty quantification solve can be used to roughly determine sensitiv-
ity coefficients (such as Pearson coefficients), and the inverse of those can then be applied as
anisotropy weights. Sobol coefficients obtained from first- or second-order HDMR, an additional
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(2,0)
(1,0) (1,1) (1,2)
(0,0) (0,1) (0,2) (0,3) (0,4)

Table 4. Anisotropic Total Degree Index Set, N = 2, L = 3.

(1,0)
(0,0) (0,1) (0,2) (0,3)

Table 5. Anisotropic Hyperbolic Cross Index Set, N = 2, L = 3.

sampling strategy present in RAVEN, could also serve as a basis for these weights. A good choice
of anisotropy weight can greatly speed up convergence; however, a poor choice can slow conver-
gence considerably, as computational resources are used to resolve low-importance dimensions.

3.4.4 Stochastic Collocation

Stochastic collocation is the process of using collocated points to approximate integrals of stochas-
tic space numerically. In particular consider using Gaussian quadratures (Legendre, Hermite, La-
guerre, and Jacobi) corresponding to the polynomial expansion polynomials for numerical integra-
tion. Quadrature integration takes the form:∫ b

a

f(x)ρ(x) =
∞∑
`=1

w`f(x`), (60)

≈
L̂∑
`=1

w`f(x`), (61)

where w`, x` are corresponding points and weights belonging to the quadrature set, truncated at
order L̂. At this point, this L̂ should not be confused with the polynomial expansion truncation
order L. This expression can be simplified using the operator notation

q(L̂)[f(x)] ≡
L̂∑
`=1

w`f(x`). (62)
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A nominal multidimensional quadrature is the tensor product of individual quadrature weights and
points, and can be written

Q(L) = q
(L̂1)
1 ⊗ q(L̂2)

2 ⊗ · · · , (63)

=
N⊗
n=1

q(L̂n)
n . (64)

It is worth noting that each quadrature may have distinct points and weights; they need to not
be constructed using the same quadrature rule. In general, one-dimensional Gaussian quadrature
excels in exactly integrating polynomials of order 2p− 1 using p points and weights; equivalently,
it requires (p+ 1)/2 points to integrate an order p polynomial.

For convenience, the coefficient integral to be evaluated is here reported again, Eq. 51.

uk = 〈u(Y )Φk(Y )〉. (65)

This integral can be approximated with the appropriate Gaussian quadrature as

uk ≈ Q(L̂)[u(Y )Φk(Y )], (66)

where bold vector notation is used to note the order of each individual quadrature, L̂ = [L̂1, . . . , L̂n, . . . , L̂N ].
For clarity, the bold notation is removed and it is assumed a one-dimensional problem, which ex-
trapolates as expected into the multidimensional case.

uk ≈ q(L̂)[u(Y )Φk(Y )], (67)

=
L̂∑
`=1

w`u(Y`)Φk(Y`). (68)

To determine the quadrature order L̂ needed to accurately integrate this expression, consider the
gPC formulation for u(Y ) in Eq. 48 and replace it in the sum,

uk ≈
L̂∑
`=1

w`Φk(Y`)
∑

k∈Λ(L)

uk̂Φk̂(Y`). (69)

Using orthogonal properties of the polynomials, this reduces as L̂→∞ to

uk ≈
L̂∑
`=1

w`ukΦk(Y`)
2. (70)

Thus, the integral, to the same error introduced by truncating the gPC expansion, the quadrature is
approximating an integral of order 2k. As a result, the quadrature order should be ordered:

p =
2k + 1

2
= k +

1

2
< k + 1, (71)
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so it can conservatively used p = k + 1. In the case of the largest polynomials with order k = L,
the quadrature size L̂ is the same as L + 1. It is worth noting that if u(Y ) is effectively of much
higher-order polynomial than L, this equality for quadrature order does not hold true; however, it
also means that gPC of order L will be a poor approximation.

While a tensor product of highest-necessary quadrature orders could serve as a suitable mul-
tidimensional quadrature set, we can make use of Smolyak-like sparse quadratures to reduce the
number of function evaluations necessary for the TD and HC polynomial index set construction
strategies.

3.4.5 Smolyak Sparse Grids

Smolyak sparse grids [13] are an attempt to discover the smallest necessary quadrature set to
integrate a multidimensional integral with varying orders of predetermined quadrature sets. In
RAVEN case, the polynomial index sets determine the quadrature orders each one needs in each
dimension to be integrated accurately. For example, the polynomial index set point (2,1,3) requires
three points in Y1, two in Y2, and four in Y3,or

Q(2,1,3) = q
(3)
1 ⊗ q

(2)
2 ⊗ q

(4)
3 . (72)

The full tensor grid of all collocation points would be the tensor product of all quadrature for all
points, or

Q(Λ(L)) =
⊗
k∈Λ

Q(k). (73)

Smolyak sparse grids consolidate this tensor form by adding together the points from tensor prod-
ucts of subset quadrature sets. Returning momentarily to a one-dimensional problem, introduce
the notation

∆
(L̂)
k [f(x)] ≡ (q

(L̂)
k − q

(L̂)
k−1)[f(x)], (74)

q
(L̂)
0 [f(x)] = 0. (75)

A Smolyak sparse grid is then defined and applied to the desired integral in Eq. 51,

S
(L̂)
Λ,N [u(Y )Φk(Y )] =

∑
k∈Λ(L)

(
∆

(L̂1)
k1
⊗ · · · ⊗∆

(L̂N )
kN

)
[u(Y )Φk(Y )]. (76)

Equivalently, and in a more algorithm-friendly approach,

S
(L̂)
Λ,N [u(Y )Φk(Y )] =

∑
k∈Λ(L)

c(k)
N⊗
n=1

q(L̂n)
n [u(Y )Φk(Y )] (77)

where
c(k) =

∑
j={0,1}N ,
k+j∈Λ

(−1)|j|1 , (78)
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using the traditional 1-norm for |j|1. The values for uk can then be calculated as

uk = 〈u(Y )Φk(Y )〉, (79)

≈ S
(L̂)
Λ,N [u(Y )Φk(Y )]. (80)

With this numerical method to determine coefficients, a complete method for performing SCgPC
analysis in an algorithmic manner is obtained.
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4 Adaptive Sampling Strategies

Performing UQ and Dynamic PRA can be challenging from a computational point of view. The
Forward sampling strategies reported in the previous Section can lead to a large number of unnec-
essary evaluations of the physical model leading to an unacceptable resource expenses (CPU time).
In addition, the Forward methodologies are not designed to leverage the information content that
is extractable from the simulations already concluded.

To overcome these limitations, in RAVEN several adaptive algorithms are available:

1. Limit Surface Search

2. Adaptive Dynamic Event Tree

3. Adaptive Hybrid Dynamic Event Tree

4. Adaptive Sparse Grid

5. Adaptive Sobol Decomposition.

In this Section, only the first algorithm is going to be reported.

4.1 Limit Surface Search Method

The motivation behind the choice of adaptive sampling strategies is that numerical simulations are
often computationally expensive, time consuming, and with a large number of uncertain param-
eters. Thus, exploring the space of all possible simulation outcomes is almost unfeasible using
finite computing resources. During DPRA analysis, it is important to discover the relationship be-
tween a potentially large number of uncertain parameters and the response of a simulation using as
few simulation trials as possible. This is a typical context where “goal” oriented sampling could be
beneficial. The “Limit Surface Search method” is a scheme where few observations, obtained from
the model run, are used to build a simpler and computationally faster mathematical representation
of the model, ROM, also known as Surrogate Model (ROM or SM). The ROM (see Section ??) is
then used to predict where further exploration of the input space could be most informative. This
information is used to select new locations in the input space for which a code run is executed (see
Figure 3). The new observations are used to update the ROM and this process iterates until, within
a certain metric, it is converged.

In the case of the “Limit Surface (LS) Search method”, a ROM is used to determine the location
in the input space where further observations are most informative to establish the location of the
LS, then code runs are executed on those locations and the ROM updated. The process continues
until the location of the LS is established within a certain tolerance.
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Figure 3. Example of limit surface in the uncertain space.

4.1.1 Limit Surface Theory

To properly explain the LS concept and relative properties, it is necessary to analyze the idea
behind the LSs, firstly, from a mathematical and, secondly, from a practical point of view. Consider
a dynamic system that is represented in the phase space by the Eq. 1 in Section ??. The equation
can be rewritten as follows:

∂θ

∂t
= H (x, p, t) (81)

where:

• θ represents the coordinate of the system in the phase space
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• (x, p, t) independent variables that are separated, respectively, in spatial, temporal, and para-
metric space (distinction between (x, p, t) is purely based on engineering considerations).

Now it is possible to introduce the concept of “goal” function, C. C is a binary function that, based
on the response of the system, can assume the value 0 (false) to indicate that the system is properly
available (e.g., system success) and 1 (true) to indicate that the system is not available (e.g., failure
of the system):

C
(
θ, x, p, t

)
= C (H (x, p, t) , x, p, t) = C (x, p, t) (82)

Without loss of generality, lets assume thatC does not depend on time (e.g. C ←
∫ tend
t0

dtC (x, p, t)):

C = C (x, p) (83)

To simplify the mathematical description of the LS concept, it is possible to hypothesize that the
equation describing the PDF time evolution of the system in the phase space is of type Gauss Co-
dazzi (in its Liouville’s derivation) [14], which allows ensuring that all the stochastic phenomena
in the system are representable as PDFs in the uncertain domain (see Section ??),. This allows
combining the parametric space with the initial condition space:

(x)← (x, p)
C (x)← C (x, p)

(84)

This assumption is rarely violated, for example for those systems that present an intrinsic
stochastic behavior (e.g., the dynamic of a particle of dust in the air where it continuously and
randomly interacts with the molecules of air that “move” with different velocities and in different
and random directions). In most of the cases of interest in the safety analysis, the above mentioned
assumption is correct. The full heuristic approach to the characterization of system stochastic be-
haviors is reported in Section ??.
Under the above simplifications, it is possible to identify the region of the input space (V ) leading
to a specific outcome of the “goal” function. For example, it can be defined the failure region VF
as the region of the input space where C = 1:

VF = {∀x|C (x) = 1} (85)

The definition of the complementary of the failure region is obviously:

V c
F = {∀x|C (x) = 0} (86)

Its boundary is the named LS:

LS = ∂V c
F = ∂ {∀x|C (x) = 1} (87)

The identification of the LS location is necessary to identify boundary regions for which the
system under consideration will or will not exceed certain FOMs (e.g., operative margins).
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The LS location is extremely important for design optimization and, in addition, its informative
content can be used to analyze the system to characterize its behavior from a stochastic point of
view. Consider x ∈ V and x ∼ X , where x is the random variate realization of the stochastic
variable X . If pdfX (x) is the probability density function of X , the failure probability of the
system (PF ) is:

PF =

∫
V

dxC (x) pdfX (x) =

∫
VF+V cF

dxC (x) pdfX (x) (88)

And, based on the definition given in Equations 84 and 85:∫
VF

dxpdfX (x) (89)

Equations 88 and 89 are summarized by stating that the system failure probability is equivalent
to the probability of the system being in the uncertain subdomain (region of the input space) that
leads to a failure pattern. This probability is equal to the probability-weighted hyper-volume that
is surrounded by the LS (see Figure 4).
It is beneficial for better understanding to assess the LS concept through an example related to
the safety of an Nuclear Power Plant (NPP). As an example, consider a station black out (SBO)
scenario in an NPP. Suppose that the only uncertain parameters are:

• tF : Temperature that would determine the failure of the fuel cladding

• rtDGs: Recovery time of the diesel generators (DGs) that can guarantee, through the emer-
gency core cooling system (ECCS), the removal of the decay heat.

And, the corresponding CDF (uniform) is:

tF ∼ pdfTF (TF ) =


0 if tF < tFmin
1

(tFmax−tFmin)=∆tF

0 if tF > tFmax

(90)

rtDGs ∼ pdfRTDGs (rtDGs) =


0 if rtDGs < rtDGsmin
1

(rtDGsmax−rtDGsmin)=∆rtDGs

0 if rtDGs > rtDGsmax

(91)

For simplicity, assume that the clad temperature is a quadratic function of the DG recovery time in
an SBO scenario:

t = t0 + α× rt2DGs (92)

and that the tFmin > t0 + α × rt2DGsmin and tFmax < t0 + α × rt2DGsmax . The LS, failure region,
and active part of the failure region (failure region with non-zero probability) are illustrated, for
example, in Figure 4 (in agreement with the above assumptions). In this case, the transition/failure
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Figure 4. Example of limit surface probability of failure region.

probability is evaluated as follows:

PF =
∫
VF
dx pdfX (x) =

∫ +∞
0

dtF pdfTF (TF )
∫ +∞√

tF−t0
α

d rtDGs pdfRTDGs (rtDGs) =

=
∫ tFmax
tFmin

dtF
1

tFmax−tFmin

∫ rtDGsmax√
tF−t0
α

d rtDGs
1

rtDGsmax−rtDGsmin
=

=
rtDGsmax
∆rtDGs

+ 2α
3(∆rtDGs∆tF )

(
3/2

√
tFmin−t0

α
− 3/2

√
tFmax−t0

α

) (93)

38



Figure 5. Example of limit surface highlighting the risk direc-
tions.

This simple example is useful to understand how the LS is defined in a practical application
(that is analyzed numerically in the results Section) and how the hyper volume needs weighted
with respect to the probability in the uncertain domain. An example of the computed LS is shown
in Figure 5. In this figure the neutral and high risk directions are highlighted.

4.1.1.1 Limit Surface Search Algorithm

The identification of the LS location is extremely challenging, depending on the particular physic-
s/phenomena that are investigated. To identify the real location of the LS, the evaluation of system
responses is needed, through the high-fidelity code (RELAP 7, RELAP5-3D, etc.), in the full do-
main of uncertainty (infinite number of combinations of uncertainties represented by the respective
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PDFs). Obviously, this is not a feasible approach, and a reasonable approximation is to locate the
LS on a Cartesian N-D grid, in the uncertain domain.

In reality, the location of the LS is not exactly determined but rather bounded. The algorithm
determines the set of grid nodes between which the transition 0/1 of the “goal” function hap-
pens. This set is also classified with respect to the value of the “goal” function. With reference to
Figure 6, for example, green is used for grid nodes with a “goal” function that equals 0 and red
when the “goal” function equals 1. Each evaluation of the “goal” function in one of the grid nodes

Figure 6. Example of limit surface search evaluation grid (where
y = θ).

implies the evaluation of the high-fidelity code (e.g. system simulator) for the corresponding set
of entries in the uncertain space. As already mentioned, the evaluation of the high fidelity code
is computationally expensive and, in order to identify the LS, one should appraise each point in
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the N-D grid covering the uncertainty space. Discretization depends on the accuracy requested by
the user. In most cases, this approach is not feasible and, consequentially, the process needs to
be accelerated using “predicting” methods that are represented by the employment of supervised
learning algorithms (i.e., ROMs).

This approach is commonly referred to as an active learning process that ultimately results
in training of a ROM of type classifier capable of predicting the outcome of the “goal” function
for any given point of the uncertain space. In an active learning process, a supervised learning
algorithm is combined with criteria to choose the next node in the N D grid that needs explored,
using the high fidelity physical model. This process is repeated until, under a particular metric, the
prediction capabilities of the supervised learning algorithm do not improve by further increasing
the training set.

In more detail, the iterative scheme could be summarized through the following steps:

1. A limited number of points in the uncertain space {xk} are selected via one of the forward
sampling strategies (e.g., stratified or Monte Carlo)

2. The high fidelity code is used to compute the status of the system for the set of points in the
input set:

{
θ(t)

}
k

= H ({x}k , t).

3. The “goal” function is evaluated at the phase space coordinate of the system: {c}k =
C
({
θ(t)

}
k

)
4. The set of pairs {(x, c)k} are used to train a ROM of type classifier, G ({xk})

5. The ROM classifier is used to predict the values of the “goal” function for all the N nodes
of the N-D grid in the domain space:(

G
(
{x}j

)
∼ {c}j , j = 1, ..., N

)
(94)

6. The values of the “goal” function are used to determine the LS location based on the change
of values of {c}j:

{c}j → ∂VF (95)

7. A new point is chosen to increase the training set and a new pair is generated

8. The procedure is repeated starting from Step 3 until convergence is achieved. The conver-
gence is achieved when there are no changes in the location of the LS after a certain number
of consecutive iterations.

The iteration scheme is graphically shown in Figure 7. Note that there is an additional requirement
regarding the LS search algorithm:the LS location has to stay constant for a certain number (user
defined) of consecutive iterations. The reason for this choice is determined by the attempt to
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Figure 7. Limit surface search algorithm conceptual scheme.

mitigate the effect of the build of non-linear bias in the searching pattern. Indeed, the searching
algorithm might focus too much on a certain region of the LS while putting too few points in
other zones and completely hiding undiscovered topological features of the LS. Regarding the
strategy to choose the nodes on the N-D grid that needs evaluated in the iterative process for the LS
identification, it has been decided to employ a metric based on the distance between the predicted
LS and the evaluations already performed. The points on the LS are ranked based on the distance
from the closest training point already explored (the larger is the distance the higher is the score for
the candidate point), and based on its persistence (the larger is the number of time the prediction
of the “goal” function for that point have changed the higher is the score). Since this approach
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creates a queue of ranked candidates, it could be used also in the parallel implementation of the
algorithm. When several training points are run in parallel, it is possible that the evaluation of
one additional point does not alter dramatically the location of the LS. Consequently, it is possible
that the candidate with the highest score is already being submitted for evaluation and possibly
the simulation is not yet completed. In this case, to avoid submitting the same evaluation point
twice, the algorithm searches among all the ranked candidates (in descending order) for the one
that was not submitted for evaluation. Even if it is extremely unlikely that all the candidates were
submitted, in this remote event, the method will choose the next point employing a Monte Carlo
strategy.

4.1.1.2 Acceleration through Multi-grid Approach

The location of the LS, being a numerical iterative process, can be known given a certain tolerance.
As already mentioned, the LS search is done by constructing an evaluation grid on which the ac-
celeration ROM is inquired. The tolerance of the iterative process determines how the evaluation
grid is discretized. Before addressing the acceleration scheme, it is important to introduce some
concepts on the employed numerical process.
Assume that each of D dimensions of the uncertain domain is discretized with the same num-
ber of equally-spaced nodes N (see Figure 8), with discretization size indicated by hi. Hence,
the Cartesian grid contains ND individual nodes, indexed through the multi-index vector j =
(ji=1→D) , ji ≤ N∀i. Introducing the vectors I = (1, ..., 1) and N = (N, ..., N), the “goal”
function is expressed on this N- D grid as:

C (x) =

N∑
j=I

ϕj (x)C
(
xj
)

(96)

where ϕj is the characteristic function of the hyper-volume Ωj surrounding the node xj:

ϕj (x) =

{
1 if x ∈ Ωj

0 if x /∈ Ωj

(97)

where:

Ωj =
D∏
i=1

[
xji −

hi
2
, xji +

hi
2

]
(98)

The probability of the uncertain parameters is expressed as:

pdfX (x) =

N∑
j=I

ϕj (x) pdfX
(
xj
)

(99)
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Figure 8. Discretization grid.

Following the approach briefly explained in Section 4.1.1, the probability of the event (e.g., failure)
could be expressed as:

PF =

(
D∏
i=1

hi

) N∑
j=I

pdfX
(
xj
)
C
(
xj
)

(100)

Under certain assumptions, the concept of active hyper-volume VA as the region of the input space
identified by the support of the uncertain parameters’ probability density functions pdfX (x) could
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be introduced; Equation 100 is recast, using a Taylor expansion, as follows:

PF =

∫
V

C (x) pdfX (x) dx =

∫
VA

C (x)

 N∑
j=I

ϕj (x)

pdfX (xj)+

D∑
i=1

∂pdfX
∂xi

|xj (xi − xji)

 dx
(101)

And, considering the evaluation grid as:

PF =

N∑
j = I
xj ∈ VA

∫ xj+h/2

xj−h/2
C (x)

 N∑
j=I

ϕj (x)

pdfX (xj)+

D∑
i=1

∂pdfX
∂xi

|xj (xi − xji)

 dx (102)

At this point, it is possible to label, in the active hyper-volume, the sub- domain identified by the
nodes where the “goal” function C(x) changes its value (the frontier nodes between the region
where C(x) = 1 and C(x) = 0) VA ∩ V∂VF .
Consequentially, it is possible to identify the sub-domains in which the “goal” function C(x) is
equal to 0 (VA ∩ V∂VC(x)=0

/∈ VA ∩ V∂VF ):

N∑
j = I

xj ∈ VA ∩ VC(x)=0

∫ xj+h/2

xj−h/2
C (x)

pdfX (xj)+

D∑
i=1

∂pdfX
∂xi

|xj (xi − xji)

 dx (103)

in which the “goal” function C(x) is equal to 1 (VA ∩ V∂VC(x)=1
/∈ VA ∩ V∂VF ):

N∑
j = I

xj ∈ VA ∩ VC(x)=1

∫ xj+h/2
xj−h/2

C (x)

(
pdfX

(
xj
)

+
D∑
i=1

∂pdfX
∂xi
|xj (xi − xji)

)
dx =

=
N∑

j = I
xj ∈ VA ∩ VC(x)=1

∫ xj+h/2
xj−h/2

(
pdfX

(
xj
)

+
D∑
i=1

∂pdfX
∂xi
|xj (xi − xji)

)
dx

(104)
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Equation 102 is now expressed as:

PF =
N∑

j = I
xj ∈ VA ∩ VC(x)=1

(∏D
i=1 hi

)
pdfX(xj) +O(hN+1)+

+
N∑

j = I
xj ∈ VA ∩ V∂Vf

∫ xj+h/2
xj−h/2

C (x)

(
pdfX

(
xj
)

+
D∑
i=1

∂pdfX
∂xi
|xj (xi − xji)

)
dx

(105)

As inferred from Equation 105, the process is bounded if the surface area-to-volume ratio (amount
of surface area per unit volume) is in favor of the volume:

N∑
j = I

xj ∈ VA ∩ VC(x)=1

(
D∏
i=1

hi

)
pdfX(xj)�

N∑
j = I

xj ∈ VA ∩ V∂Vf

∣∣∣∣∣
∫ xj+h/2

xj−h/2
pdfX

(
xj
)∣∣∣∣∣ dx (106)

If the grid is built in the transformed space of probability (i.e., replacing the measure dx with
dµ pdfX

(
xj
)

the condition expressed in Equation 106 is reduced:

number nodes ∈ VA ∩ VC(x)=1 � number nodes ∈ VA ∩ V∂VF (107)

This means that error is bounded by the total probability contained in the cells on the frontier of
the LS.

Based on this derivation, it is clear how important it is to keep the content of the total probability
on the frontier of the LS as low as possible, and simultaneously, increase the importance of the
volume of the failure/event region as much as possible (to improve the surface area-to-volume
ratio).

To do that, the step size in probability should be significantly reduced ( hpi → 0+). Even if
this is theoretically feasible, it is computational inapplicable. To approach a similar result, it is
possible to learn from other numerical methods that use the technique of adaptive meshing for the
resolution of the partial differential equation system (e.g., finite element methods).

For this reason, an acceleration scheme was designed and developed employing a multi-grid
approach. The main idea, it is to recast the iterative process in two different sub-sequential steps.
Firstly, performing the LS search on a coarse evaluation grid, and once converged, adaptively
refining the cells that lie on the frontier of the LS (VA ∩ V∂VF ) and, consequentially, converging on
the new refined grid.
The iteration scheme is graphically shown in Figure 9. In more detail, the iterative scheme could
be summarized through the following steps:
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Figure 9. Multi-grid limit surface search scheme.

1. The user specifies two tolerances in probability (CDF ) : γg=1 for the initial coarse grid and
γg=2 for the refined grid, where γg=1 > γg=2;
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2. Following Equation 98, the initial coarse evaluation grid Ω1 is constructed (N g=1 total
nodes). The discretization of this grid is done to have cells with a content of probability
equal to γg=1.

3. A limited number of points in the uncertain space {xk} are selected via one of the forward
sampling strategies (e.g., stratified or Monte Carlo).

4. The high fidelity code is used to compute the status of the system for the set of points in the
input set:

{
θ(t)

}
k

= H ({x}k , t).

5. The “goal” function is evaluated at the phase space coordinate of the system: {c}k =
C
({
θ(t)

}
k

)
.

6. The set of pairs {(x, c)k} are used to train a ROM of type classifier, G ({xk}).

7. The ROM classifier is used to predict the values of the “goal” function for all theN g=1 nodes
of the N-D grid in the domain space:(

G
(
{x}j

)
∼ {c}j , j = 1, ..., N g=1

)
(108)

8. The values of the “goal” function are used to determine the LS location based on the change
of values of {c}j:

{c}j → ∂VF (109)

9. A new point is chosen to increase the training set and a new pair is generated.

10. The procedure is repeated starting from Step 5 until convergence is achieved on grid Ωg.The
convergence is reached when there are no changes in the location of the LS after a certain
number of consecutive iterations (user defined).

11. When the convergence is achieved on the coarse grid Ωg=1, all the cells that lie on the frontier
of the LS (VA ∩ V∂VF ) are refined to contain an amount of probability equal to γg=2.

12. Steps 7 through 9 are performed based on the new refined grid. Finally, the process starts
again by performing Steps 5 through 10, until the convergence is achieved in the refined grid.

As shown in Figure 9, the algorithm consists in searching the location of the LS proceeding with
subsequential refinement of the sub-domain, in the active space, that contains the LS. In this way,
the computational burden is kept as low as possible. In addition, another advantage of this approach
is that, since the refinement grid represents a constrained domain, the sub- sequential ROM training
process can be regularized, since the LS between an iteration and the other can move, at maximum,
within the refinement domain.
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5 Reduced Order Modeling

To provide a very simple idea of a ROM, assume that the final response space of a physical system
is governed by the transfer function H (x) (see Section 2), which, from a practical point of view,
represents the outcome of the system based on the initial conditions x. Now, sample the domain
of variability of the initial conditions x to create a set of N realizations of the input and response
space ((xi, H (xi)) , i = 1, N), named “training” set. Based on the data set generated, it is pos-
sible to construct a mathematical representation G (x : xi) of the real system H (x), which will
approximate its response (see Figure 10):

G (x) : xi → G (xi) ∼= H (xi) (110)

The ROMs reported above are generally named “regressors”, among which all the most common
data fitting algorithms are found (e.g., least square for construction of linear models). An important
class of ROMs for the work presented here after is the one containing the so called “classifiers”.
A classifier is a ROM that is capable of representing the system behavior from a binary point of
view (e.g., event happened/not happened or failure/success). It is a model (set of equations) that
identifies to which category an object belongs in the feature (input) space. Referring to the example
that brought to Equation 110, a classifier can be formally represented as follows (see Figure 11):

Figure 10. Example of reduced order model representation of
physical system (regression).
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Figure 11. Example of reduced order model representation of
physical system (classifier).

G (x) : xi → G (xi) ∼= C (H (xi)) (111)

The function C
(
H (xi) = θ

)
is the so called “goal” function that is able to recast the response

of the system H (xi) into a binary form (e.g., failure/success). As an example, referring to Fig-
ure 11, the “goal” function would be:

C
(
θ
)

=

{
1 if θ > 1.0

0 if θ ≤ 1.0
(112)

Hence, the ROM of type classifier G (x) will operate in the space transformed through the “goal”
function C

(
θ
)
.

The classifiers and regressors can be categorized into two main classes:

• Model-based algorithms

• Data-based algorithms

In the first class, the created ROM aims to approximate the response of the system as a function
of the input parameters. These algorithms construct a functional representation of the system.
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Examples of such ROM type are Support Vector Machines (SVMs), Kriging-based regressors,
discriminant-based models, and polynomial chaos.

On the other side, data-based algorithms do not build a response- function-based ROM but
classify or predict the response of the system from the neighborhood graph constructed from the
training data, without any dependencies on a particular prediction model. These algorithms directly
build a neighborhood structure as the ROM (e.g., a relaxed Gabriel graph) on the initial training
data. Examples of such ROM type are nearest neighbors and decision trees.

It is important to NOTE that RAVEN uses a Z-score normalization of the training data before
constructing most of the ROMs:

X =
(X− µ)

σ
(113)

In order to identify which ROMs get trained with data normalized by the previous reported nor-
malization approach, please refer to the RAVEN user manual [15].

RAVEN has support of several different ROMs, such as:

1. Nearest Neighbors approaches

2. Support Vector Machines

3. Inverse Weight regressors

4. Spline regressors , etc.

In this section only few of them are going to be explained.

5.1 Gaussian Process Models

Gaussian Processes (GPs) [16] are algorithms that extend multivariate Gaussian distributions to
infinite dimensionality. A Gaussian process generates a data set located throughout some domain
such that any finite subset of the range follows a multivariate Gaussian distribution. Now, the n
observations in an arbitrary data set, y = y1, . . . , yn, can always be imagined as a single point
sampled from some multivariate (n-variate) Gaussian distribution. What relates one observation
to another in such cases is just the covariance function, k(x, x′). A popular choice is the squared
exponential:

k(x, x′) = σ2
fexp

[
−(x− x′)2

2l2

]
(114)

where the maximum allowable covariance is defined as σ2
f ; this should be high for functions that

cover a broad range on the y axis. If x ' x′, then k(x, x′) approach this maximum meaning f(x)
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is very correlated to f(x′). On the other hand, if x is very distant from x′, then k(x, x′) ' 0 (i.e.,
the two points cannot see each other. So, for example, during interpolation at new x values, distant
observations will have negligible effect). How much effect this separation has will depend on the
length parameter l. Each observation y can be thought of as related to an underlying function f(x)
through a Gaussian noise model:

y = f(x) +N(0, σ2
n) (115)

The new kernel function can be written as:

k(x, x′) = σ2
fexp

[
−(x− x′)2

2l2

]
+ σ2

nδ(x, x
′) (116)

So given n observations y, the objective is to predict the value y∗ at the new point x∗. This process
is performed by following this sequence of steps:

1. Calculate three matrices:

K =

k(x1, x1) . . . k(x1, xn)
... . . . ...

k(xn, x1) . . . k(xn, xn)

 (117)

K∗ =
[
k(x∗, x1) . . . k(x∗, xn)

]
(118)

K∗∗ = k(x∗, x∗) (119)

2. The basic assumption of GPM is that:[
y
y∗

]
= N (0,

[
K KT

∗
K∗ K∗∗

]
) (120)

3. The estimate ȳ∗ for y∗ is the mean of this distribution

ȳ∗ = K∗K
−1y (121)

4. The uncertainty associated to the estimate ȳ∗ can be expressed in terms of variance of y∗:

var(y∗) = K∗∗ − k∗K−1KT
∗ (122)

5.2 Support Vector Machines

The Support Vector Machine (SVM) [17] classifier is a methodology that aims to determine the
optimal separation hyperplane between data sets having different labels. The training data consist
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of N data points (xi, yi) i = 1, . . . , N where xi ∈ RM and yi ∈ −1, 1. Assuming a linear property
of the hyperplane then its definition is:{

x : f(x) = xTβ + β0 = 0
}

(123)

where β is a unit vector.

The SVM parameters β and β0 are determined by solving this optimization problem:{
min
β,β0
‖β‖

subject to yi(xTi β + β0) ≥ 1, i = 1, . . . , N
(124)

Once the SVM parameters β and β0 are determined then the classification of a new point x̄ is
given by:

G(x̄) = sign(x̄Tβ + β0) (125)

5.3 KNN Classifier and KNR Regressor

The K Nearest Neighbor algorithm [18] (KNN) is a non-parametric method used for both regres-
sion and classification. The only input parameter is the variable K which indicates the number
of neighbors to be considered in the classification/regression process. The special case where the
class is predicted to be the class of the closest training sample (i.e. when K = 1) is called the
nearest neighbor algorithm. In binary (two class) classification problems, it is helpful to choose k
to be an odd number as this avoids tied votes. The output depends on whether KNN is used for
classification or regression:

• In KNN classification, the output is a class membership. An object is classified by a majority
vote of its neighbors, with the object being assigned to the class most common among its
K nearest neighbors (K is a positive integer, typically small). If K = 1, then the object is
simply assigned to the class of that single nearest neighbor.

• In KNN regression, the output is the property value for the object. This value is the average
of the values of its K nearest neighbors.

Both for classification and regression, it can be useful to assign weight to the contributions of the
neighbors, so that the nearer neighbors contribute more to the average than the more distant ones.
For example, a common weighting scheme consists in giving each neighbor a weight of 1/d, where
d is the distance to the neighbor.
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5.4 Multi-Dimensional Interpolation

This section covers the methods that have been implemented in the CROW statistical library:

• Shepard’s Method (see Section 5.4.1)

• Multi-Dimensional Spline method (see Section 5.4.2).

These two methods are interpolation methods that can be used in any dimension. In RAVEN
they are employed in two major applications:

1. ROMs

2. Multi-dimensional distributions.

For both applications, given a set ofN data points (xi, ui) i = 1, . . . , N where xi are the coordinate
in the input space D ⊂ RM and ui ∈ R is the outcome, the methods predicts the outcome ũ for a
new coordinate x̃ ∈ Rn.

5.4.1 Shepard’s Method

The Shepard interpolator [19] is also know as Inverse Distance Weighting (IDW) interpolator. The
starting point is a set of N data points (xi, ui) for i = 1, . . . , N . The Inverse-Weight interpola-
tor can be represented as a function fIDW (x) that, given a new coordinate in the input space x,
generates a prediction on u such that

u : x ∈ RM → fIDW (x) ∈ R (126)

based on the distance d(x, xi) in the euclidean space between x and xi.

Such prediction u = fIDW (x) is performed by summing all data points xi i = 1, . . . , N
weighted by a weighting parameter wi(x) as follows:

fIDW (x) =

{∑N
i=1w(xi)ui if d(x, xi) 6= 0

ui if d(x, xi) = 0
(127)

where
w(xi) =

wi∑N
i=1wi

(128)

and

wi =

(
1

d(x, xi)

)p
(129)

Large values of p assign greater weight wi to data points xi closest to x, with the result turning into
a mosaic of tiles (i.e., Voronoi diagram) with nearly constant interpolated value.
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5.4.2 Multi-Dimensional Spline

The Multi-Dimensional Spline (MDS) [20] is a method that requires the sampled points xi to
be lying in multi-dimensional cartesian grid. A generic grid ∆m for each dimension m will be
indicated as follows:

∆m = {x0m , x1m , . . . , xpm} for m = 1, . . . ,M (130)

This methods construct aM -dimensional cubic spline so that, given a coordinate in the input space
x = (x1, x2, . . . , xM), generates a prediction on u such that

u : x ∈ RM → fMDS(x) ∈ R (131)

where

fMDS(x) =

p1+3∑
i1=1

p2+3∑
i2=1

. . .

pM+3∑
iM=1

ci1,i2,...,ip

M∏
m=1

uij(xm) (132)

where

uij(xm) = Φ

(
xm − x0m

hj
+ 2− ij

)
(133)

The cubic kernel Φ(t) is defined as:

Φ(t) =


(2− |t|)3 1 ≤ |t| ≤ 2

4− 6 |t|2 + 3 |t|3 |t| ≤ 1
0 elsewhere

(134)

The set of
∏M

m=1(pm+3) coefficients ci1,i2,...,ip is determined when the interpolator is initialized.
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6 Statistical Analysis

One of the most assessed ways to investigate the impact of the intrinsic variation of the input space
is through the computation of statistical moments and linear correlation among variables/parame-
ters/FOMs.

As shown in Section 3, RAVEN employs several different sampling methodologies to explore
the response of a model subject to uncertainties. In order to correctly compute the statistical mo-
ments a weight-based approach is used. Each Sampler in RAVEN associate to each “sample” (i.e.
realization in the input/uncertain space) a weight to represent the importance of the particular com-
bination of input values from a statistical point of view (e.g., reliability weights). These weights
are used in subsequential steps in order to compute the previously listed statistical moments and
correlation metrics.
In the following subsections, the formulation of these statistical moments is reported.

6.1 Expected Value

The expected value represents one of the most fundamental metrics in probability theory: it repre-
sents a measurement of the center of the distribution (mean) of the random variable. From a prac-
tical point of view, the expected value of a discrete random variable is the probability-weighted
average of all possible values of the subjected variable. Formally, the expected value of a random
variable X:

E(X) = µ =
∑

x∈χ xpdfX(x) if X discrete

E(X) = µ =
∫
x∈χ xpdfX(x) if X continuous

(135)

In RAVEN, the expected value (i.e. first central moment) is computed as follows:

E(X) = µ ≈ x = 1
n

∑n
i=1 xi if random sampling

E(X) = µ ≈ x = 1
V1

∑n
i=1wixi otherwise

(136)

where:

• wi is the weight associated with the sample i

• n are the total number of samples

• V1 =
∑n

i=1 wi.

56



6.2 Standard Deviation and Variance

The variance (σ2) and standard deviation (σ) of X are both measures of the spread of the distribu-
tion of the random variable about the mean. Simplistically, the variance measures how far a set of
realizations of a random variable are spread out. The standard deviation is the square root of the
variance. The standard deviation has the same unit of the original data, and hence is comparable
to deviations from the mean.
Formally:

σ2(X) = E
(
[X − E(X)]2

)
=
∫
x∈χ(x− µ)2pdf(x)dx if X continuous

σ2(X) = E
(
[X − E(X)]2

)
=
∑

x∈χ(x− µ)2pdf(x) if X discrete

σ(X) = E ([X − E(X)]) =
√
σ2(X)

(137)

In RAVEN, variance (i.e., second central moment) and standard deviation are computed as follows:

E
(
[X − E(X)]2

)
≈ m2 = 1

n

∑n
i=1(xi − x)2 if random sampling

E
(
[X − E(X)]2

)
≈ m2 = 1

V1

∑n
i=1wi(xi − x)2 otherwise

E
(
[X − E(X)]2

)
≈ s =

√
m2

(138)

where:

• wi is the weight associated with the sample i

• n are the total number of samples

• V1 =
∑n

i=1 wi.

RAVEN performs an additional correction of variance to obtain an unbiased estimation with respect
to the sample-size [21]:

E
(
[X − E(X)]2

)
≈M2 =

n

n− 1
m2 if random sampling

E
(
[X − E(X)]2

)
≈M2 =

V 2
1

V 2
1 −V2

m2 textotherwise
(139)

S =
√
M2 (140)

where:

• wi is the weight associated with the sample i
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• n are the total number of samples

• V1 =
∑n

i=1 w
1
i .

• V2 =
∑n

i=1 w
2
i .

It is important to notice that S is not an unbiased estimator.

6.3 Skewness

The Skewness is a measure of the asymmetry of the distribution of a real-valued random variable
about its mean. Negative skewness indicates that the tail on the left side of the distribution is longer
or fatter than the right side. Positive skewness indicates that the tail on the right side is longer or
fatter than the left side. From a practical point of view, the skewness is useful to identify distortion
of the random variable with respect to the Normal distribution function.
Formally,

γ1 = E

[(
X − µ
σ

)3
]

=
E
[
(X − µ)3](

E
[
(X − µ)2])3/2

(141)

In RAVEN, the skewness is computed as follows:

E
[(

X−µ
σ

)3
]
≈ m3

m
3/2
2

=
1
n

∑n
i=1(xi−x)3

( 1
n

∑n
i=1(xi−x)2)

3/2 if random sampling

E
[(

X−µ
σ

)3
]
≈ m3

m
3/2
2

=
1
V1

∑n
i=1 wi×(xi−x)3(

1
V1

∑n
i=1 wi×(xi−x)2

)3/2 otherwise
(142)

where:

• wi is the weight associated with the sample i

• n are the total number of samples

• V1 =
∑n

i=1 wi.

RAVEN performs an additional correction of skewness to obtain an unbiased estimation with re-
spect to the sample-size [21]:

E
[(

X−µ
σ

)3
]
≈ M3

M
3/2
2

=
n2

(n− 1)(n− 2)
m3 ×

1(
n

n− 1
m2

)3/2
if random sampling

E
[(

X−µ
σ

)3
]
≈ M3

M
3/2
2

=
V 3

1

V 3
1 − 3V1V2 + 2V3

m3 ×
1(

V 2
1

V 2
1 − V2

m2

)3/2
otherwise

(143)
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where:

• wi is the weight associated with the sample i

• n are the total number of samples

• V1 =
∑n

i=1 w
1
i

• V2 =
∑n

i=1 w
2
i

• V3 =
∑n

i=1 w
3
i .

6.4 Excess Kurtosis

The Kurtosis [22] is the degree of peakedness of a distribution of a real-valued random variable.
In a similar way to the concept of skewness, kurtosis describes the shape of the distribution. The
Kurtosis is defined in order to obtain a value of 0 for a Normal distribution. If it is greater than
zero, it indicates that the distribution is high peaked; If it is smaller that zero, it testifies that the
distribution is flat-topped.
Formally, the Kurtosis can be expressed as follows:

γ2 =
E
[
(X − µ)4](

E
[
(X − µ)2])2 (144)

In RAVEN, the kurtosis (excess) is computed as follows:

E[(X−µ)4]
(E[(X−µ)2])

2 ≈ m4−3m2
2

m2
2

=
1
n

∑n
i=1(xi − x)4 − 3

(
1
n

∑n
i=1(xi − x)2

)2(
1
n

∑n
i=1(xi − x)2

)2 if random sampling

E[(X−µ)4]
(E[(X−µ)2])

2 ≈ m4−3m2
2

m2
2

=

1
V1

∑n
i=1 wi × (xi − x)4 − 3

(
1
V1

∑n
i=1wi × (xi − x)2

)2

(
1
V1

∑n
i=1 wi × (xi − x)2

)2 otherwise

(145)
where:

• wi is the weight associated with the sample i

• n are the total number of samples

• V1 =
∑n

i=1 wi.
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RAVEN performs an additional correction of kurtosis (excess) to obtain an unbiased estimation
with respect to the sample-size [21]:

E[(X−µ)4]
(E[(X−µ)2])

2 ≈ M4−3M2
2

M2
2

=
n2(n+ 1)

(n− 1)(n− 2)(n− 3)
m4 −

3n2

(n− 2)(n− 3)
m2

2 if random sampling

E[(X−µ)4]
(E[(X−µ)2])

2 ≈ M4−3M2
2

M2
2

=
V 2

1 (V 4
1 − 4V1V3 + 3V 2

2 )

(V 2
1 − V2)(V 4

1 − 6V 2
1 V2 + 8V1V3 + 3V 2

2 − 6V4)
m4−

3V 2
1 (V 4

1 − 2V 2
1 V2 + 4V1V3 − 3V 2

2 )

(V 2
1 − V2)(V 4

1 − 6V 2
1 V2 + 8V1V3 + 3V 2

2 − 6V4)
m2

2 otherwise

(146)

where:

• wi is the weight associated with the sample i

• n are the total number of samples

• V1 =
∑n

i=1w
1
i

• V2 =
∑n

i=1w
2
i

• V3 =
∑n

i=1w
3
i

• V4 =
∑n

i=1w
4
i .

6.5 Median

The median of the distribution of a real-valued random variable is the number separating the higher
half from the lower half of all the possible values. The median of a finite list of numbers can be
found by arranging all the observations from lowest value to highest value and picking the middle
value.
Formally, the median m can be cast as the number that satisfy the following relation:

P (X ≤ m) = P (X ≥ m) =

∫ m

−∞
pdf(x)dx =

1

2
(147)

6.6 Percentile

A percentile (or a centile) is a measure indicating the value below which a given percentage of
observations in a group of observations fall.
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6.7 Covariance and Correlation Matrices

Simplistically, the Covariance is a measure of how much two random variables variate together. In
other words, It represents a measurement of the correlation, in terms of variance, among different
variables. If the greater values of one variable mainly correspond with the greater values of the
other variable, and the same holds for the lesser values (i.e., the variables tend to show similar
behavior) the covariance is positive. In the opposite case, when the greater values of one vari-
able mainly correspond to the lesser values of the other (i.e., the variables tend to show opposite
behavior) the covariance is negative. Formally, the Covariance can be expressed as

Σ(X,Y ) = E
[
(X − E [X]) (Y − E [Y ])T

]
(148)

Based on the previous equation, in RAVEN each entry of the Covariance matrix is computed as
follows:

E [(X − E [X]) (Y − E [Y ])] ≈ 1
n

∑n
i=1(xi − µx)(yi − µy) if random sampling

E [(X − E [X]) (Y − E [Y ])] ≈ 1
V1

∑n
i=1 wi × (xi − µx)(yi − µy) otherwise

(149)

where:

• wi is the weight associated with the sample i

• n are the total number of samples

• V1 =
∑n

i=1wi.

The correlation matrix (Pearson product-moment correlation coefficient matrix) can be obtained
through the Covariance matrix, as follows:

Γ(X,Y ) =
Σ(X,Y )

σxσy
(150)

As it can be seen, The correlation betweenX and Y is the covariance of the corresponding standard
scores.

6.8 Variance-Dependent Sensitivity Matrix

The variance dependent sensitivity matrix is the matrix of the sensitivity coefficients that show the
relationship of the individual uncertainty component to the standard deviation of the reported value
for a test item.
Formally:

Λ = Σ(X,Y )vc−1(Y ) (151)

where:
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• vc−1(Y ) is the inverse of the covariance of the input space.
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7 Data Mining

Data mining is the computational process of discovering patterns in large data sets (“big data”)
involving methods at the intersection of artificial intelligence, machine learning, statistics, and
database systems. The overall goal of the data mining process is to extract information from a data
set and transform it into an understandable structure for further use.
RAVEN has support of several different data mining algorithms, such as:

1. Hierarchical methodologies

2. K-Means

3. Mean-Shift, etc.

In this section only few algorithms will be explained

7.1 Clustering

A loose definition of clustering is the process of organizing objects into groups whose members
are, in some way, similar. Therefore, a cluster is a collection of objects that are similar to each
other and are dissimilar to the objects belonging to other clusters [23, 24].

The similarity criterion is distance. Two or more objects belong to the same cluster if they are
“close” according to a specified distance. The approach of using distance metrics to clustering is
called distance-based clustering and is used in this work.

The notion of distance implies that the data points lay in a metric space [25]:

Definition 1 (Metric Space) A metric space is a space X provided with a function d: f : X×X →
R satisfying the following properties ∀x,y ∈ X :

• d(x,y) > 0

• d(x,y) = d(y,x)

• d(x,y) 6 d(x, z) + d(z,y)

The function d(x,y) is usually called the distance function. In a 2-dimensional Euclidean
space (R2), the distance between points can be calculated using the Pythagorean theorem which is
the direct application of the Euclidean distance and is a special case of the most general Minkowski
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distance d2(x,y) =
√

(x1 − y1)2 + (x2 − y2)2 between two points x = (x1, x2) and y = (y1, y2)
in R2.

In the literature [25], it is possible to find several types of distances other than the Euclidean
and the Minkowski distance as shown in Table 6. The approach of using distance metrics is called
distance-based clustering and will be used in this dissertation.

Table 6. Summary of the commonly used measures [25].

Measure Form

Minkowski distance dn(x,y) = (
δ∑

k=1

|xk − yk|n)
1
n

Euclidean distance d2(x,y) = (
δ∑

k=1

|xk − yk|2)
1
2

Taxicab distance d1(x,y) =
δ∑

k=1

|xk − yk|

Supremum distance d0(x,y) = maxk|xk − yk|
Mahalanobis distance dM(x,y) = (x− y)TS−1(x− y)

From a mathematical viewpoint, the concept of clustering [23] aims to find a partition C =
{C1, . . . , Cl, . . . , CL} of the set of I scenarios X = {x1, . . . ,xi, . . . ,xI} where each scenario xi
is represented as a δ-dimensional vector. Each Cl (l = 1, . . . , L) is called a cluster. The partition
C of X is given as follows1:


Cl 6= ∅, l = 1, . . . , L

⋃L
l=1 Cl = X

(152)

7.2 Hierarchical Methodologies

These methodologies organize the data set into a hierarchical structure according to a proximity
matrix. Each element d(i, j) of this matrix contains the distance between the the ith and the jth

cluster center. The final results of this technique is a tree commonly called a dendrogram. This kind

1In most clustering algorithms each scenario belongs to only one cluster. However this is not always the case. In
fuzzy clustering methodologies [26] a scenario may be allowed to belong to more than one cluster with a degree of
membership ui,j ∈ [0, 1] which represents the member coefficient of the j scenario for the ith cluster and satisfies the
following properties:∑K

i=1 ui,j = 1, and
∑N

j=1 ui,j < N, ∀j
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of representation has the advantages of providing a very informative description and visualization
of the data structure even for high values of dimensionality.

The procedure to determine the dendrogram for a data set of I points in an δ-dimensional space
is the following:

1. Start the analysis with a set of I clusters (i.e., each point is considered as a cluster).

2. Determine the proximity matrix M (dimension: I × I): M(i, j) = d(xi,xj) where xi and
xj are the position of the ith and the jth cluster.

3. For each point p find the closest neighbor q from the proximity matrix M

4. Combine the points p and q

5. Repeat Steps 2, 3 and 4 until all the points of the data set are in the same cluster

The advantage of this kind of algorithm is the nice visualization of the results that show the
underlying structure of the data set. However, the computational complexity for most of the hier-
archical algorithm is of the order of O(I2) (where I is the number of points in the data set).

7.3 K-Means

K-Means clustering algorithms belong to the more general family of Squared Error algorithms.
The goal is to partition I data points xi (i = 1, . . . , I) into K clusters in which each data point
maps to the cluster with the nearest mean. The stopping criterion is to find the global minimum of
the error squared function χ defined as:

χ =
K∑
i=1

∑
xj∈Ci

|xj − µi|2 (153)

where µi is the centroid (i.e., the center) of the cluster Ci.

The procedure to determine the centroids µi of K clusters (C1, . . . , CK) is the following:

1. Start with a set of K random centroids distributed in the state space

2. Assign each pattern to the the closest centroid
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3. Determine the new K centroids according to the point-centroid membership

µi =
1

Ni

∑
xj∈Ci

xj (154)

where Ni corresponds to the number of of data points in the ith cluster.

4. Repeat Steps 2 and 3 until convergence is met (i.e., until a minima of the χ function is
reached)

K-Means algorithm is one of the most popular and used methodologies also due to the fact
that is very straightforward to implement and the computational time is directly proportional to the
cardinality of data points (i.e., O(I) where I is the number of data points). The main disadvantage
is that the algorithm is sensitive to the choice of the initial partition and may converge to a local
minimum of the error squared function [27]. Another disadvantage of this algorithm is that is
only able to identify clusters having spherical or ellipsoidal geometry. Thus, K-Means is not able
to identify clusters of points having arbitrary shapes. Moreover, the number of cluster K to be
obtained is specified by the user prior the clustering process.

7.4 Mean-Shift

The Mean-Shift algorithm [28] is a non-parametric iterative procedure that can be used to assign
each point to one cluster center through a set of local averaging operations [28]. The local aver-
aging operations provide empirical cluster centers within the locality and define the vector which
denotes the direction of increase for the underlying unknown density function.

The underlying idea is to treat each point xi (i = 1, . . . , I) of the dataset as an empirical
probability distribution function using kernel K(x) : RM ·K → R. This multivariate kernel density
resides in a multidimensional space where regions with high data density (i.e., modes) correspond
to local maxima of the density estimate fI(x) [29] defined by:

fI(x) =
1

Ihd

I∑
i=1

K

(
x− xi
h

)
, (155)

where x ∈ RM ·K and h is often referred as the bandwidth associated with the kernel.

The kernel in Equation 155 serves as a weighting function [29] associated with each data point
and is expressed as:

K(x) = ckk(‖x‖2) (156)

where k(x) : [0,∞] → R is referred as the kernel profile and ck is a normalization constant. The
profile satisfies the following properties:

66



• k(x) is non negative

• k(x) is non increasing (i.e., k(a) ≥ k(b) if a < b)

• k(x) is piecewise continuous and
∫∞

0
k(x) dx <∞

In order to estimate the data points with highest probability from an initial estimate (i.e., the
modes of fI(x)), consider the gradient of the density function∇xfI(x) = 0 [28] where

∇xfI(x) =
2ck
Ihd+2

I∑
i=1

(x− xi)k′
(
‖x− xi

h
‖2

)

=
2ck
Ihd+2

(
I∑
i=1

g

(
‖x− xi

h
‖2

))
︸ ︷︷ ︸

A

(∑I
i=1 xg

(
‖x−xi

h
‖2
)∑I

i=1 g
(
‖x−xi

h
‖2
) − x)︸ ︷︷ ︸

B

, (157)

which points in the direction of the increase in kernel density estimate. The kernel K(x) is also
referred to as the shadow of G(x) = cgg(‖x‖2) [30] where cg, similar to ck, is a normalization
constant and g(x) is the derivative of k(x) over x, i.e., g(x) = k′(x). In the equation above, the
first term denoted as A is a scalar proportional to the density estimate computed with the kernel
G(x) and does not provide information regarding where the mode resides. Unlike A, the vector
quantity B, which is the second term in the equation above, is difference between the weighted
mean

m(x) =

∑I
i=1 xg(‖x−xi

h
‖2)∑I

i=1 g(‖x−xi

h
‖2)

. (158)

and the initial estimate x. This term points in the direction of local increase in density using
kernel G(x), hence provides a means to find the mode of the density. Note that all points used to
compute a particular mode are considered to reside in the same cluster.

Since each each data pointxi (or scenario) is considered as an empirical probability distribution
function, this consideration allows to include in the scenario clustering analysis also the possible
uncertainty associated with each scenario.

7.5 DBSCAN

The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm views
clusters as areas of high density of data points. The data points in the low-density areas are seen
as noise and border points, which are actually separating the clusters. Clusters found by DBSCAN
can be any shape because of this approach. The main element of the DBSCAN algorithm is the
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concept of core samples, which are samples that are in areas of high density. Therefore, a cluster
is a set of core samples, each close to each other (measured by some distance measure) and a set of
non-core samples that are close to a core sample (but are not themselves core samples). There are
two parameters to the algorithm: minsamples and eps. Higher minsamples or lower eps indicate
higher density necessary to form a cluster. A cluster is a set of core samples, that can be built by
recursively by taking a core sample, finding all of its neighbors that are core samples, finding all
of their neighbors that are core samples, and so on. A cluster also has a set of non-core samples,
which are samples that are neighbors of a core sample in the cluster but are not themselves core
samples; these are on the borders of a cluster. The DBSCAN algorithm finds core samples of high
density and expands clusters from them. It is good for data, which contains clusters of similar
density.

7.6 Dimensionality Reduction

The dimensionality δ of each data point (i.e., each scenario) is equal to the product of the number
of variables (i.e., M ) chosen to represent each scenario multiplied by the number of times each
variable has been sampled. In order to reduce the computational time due to the high data dimen-
sionality, the use of dimensionality reduction techniques was to reduce the number of variables
M 2.

The raw data generated by DET methodologies contain the temporal behavior of a vast set of
variables (e.g., temperature, pressure). These variables are often heavily correlated and, conse-
quently, the information contained in the set of M variables comprising the full state space can
be condensed to a set of N variables where N < M . The objective of the dimensionality reduc-
tion process is to determine those N variables by finding the correlations among the original M
variables3.

Linear algorithms, such as PCA [31] or multidimensional scaling (MDS) [32], have the advan-
tage that they are easier to implement but they can only identify linear correlation among variables.
On the other hand, methodologies such as Local Linear Embedding [33] and ISOMAP [34] are
more computationally intensive but they are able to identify non-linear correlations.

Dimensionality reduction is the process of finding a bijective mapping function F

F : RD 7→ Rd (where d < D) (159)

which maps the data points from the D-dimensional space into a reduced d-dimensional space (i.e.
embedding on a manifold) in such a way that the distances between each point and its neighbors
are preserved. In our applications D = M + 1, i.e. M state variables plus time t.

2Other possible options are to reduce the number of sample instants K or to observe the local properties of the
covariance matrix S.

3Note that thoseN variables are not necessarily a subset of the originalM variables but, more likely, a combination
of those M variables.
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7.7 Dimensionality Reduction: Linear Algorithms

This section describes the two most important algorithms for dimensionality reduction:

1. PCA (see Section 7.8), and,

2. MDS (see Section 7.9).

7.8 Principal Component Analysis (PCA)

The main idea behind PCA [31] is to perform a linear mapping of the data set onto a lower dimen-
sional space such that the variance of the data in the low-dimensional representation is maximized.

This is accomplished by determining the eigenvectors and their corresponding eigenvalues of
the data covariance matrix4 S. The eigenvectors that correspond to the largest eigenvalues (i.e., the
principal components) can be used as a set of basis functions. Thus, the original space is reduced
to the space spanned by a few eigenvectors.

The algorithm is very straightforward to implement but, on the other hand, PCA is not able to
identify non-linear correlations of more complex data sets.

7.9 Multidimensional Scaling (MDS)

Multidimensional scaling [32] is a popular technique used to analyze the properties of data sets.
The scope of this methodology is to find a set of dimensions that preserve distances between data
points.

This is performed by:

1. Creating dissimilarity matrix D = [dij] where dij is the distance between two points xi and
xj .

2. Finding the hyper-plane that preserves the dissimilarity matrixD (i.e., the nearness of points)

As in PCA analysis, the algorithm can be easily implemented but it is not able to identify
non-linear correlations of more complex data sets.

4Given a data set in form of a vector Z, rows correspond to data dimensions (D) and columns correspond to data
observations (Λ), the covariance matrix S is determined as: S = 1

Λ−1Z
′Z.
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