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1 Introduction

In the interest of benchmarking and maintaining algorithms developed and used within raven, we
present here analytic benchmarks associated with specific models. The associated external models
referenced in each case can be found in

raven/tests/framework/AnalyticModels/



2 Projectile (vacuum, gravity)

Associated external model: projectile.py
Solves the projectile motion equations
T = T + Vg ol, (D
@2
Y = Yo + vyl + 517, (2

2
with the following inputs

X, or x0, initial horizontal position,

Yo, or v 0, initial vertical position,

Vg, or vO0, initial speed (scalar),

* #, or ang, angle with respect to horizontal plane,
and following responses:

* r, or r, the horizontal distance traveled before hitting y = 0,

x, or x, the time-dependent vertical position,

Yy, or y, the time-dependent horizontal position,

t, or t ime, the series of time steps taken.

The simulation takes 10 equally spaced time steps from O to 1 second, inclusive, and returns all
four values as vector quantities.

2.1 Gl’id, o, Yo

If a Grid sampling strategy is used and the following distributions are applied to zy and y,, with
three samples equally spaced on the CDF between 0.01 and 0.99 for each input, the following are
some of the samples obtained.

* 1 is distributed normally with mean O and standard deviation 1,

* 7 1s distributed normally with mean 1 and standard deviation 0.2.



o Yo t x y
-2.32634787404 0.53473045192 | 0 | -2.32634787404 0.534730425192
1/3 | -2.09064561365 0.225988241143
1 -1.61924109285 -3.65816279362
1.0 0.0 0 1.0 0.0
1/3 ] 0.235702260396 0.691257815951
1 | 0.707106781187 -3.19289321881




3 Attenuation

Associated external model: attenuate.py

Attenuation evaluation for quantity of interest u with input parameters Y = [y1, ..., yn]:
N
u(y)=[J e, 3)
n=1

This is the solution to the exit strength of a monodirectional, single-energy beam of neutral particles
incident on a unit length material divided into N sections with independently-varying absorption
cross sections. This test is useful for its analytic statistical moments as well as difficulty to represent
exactly using polynomial representations.

3.1 Uniform

Let all y,, be uniformly distributed between O and 1. The first two statistical moments are:

3.1.1 mean

1 N
/ dye—y/N} : 4)
0
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3.1.2 variance

([we)]
_ ( y e-w) ; | 5)
— g (1 e’Z/N)_ )
varu(Y)] = E[U(Y)Q] - E[u(Y)]{
= g (1- e—z/N): N (= e (©6)

3.1.3 numeric values

Some numeric values for the mean and variance are listed below for several input cardinalities /V.

N | mean | variance

2 1 0.61927248698470190 | 0.01607798775751018
4 | 0.61287838657652779 | 0.00787849640356994
6 | 0.61075635579491642 | 0.00520852933409887

3.2 Multivariate Normal

Let Y be N-dimensional, and have a multivariate normal distribution:
Y ~ N, %) (7)
with N-dimensional mean vector pt = [fiy, , fy,, - - - , fyy ] and NX N covariance matrix:

Y =[Covly;,y,l],i=1,2,...,N;j=1,2,...,N (8)

11



To be simplicity, we assume there are no correlations between the input parameters. Then, the
covariance matrix can be written as:

031 0 0
0 022 ... 0
Y= | . .. . 9
0 0 0§N
where 052_ = Covly;,yi], fori = 1,2,..., N. Based on this assumption, the first two statistical
moments are:
3.2.1 mean
Bu(v)] = [ dvp(v)u(y)
(- pyp)? (v - pyn)? N
= / 1(1/4/ 270y e B JERE / dyn(1/+/2m0y, e B ) H e Un/N
- - n=1
(10)
N o2
n=1
3.2.2 variance
varfu(Y)] = E[(u(Y) — E[u(Y)])*] = / dY p(Y)(u(Y) — Elu(Y)])?
0  (1—nyp)?
_/ i (1/y/Zroge *h ) (11)
e’} (yn— HyN
/ dyn(1/+/2ro,e  *Tn He /N — Efu(Y)])?
N 20y, 2py;
= H e n2 n
n=1

12



3.2.3 numeric values

For example, for given mean p = [0.5, —0.4, 0.3, —0.2,0.1], and covariance

064 O 0 0 0
0 049 0 0 0
Y= 0 0 009 0 0
0 0 0 016 0
0 0 0 0 0.25

The mean and variance can computed using previous equation, and the results are:

E[u(Y)] = 0.97207197488624509

varu(Y') = 0.063779804051749989

13
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(13)

(14)



4 Tensor Polynomial (First-Order)

Associated external model: tensor_poly.py

Tensor polynomial evaluation for quantity of interest u with input parameters Y = [y, ..., yn]:
N

u(¥V) =[]w+1. (15)
n=1

This test is specifically useful for its analytic statistical moments. It is used as a benchmark in [1].

4.1 Uniform, (-1,1)

Let all y,, be uniformly distributed between -1 and 1. The first two statistical moments are:

4.1.1 mean

I
|\H
Q
<
|\;
Q.
<
=
<
3
N
—_

- N
_ / dyy—“] , (16)

I
S
=

I
=
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4.1.2 variance

4.1.3 numeric values

7)

(18)

Some numeric values for the mean and variance are listed below for several input cardinalities /V.

4.2 Uniform, (0,1)

N ‘ mean ‘ variance

2 1.0 | 0.77777777777
4 1.0 | 2.16049382716
6 1.0 | 4.61865569273

Let all y,, be uniformly distributed between 0 and 1. The first two statistical moments are:

15



4.2.1 mean

4.2.2 variance

4.2.3 numeric values

19)

(20)

21

(22)

(23)

(24)

(25)

(26)

27)

(28)
(29)

(30)

Some numeric values for the mean and variance are listed below for several input cardinalities /V.

16



N mean variance

2 2.25 0.38194444444
4
6

5.0625 | 4.01306905864
11.390625 | 31.6377499009

4.3 Multivariate Normal

Let Y be N-dimensional, and have a multivariate normal distribution:

Y ~ N(u, %) (31)
with N-dimensional mean vector jt = [fiy,, fyys - - - » fyy > a0d N XN covariance matrix:
Y= [Covly,yl],i=1,2,...,N;5=1,2,...,N (32)

To be simplicity, we assume there are no correlations between the input parameters. Then, the
covariance matrix can be written as:

031 (; 0
0 o2 ... O
= . . : (33)
0 0 asN
where 052, = Covly;,y;], fori = 1,2,..., N. Based on this assumption, the first two statistical

moments are:

4.3.1 mean

) _ (y1—nyy)? ) n-myy)? N
/ dy (1/\/20,e > )/ dyn(1/\/2m0 e 7N )H(yn—l—l),

o0 - n=1

(34)
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4.3.2 variance

var[u(Y)] = E[(u(Y) — E[u(Y)])?] =

-0 n=1
(35)
5 5
=1+ m)*+ o] =[] (i +1)]
n=1 n=1
4.3.3 numeric values
For example, for given mean p = [0.5, —0.4, 0.3, —0.2,0.1], and covariance
0.64 0 0 0 0
0 049 O 0 0
Y= 0 0 009 0 0 (36)
0 0 0 016 0
0 0 0 0 0.25
The mean and variance can computed using previous equation, and the results are:
E[u(Y)] = 1.0296 (37)
var[u(Y')] = 4.047085600000002 (38)

18



5 Global Sobol Sensitivity: Sudret

Associated external model: sudret_sobol_poly.py

This model provides analytic Sobol sensitivities for a flexible number of input parameters. It is
taken from [2] and has the following form:

1 N
u(Y) = o5 [T (v +1). (39)

n=1

The variables y,, are distributed uniformly on [0,1]. For three input variables (N = 3), the Sobol
sensitivities are as follows, to 12 digits of accuracy:

2

Sp =8, =295 = 9—? (0.2747), (40)
5

Sip =S =S5 = o (0.0549), (41)
1

517273 = ﬁ (00110) (42)

The mean is 1.0 and the variance is 0.728.

5.1 Second-Order ANOVA of Second-Order Cut-HDMR Expansion of Su-
dret

One particular analytic tests involves calculating Sobol sensitivities for the second-order cut-
HDMR expansion of the Sudret. We use three variables and equate u(Y) = f(x,y,z). The

reference cut point is (Z,7,2) = (3,3, 3).

The first step is to construct the second-order cut-HDMR expansion 7',

f(J;?yaZ) ~ T[f](xvyaz) =t +1t,+ ty +1i.+ t:vy + i+ tyza (43)
t, = f(7,9, 2), (44)

tx = f<x7g7 5) - t?”a (45)
txyEf(x7y72)_tm_ty_tr- (46)

Symmetry between z,y, 2 provides similar expressions for the remaining terms. The cut-plane
evaluations are

o 343
f(]:t?“:f(‘ray7z)_537 (47)
_ — =\ 49 2



for = Fl,,2) = 5 (3% + )39+ 1), 9)

and similar for the remaining terms. Expanding the cut-HDMR expression,

Tfl(2,y,2) =t + (fo = 1) + (fy = )+(fy—tr)+

[fay = (fo = t) = (fy — &) — tr]+
[fa:z_<fz_tr) ( tT>_t7"]+
[féz _'( tr) ( tr) _'tr]v (50)
and collecting terms
Tlf(@,y,2) =t = fo = fy = fo b Jay + for + fye- (51

The ANOVA terms are recovered by integration of the cut-HDMR expansion. The ANOVA expan-
sion H is similar in appearance to the cut-HDMR but uses different definitions; in fact, cut-HDMR
is a coarse approximation of the ANOVA expansion. Here we use ANOVA to approximate the
cut-HDMR expansion, instead of the original model.

H(T)(z,y,2) = ho + hy + hy + hy + hyy + hys + hys, (52)

ho = / / / (z,y,2) dr dy dz, (53)
_// (2., 2) dy dz — ho, (54)

oy = / Tf](x,y,2) dz — hy — hy — hy, (55)
0

and similarly for the remaining terms. We evaluate the necessary integrals in the expansion.

1 1 1
/ / / T(f)(a,y, =) dedydz — / / / ot foyt ot e dadydz,
0 0 0
343 7
_53_3(64)+3<§>’

s
5127
1 1 1 511
ho — / / / Tf)(, y, 2) dedydz — (56)

/ / T[]y, =) dady — / / ot oy foe + fyn dady,
0

259 189

512 128

20



1ol 259 189 , 511 63 189

h, = T Z)dody —ho =0+ - =———+ 2 (57
/0/0 Ly, 2) dedy —ho = =5 + 1522 — 715 128 " 128° ©7

1

1
/ T[f](x,y,z) dl':/ tr_fx_fy_fz+fxy+fxz+fyzdxa
0 0

119 105

63
119 LU0 o oy 09 9 o
= P te) 50

32

1
hy. :/ T(fl(x,y, z) de — hy — h, — ho,
0

= ;% + %2(.# +2°) + %W—
= 312 - %(gf +2%) + g—gy2z2. (58)
The other terms are obtained similarly, and are symmetric. In summary,
ho = %, (59)
hy = —16—238 + %gﬂ, (60)
hy = —16—238 %ng, (61)
h, = —% + %222, (62)
Ry = 312 —~ %(:f +y%) + %x"‘y?, (63)
hy, = 312 — %(:zc2 + 22) + g—ngZQ, (64)
hy. = 312 - %(gf + 23 + g—ngZQ. (65)

It can be shown that the expectation value of any ANOVA expansion term is zero, with the ex-
ception of the first term hy. Additionally, each term is orthogonal to each other term. The second
moment can thus be calculated as

1 1 1
CHIT (2,5, 2)?) = / / / (ho + o + hy + ho + oy + how + h.)? dedydz,
’ ’ 1 ’ 1 1
= hg + / / / hZ + he 4+ h2+ h2, + h2, + k., dedydz. (66)
o Jo Jo
To obtain the variance o2, we subtract the square of the mean,
1 1 1
Tiow = / / / hZ +hi+h2+h2, + b2 +he, dedydz. (67)
o Jo Jo
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The partial variance o7 of any subset  is the integral of the square of that ANOVA term.

3969
2 2 2
0, =0,=0, 50480 ,

49
o2 =02 =0’

e vz vz~ 1600
The total variance is a sum of the partial variances,

3969 49 68943
2
=3 (=) +3 - ~ 0.67327.
T (20480>+ (1600) 102400

= 0.030625.

The Sobol indices are the ratio of the partial variance to the total,

135

Y Y 140‘ - ’ ’

22
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(70)

(71)

(72)



6 Global Sobol Sensitivity: Ishigami

Associated external model: ishigami.py

This model has interesting properties for its sensitivity indices, in that y3 has zero impact alone
but a nonzero impact when coupled with y;. Additionally, the sinusoidal expression is not trivially
represented by polynomial expansion. It is listed in [3] and has the following form:

u(Y) = sin(y;) + asin®(y) + bys sin(y), (73)
where in this case @ = 7 and b = 0.1, and all y,, are uniformly distributed on [—7, 7].

The variance and partial variances are as follows:

2wt Pt 1

a
Dgy=—+—+—+—, 74
tot 3 + 5 + 13 + 5 (74)
bt v r® 1
Di=—+— +— 75
2
a
D, = 3 (76)
Dy =0, (77)
D5 =0, (78)
Dy3 =0, (79)
b2
13 = o5 (80)
D93 =0. (81)

The corresponding variance values and Sobol sensitivities are listed in Table 1.

Variable | Partial Variance | Sobol Index | Sobol Total Index
(total) 13.8446 1 -
Y1 4.34589 0.3138 0.5574
Yo 6.125 0.4424 0.4424
Y3 0 0 0.2436
Y1, Y2 0 0 -
Y1, Y3 3.3737 0.2436 -
Y2, Y3 0 0 -
Y1,Y2, Y3 0 0 -

Table 1. Ishigami sensitivities and variances
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7 Sobol G-Function

Associated external model: gFunction.py

This function developed by Sobol has the benefit of tuning factors a,, that allow the importance
of any particular term to be increased or decreased. Because of the absolute value, this function is
quite challenging for polynomial expansion. Documentation can be found in [4]. The function is
represented by

|4yn —2[ + an
82
|| P (82)

where y,, are distributed uniformly on [0,1] and a,, are non-negative. a, are generally integers,
and smaller values lead to greater impact of corresponding y,,. As in [2] we use N = 8 with
a=1[1,2,5,10,20,50, 100, 500]. The partial variances are given by

1
D, = m7 (83)
N
D= [[(Dn+1)—1. (84)
n=1

Analytic values for Sobol sensitivities are given in Table 2.

Variable | Sobol sensitivity | Sobol total sensitivity
Y1 0.6037 0.6342
Y2 0.2683 0.2945
Y3 0.0671 0.0756
Y4 0.0200 0.0227
Ys 0.0055 0.0062
Ys 0.0009 0.0011
Y7 0.0002 0.0003
ys 0.0000 0.0000

Table 2. G-Function sensitivities and variances
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8 Risk Importance Measures

Associated test: tests/framework/PostProcessors/InterfacedPostProcessor/
test-riskMeasuresDiscreteMultipleIE.xml Risk Importance Measures (RIMs) are
originally defined for each basic event in a Event-Tree/Fault-Tree analysis. In a simulation based
environment similar calculations can employed for boolean models.

For each component ¢ and for each IE the following quantities are calculated:

* R° = probability of system failure
* R’ = probability of system failure given component i has failed

e R! = probability of system failure given component i is prefectly reliable

For each component ¢, four RIMs indexes can be computed:

RAW' = Ri /R®

RAW' = R/R!.

B'=R'R!,
« FVi=(R'— R.)/R°

In the asscoiated test, a system composed by four components (i.e., A, B, C and D) is analyzed
for 2 Initiating Events (IEs), IE1 and IE2. Data associated for each IE is as follows:

* IE1 (probability p1 = 0.01); 1 single MCS, M CS1 = A+ BC
* IE2 (probability p1 = 0.02); 1 single MCS, M CS2 = BC'D

In the associated test, the following probabilities are provided:

e pa =0.01
* pp=0.05
* pc=0.1

* pp = 0.02

25



Table 3. IE1: symbolic expressions of R, R% and R’

| RO R, R
A+BC [l BC
A+BC A+C A

A+BC A+B A
A+BC A+BC A+BC

onaw»

Table 4. IE1: numerical value of R?, Rﬂr and R%

| RO R, R
001495 1.0  0.005
0.01495 0.109  0.01

0.01495  0.0595 0.01
0.01495 0.01495 0.01495

oaQx®»

Table 5. IE2: symbolic expressions of R, R’ and R’

| RO R, R.
A |BCD BCD BCD
B|BCD CD -
C|BCD BD -
D|BCD BC BC

Table 6. IE2: numerical value of R°, R, and R"

| RO R, R.
0.0001 0.0001 0.0001
0.0001  0.002 0.0

0.0001  0.001 0.0
0.0001  0.005 0.0

Caw»

For each IE, the symbolic expressions and the numerical expressions of R’, R, and R" are
calculated (see Tables 3, 4, 5 and 6).

Given the values provided above it is possible to linearly weight them with the probability
associated to each IE (see Table 7).
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Table 7. IE1+IE2: numerical value for R, Ri and R%

RO R R’
0.0001515  0.010002  0.000052
0.0001515  0.00113  0.0001

0.0001515 0.000615 0.0001
0.0001515 0.0002495 0.0001495

(Wl @Rvell

Then, it is possible to obtain the values of each of the 4 RIMs for eah component:

Table 8. IE1+IE2: numerical value for R?, Ri and R%

RAW RRW FV B

66.01980198 2.913461538 0.656765677  0.00995
7.458745875 1.515 0.339933993  0.00103
4.059405941 1.515 0.339933993  0.000515
1.646864686 1.013377926 0.01320132  0.0001

Caw»

27



9 Parabolas

Associated external model: parabolas.py

This model is a simple N-dimensional parabolic response u(Y),

N
u(Y)=>_—v, (85)

n=1
where the uncertain inputs are Y = (41, - - , yn) and can be defined arbitrarily. For optimization

searches, it is possible to obtain a maximum in the interior of the input by assuring the range of
each input variable include 0. In this case, the maximum point will be 0V

28



10 Optimization Functions

The functions in this section are models with analytic optimal points.

10.1 General

10.1.1 Beale’s Function

Beale’s function has a two-dimensional input space and a single global/local minimum. See
https://en.wikipedia.org/wiki/Test_functions_for_ optimization.

e Function: f(x,y) = (1.5 — z + zy)* + (2.25 — z + 2y?)* + (2.625 — x + zy?)?
* Domain: —4.5 < x,y < 4.5

* Global Minimum: f(3,0.5) =0

10.1.2 Rosenbrock Function

The Rosenbrock function can take a varying number of inputs. For up to three inputs, a single
global minimum exists. For four to seven inputs, there is one local minimum and one global
maximum. See https://en.wikipedia.org/wiki/Rosenbrock_function.

Function: f(z) = 77" |100 (241 — 22)* + (2, — 1)2)

e Domain: —co<z; <00 V 1<i<n

Global Minimum: f(1,1,---,1,1) =0

Local minimum (n > 4): near f(—1,1,---,1)

10.1.3 Goldstein-Price Function

The Goldstein-Price function is a two-dimensional input function with a single global minimum.
See https://en.wikipedia.org/wiki/Test_functions_for_ optimization.
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¢ Function:

fley) =1+ (x+y+1)% (19 — 1da + 32° — 14y + 62y + 3y°) | (86)
- [30 + (22 — 3y)*(18 — 32z + 122” + 48y — 36zy + 27y*)]

* Domain: -2 < z,y <2
* Global Minimum: f(0,—1) =3
10.1.4 McCormick Function

The McCormick function is a two-dimensional input function with a single global minimum. See
https://en.wikipedia.org/wiki/Test_functions_for_optimization.

e Function: f(x,y) = sin(z +y) + (r —y)*> — 1.5z + 2.5y + 1
e Domain: —1.5 <r <4, -3<y<4

* Global Minimum: f(—0.54719, —1.54719) = —1.9133

10.2 Constrained

10.2.1 Mishra’s Bird Function

The Mishra bird function offers a constrained problem with multiple peaks, local minima, and one
steep global minimum. See https://en.wikipedia.org/wiki/Test_functions_
for_optimization.

Function: f(x,y) = sin(y) exp[1 — cos(z)]* + cos(x) exp[1l — sin(y)]* + (z — y)?

Constraint: (z + 5)% + (y + 5)% < 25

* Domain: —10<x <0,-65<y <0

Global Minimum: f(—3.1302468, —1.5821422) = —106.7645367
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