Approx. Clothoids with Ext. Winding#s

by Joel Gächter, and Jan Hakenberg, 2019-09-03

Background

The original clothoid appoximation scheme by [2019 Reif] performs all computations in the complex plane \mathbb{C} . The resulting clothoids are invariant under addition of multiples of 2π to the angles of the control points. For example, the clothoid between the two points (x = 0, y = 0, $\alpha = 0$) and (1, 0, 0) is identical to the clothoid generated between (0, 0, 0) and (1, 0, 2 π).

Contribution

We map the complex-valued operations of the original implementation to the SE(2) covering group. The new scheme in $\overline{\text{SE}(2)}$ preserves winding numbers beyond the range of $(-\pi, \pi)$.

Details

The original scheme involves approximating integrals of complex-valued functions. The main challenge in extending the scheme is to track the winding number in the numeric integration. Our current implementation [2019 IDSC/Frazzoli] handles one additional winding compared to the original scheme. The examples below show that the curvature profile of the clothoid approximation is non-linear, and even non-monotonous for some configurations. Investigations and possible enhancements are subject to future work.

References

[2019 Reif] *Clothoids and Subdivision;* talk at ETH Zürich [2019 IDSC/Frazzoli] https://github.com/idsc-frazzoli/owl

Examples

There is no difference between the original and extended schemes for angle differences in the range $(-\pi, \pi)$.

