
Constant Growth Software Development
by Jan Hakenberg based on discussions with Claudio Ruch
2019-10-29

Abstract

We present a systematic of programming activities and design principles that we consider to be necessary for 
steady, long-term growth of a software project. Every aspect of the software development has to scale with the 
size of the code base. Compromising on the principles reduces effectiveness of the developers.

Collaborating on a large software project is a social effort: Developers base their work on previous 
contributions and in turn create new functionality for themselves and future users to rely on. Writing tests and 
comments, may benefit future developers more than the programmer and therefore are altruistic acts. At all 
times, the overall software architecture and style has to inspire the developers to produce quality code in turn.

The allocation of work balances different programming activities, for instance feature development vs. 
maintenance. The programming language and tools must be suitable for the entire spectrum of tasks. We 
describe how traditional, time-consuming pitfalls can be avoided.

Using the go-kart as a use case, we illustrate how abstract design concepts were applied in practice, but also 
point to known shortcomings in our development pipeline.

Programming Activities

Topics Summary

New Features vision/ideas
research
project specifications
rapid prototyping

The objective is to create a working implementation fast.
The other activities will help to provide a neat and tidy 
environment to try-out/implement new ideas. Once new 
functionality has proven to be useful, the evaluation and 
repair work begins.

Visualization post-processing
analysis
reporting
graphical user interface
runtime efficiency

If the software processes a lot of data, then visualization 
of the data/intermediate-results allows to detect 
anomalies, and to be inspired for improvements/next-
steps.

Maintenance architecture
design conventions
refactoring/beautification
abstraction/eliminate redundancy
modularization
generalization/library

Maintenance results in many small files, functions with 
few lines of code, immutable objects, neat dependency 
trees/library layers, reduced visibility, and uniform code 
format. Efforts often reduce the line count of the code 
base, and generalize code from the application layer to a 
library.

Testing correctness/verification
documentation
code statistics
end-user/running applications
feedback

Rule of thumb: Every freshly implemented, math-heavy 
function in the main scope contains three mistakes on 
average. The mistakes may be identified by writing tests.
Tests fortify the implementation, and motivate to write 
more precise documentation, for instance the behavior of
a function on invalid input.



Types of Contributors

Developers: New Features/Visualization Reviewers: Maintenance/Testing

Enjoy adding new features rewriting code, writing tests

Need slim/well-documented interfaces immutability, reduced visibility, license to rename 
variables/functions, and relocate functions

Awareness ≤ 15% of all functionality close to 100% of the code base

Suffer 
from

bugs in the library layer large files/functions, duplicate code, classes with 
many fields

Minimal 
horizon

3 months 1 year

Conquer the Divide

Design Pitfalls Resolution

un-/signed int/long, float/double a single abstract scalar type

vector, matrices unifying concept: tensor

many lcm/ros/etc. messages a single omnipotent message type: variable-length binary array

several languages, scripts, makefiles use only one programming language with a simple build command

compile time increases with size of 
code base

low, constant amortized compile time

Timeless Pitfalls Resolution

duplicate code with minor differences object-oriented design

interwoven utility and application code distribute functionality across libraries

incorrect implementation of 
mathematical functions

correct implementation of mathematical functions

Unqualified Languages

Cpp: slow compilation, no introspection, complicated dependency management, compilers don’t agree on 
definition of language:
https://www.youtube.com/watch?v=tsG95Y-C14k

Python: no immutable fields, no strictly private functions, does not encourage object-oriented programming
https://mail.python.org/pipermail/tutor/2003-October/025932.html

Because Cpp (IDEs do not parse the code reliably) or python (language allows too much) do not allow 
effective reviewing and refactoring, the cost of maintenance grows exponential in the size of the project.

https://www.youtube.com/watch?v=tsG95Y-C14k
https://mail.python.org/pipermail/tutor/2003-October/025932.html


Guidelines applied in the Go-kart Project

Concept Examples of Implementation

Immutable objects All sensor/actuator messages are read-only.
The keyword final is used 8149 times in the code base.

Reduced visibility The keyword private is used 7142 times in the code base.

Minimal redundancy Implemented in a single place and used everywhere: Dot product, IIR1 filter, ...

Introspection Appending a human-configurable parameter is a one-line change. The GUI, and 
parameter storage is managed automatically through introspection

Object-oriented design ManualControlInterface is an interface implemented by a joystick configuration, as 
well as the ADC readout. Switching between the two operation modes is a one-line 
change.

Abstraction The generalization of affine combinations to points from non-linear spaces

Test code 40% of all code are tests

Respect the hardware Carrying out experiments with the robot is the most time consuming activity. Any 
preparatory measure that prevents the need to redo experiments is well invested.

Shortcomings of the Go-kart Project

Circumstance Negative implications

Dependency on commercial numerical solver The commercial third party solver is not available in the 
continuous integration. Safety critical parts of the software are
not covered by tests that run everywhere.

Reluctancy to investigate characteristics of 
hardware components

The reliance on hardware mandates an thorough investigation 
of the properties of the component; however, unless when 
anomalies occur, we do not allocate more resources beyond 
reaching a working version.

Desire to develop features; few incentives to 
write tests/documentation

Not all code in the application layer is reviewed immediately. 
In consequence, a mistake may go unnoticed for a while. 
Thorough review is reserved predominantly for core parts.

Frequent interruptions, hidden agendas of the 
project management, and a management that 
is ignorant of the engineering reality

These unfavorable distractions from the engineering work 
result in a reduction of effectiveness and technical quality of 
the project. There are also psychological effects.



Statistics of the Go-kart Project

References

T. DeMarco, T. Lister: Peopleware; Productive Projects and Teams
T. Schulz: Was Google wirklich will


