
SPARC manual

December 25, 2020

Contents

1 System installation 2

2 System usage 2
2.1 Querying mode . 4
2.2 Answer Set Mode . 5

3 Command Line Options 5

4 Syntax Description 6
4.1 Directives . 6
4.2 Sort definitions . 7
4.3 Predicate Declarations . 10
4.4 Program Rules . 10
4.5 Display (New!) . 11

5 Answer Sets 12

6 Typechecking 13
6.1 Type errors . 13

6.1.1 Sort definition errors . 13
6.1.2 Predicate declarations errors . 15
6.1.3 Program rules errors . 15

6.2 Type warnings . 16
6.2.1 ASP based warning checking . 16
6.2.2 Constraint solver based warning checking 17

7 SPARC and ASPIDE 18
7.1 Installation . 18
7.2 Creating Projects and Adding SPARC source files 19
7.3 Executing queries and computing Answer sets 20
7.4 Warnings Checking . 23

1

1 System installation

For using the system, you need to have the following installed:

1. Java Runtime Environment (JRE) can be found at
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html .
Java versions 1.8.0 181 or higher is required.

2. The SPARC to ASP translator. It can be downloaded at
https://github.com/iensen/sparc/blob/master/sparc.jar?raw=true .

3. An ASP solver. It can be one of the following:

(a) Clingo (recommended) https://github.com/potassco/clingo/releases .

(b) DLV http://www.dlvsystem.com/dlv/#1 . You need to download the static version
of the executable file.

4. (optional) Swi-Prolog. http://www.swi-prolog.org/. This item is only required if option
-wcon is used for type warning detection. (See sections 3 and 6.2.2).

If you are using the dlv solver, rename the solver executable file to dlv (dlv.exe for win-
dows).

Be sure the PATH system variable includes the directory where the solver executable
is located. For instructions on how to view/modify the PATH system variable, see ei-
ther of the following links:
http://www.java.com/en/download/help/path.xml

http://www.cyberciti.biz/faq/appleosx-bash-unix-change-set-path-environment-variable/

To check if the solver is installed correctly, run the command dlv -v (for dlv) or
clingo -v (for clingo). See figures 1 for dlv and 2 for clingo for examples of the ex-
pected output.

2 System usage

To demonstrate the usage of the system we will use the program Π below.

sorts
#person={bob,tim,andy}.
predicates
teacher(#person).
rules
teacher(bob).

The system can work in one of the two modes: querying mode and answer set mode.

2

http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
https://github.com/iensen/sparc/blob/master/sparc.jar?raw=true
https://github.com/potassco/clingo/releases
http://www.dlvsystem.com/dlv/#1
http://www.swi-prolog.org/
http://www.java.com/en/download/help/path.xml
http://www.cyberciti.biz/faq/appleosx-bash-unix-change-set-path-environment-variable/

Figure 1: Checking the version of DLV solver

Figure 2: Checking the version of Clingo solver

3

2.1 Querying mode

In this mode we can ask queries about a SPARC program loaded into the system. The
general command line syntax for this mode is java -jar sparc.jar program file. Queries in
SPARC are positive or negative literals of the forms p(t1, t2, . . . , tn) or−p(t1, t2, . . . , tn)
correspondingly, where p(t1, t2, . . . , tn) is an atom of the loaded program Π (note that
n can be equal to zero, in this case the query will be of the form p or -p).

The queries are answered as follows:

• The answer to a query l not containing variables is yes, if l(with all arithmetic
expressions evaluated) belongs to all answer sets of Π.

• The answer to a query l not containing variables is no, if −l(with double classical
negation removed and all arithmetic expressions evaluated) belongs to all answer
sets of Π.

• The answer to a query l not containing variables is unknown, if it is not yes or no.

• The answer to a query of the form l(l is an atom of the form p(t1, . . . , tn) possibly
preceeded by a negation sign) is a collection of assignments X1 = t1, . . . , Xn =
tn, where X1, . . . , Xn are all variables in p(t1, . . . , tn), t1, . . . , tn are ground terms,
and the answer to the query p(t1′, . . . , tn′), obtained from p(t1, . . . , tn) by replacing
each variable Xi by a ground term ti, is yes.

To run SPARC on the program above, we change current directory to a directory
having the file program.sp with the program written in it, and the downloaded file
sparc.jar. Then, we run the command:

username@machine:˜$ java -jar sparc.jar program.sp
SPARC V2.25
program translated
?- teacher(bob).
yes
?- teacher(tim).
unknown
?- teacher(X).
X = bob
?- teacher(john).
program.sp: argument number 1 of predicate teacher/1, "john",

violates definition of sort "person"
?-exit.

The answer to the first query ?- teacher(bob) is yes, because the atom teacher(bob)
belongs to the only answer set of Π.

The answer to the second query ?- teacher(tim) is unknown, because neither the
atom teacher(bob) nor its negation belongs to the answer set of Π.

4

The answer to the query ?- teacher(X) is X = bob, because there is only one re-
placement (bob) for X, such that teacher(X) belongs to the answer set of Π.

For the fourth query, we see an error, because teacher(john) is not an atom of Π.
To quit the querying engine, use exit command.

2.2 Answer Set Mode

In this mode we can see the computed answer sets of the loaded program. The general
command line syntax for this mode is java -jar sparc.jar program file -A.

For the program Π, the answer set may be computed as it is shown below:

username@machine:˜$ java -jar sparc.jar program.sp -A
SPARC V2.25
program translated
DLV [build BEN/Dec 16 2012 gcc 4.6.1]
{teacher(bob)}

3 Command Line Options

In this section we describe the meanings of command line options supported by SPARC.
Some options(flags) do not take an argument and have the form -option, while others re-
quire arguments and can be written in the form -option arg. For each command line
option, we indicate whether it requires an argument, and if so, we describe its meaning.

• -A

Compute answer sets of the loaded program.

• -wcon

Show warnings determined by CLP-based algorithm. See section 6.2.2

• -wasp 1 Show warnings determined by ASP-based algorithm. See section 6.2.1

• -solver arg Specify the solver which will be used for computing answer sets. arg
can have two possible values: dlv and clingo.

• (new!) -n [number]

Specify how many answer sets need to be displayed. This option can only be used
with option -A.

Examples:

• -n 2 will display two arbitrary answer sets. In case the program has less
than two answer sets, all of them will be shown.

1This option is temporarily broken, use -wcon instead

5

• -n 0 will display all the answer sets.

• -Help, -H, -help, –Help, –help, -h

Show help message.

• -o arg

Specify the output file where the translated ASP program will be written. arg is
the path to the output file. Note that if the option is not specified, the translated
ASP program will not be stored anywhere.

• input file

Specify the file where the sparc program is located.

4 Syntax Description

4.1 Directives

Directives should be written before sort definitions, at the very beginning of a program.
SPARC allows two types of directives:

#maxint

Directive #maxint specifies the maximum nonnegative number that could be used in
arithmetic calculations. For example,

#maxint=15.

limits integers to [0,15].

#const

Directive #const allows one to define constant values. The syntax is:

#const constantName = constantValue.

where constantName must begin with a lowercase letter and may be composed of let-
ters, underscores and digits, and constantV alue is either a nonnegative number or the
name of another constant defined before it.

6

4.2 Sort definitions

This section starts with a keyword sorts followed by a collection of sort definitions of
the form:

sort name = sort expression.

sort name is an identifier preceeded by the pound sign (#). sort expression on the right
hand side denotes a collection of strings called a sort. We divide all the sorts into basic
sorts and non-basic sorts.

Basic sorts are defined as named collections of numbers and identifiers, i.e, strings con-
sisting of

• letters: {a, b, c, d, ..., z, A,B,C,D, ..., Z}

• digits: {0, 1, 2, ..., 9}

• underscore:

and starting with a lowercase letter.
A non-basic sort also contains at least one record of the form id(α1, . . . , αn) where id is

an identifier and
α1, . . . , αn are either identifiers, numbers or records.

We define sorts by means of expressions (in what follows sometimes referred to as state-
ments) of six types:

1. numeric range is of the form:

number1..number2

where number1 and number2 are non-negative numbers such that number1 ≤ number2.
The expression defines the set

of sequential numbers
{number1, number1 + 1, . . . , number2}.
Example:

#sort1=1..3.

#sort1 consists of numbers {1, 2, 3}.

7

2. identifier range is of the form:

id1..id2

where id1 and id2 are identifiers both starting with a lowercase letter.

id1 should be lexicographically 2 smaller than or equal to id2, and the length of id1
must be less than or equal to the length of id2. That is, id1 ≤ id2 and |id1| ≤ |id2|.
The expression defines the set of strings {s : id1 ≤ s ≤ id2 ∧ |id1| ≤ |s| ≤ |id2|}.
Example:

#sort1=a..f.

#sort1 consists of letters {a, b, c, d, e, f}.

3. set of ground terms is of the form:

{t1, .., , tn}

The expression denotes a set of ground terms {t1, ..., tn}, defined as follows:

• numbers and identifiers are ground terms;

• If f is an identifier and α1, . . . , αn are ground terms, then f(α1, . . . , αn) is a
ground term.

Example:

#sort1={f(a),a,b,2}.

4. set of records is of the form:

f(sort name1(var1), ..., sort namen(varn)) : condition(var1, ..., varn)

where f is an identifier, for 1 ≤ i ≤ n, sort namei occurs in one of the preceeding
sort definitions and a condition on variables var1, ..., varn (written as condition(var1, ..., varn))
is defined as follows:

• if vari and varj occur in the sequence var1, ..., varn and � is an element of
{>,<,≤,≥}, then vari � varj is a condition on var1, ..., varn.

• if C1 and C2 are both conditions on var1, ..., varn, and⊕ is an element of {∪,∩},
then (C1 ⊕ C2) is a condition on var1, ..., varn.

• if C is a condition on var1, ..., varn, then not(C) is also a condition on var1, ..., varn.

2The system default encoding is used for ordering of individual characters

8

Variables var1, ..., varn occurring in parenthesis after sort names are optional as
well as the condition :condition(var1, ..., varn).

If a condition contains a subcondition vari � varj , then the sorts sortnamei and
sortnamej must be defined by basic statements (the definition of which is given
below after the definition of a concatenation statement).

The expression defines a collection of ground terms
{f(t1, . . . , tn) : t1 ∈ si ∧ · · · ∧ tn ∈ sn ∧ (condition(X1, . . . , Xn)|X1=t1,...,Xn=tn)}
Example

#s=1..2.
#sf=f(#s(X),#s(Y),#s(Z)): (X=Y or Y=Z).

The sort #sf consists of records {f(1, 1, 2), f(1, 1, 1), f(2, 1, 1)}

5. set-theoretic expression is in one of the following forms:

• #sort name

• an expression of the form 3, denoting a set of ground terms

• an expression of the form 4, denoting a set of records

• (S15S2), where5 ∈ {+,−, ∗} and both S1 and S2 are set theoretic expressions

#sort name must be a name of a sort occurring in one of the preceeding sort def-
initions. The operations + ∗ and − stand for union, intersection and difference
correspondingly.

Example :

#sort1={a,b,2}.
#sort2={1,2,3} + {a,b,f(c)} + f(#sort1).

#sort2 consists of ground terms {1, 2, 3, a, b, f(c), f(a), f(b), f(2)}.

6. concatenation is of the form

[b stmt1]...[b stmtn]

b stmt1, . . . , b stmtn must be basic statements, defined as follows:

• statements of the forms 1 to 3 are basic

• statement S of the form 5 is basic if:

– it does not contain sort expressions of the form 4, denoting sets of records,
– there is no records between any pair of matching curly brackets,
– all sorts occurring in S are defined by basic statements .

9

Note that basic statement can only define a basic sort.

Example3.:

#sort1=[b][1..100].

sort1 consists of identifiers {b1, b2, . . . , b100}.

4.3 Predicate Declarations

The second part of a SPARC program starts with the keyword predicates and is fol-
lowed by statements of the form

pred symbol(#sortName1, . . . ,#sortNamen)

Where pred symbol is an identifier (in what follows referred to as a predicate sym-
bol) and #sortName1,. . . ,#sortNamen are sorts defined in sort definitions section of the
program.

Multiple declarations containing the same predicate symbol are not allowed. 0-arity
predicates must be declared as pred symbol(). For any sort name #s, the system in-

cludes declaration #s(#s) automatically.

4.4 Program Rules

The third part of a SPARC program starts with the keyword rules followed by standard
ASP rules(supported by the specified ASP solver 4) , possibly enchanced by arithmetic
expressions of arbitrary depth (e.g, p(X*X*X*X+1).) and/or consistency restoring (cr)-
rules. CR-rules are of the following form:

[label :]l0
+← l1, . . . , lk, not lk+1 . . . not ln. (1)

where l’s are literals. Literals occurring in the heads of the rules must not be formed by
predicate symbols occurring as sort names in sort definitions. In addition, rules must
not contain unrestricted variables.

Definition 1 (Unrestricted Variable) A variable occurrung in a rule of a SPARC program is
called unrestriced if all its occurrences in the rule either belong to some relational atoms of the
form term1 rel term2 (where rel ∈ {>,>=, <,<=,=, ! =}) and/or some term appearing in a
head of a choice or aggregate element.

3We allow a shorthand ‘b‘ for singleton set {b}
4Currently, only DLV solver is fully supported(excluding #import directives). Clingo’s choice rules

and minimize statements will be added later

10

Example 1 Consider the following SPARC program:

sorts
#s={f(a),b}.
predicates
p(#s).
rules
p(f(X)):-Y<2,2=Z,F>3,#count{Q:Q<W,p(W),T<2},p(Y).

Variables F,T,Z,Q are unrestricted.

4.5 Display (New!)

The last (optional) section of the program starts from the keyword display and is
followed by a collection of literals of the program. Every literal is followed by a dot
symbol (’.’).

The section defines which literals are included into the output of answer sets computed
in answer set mode (section 2.2). A ground literal is included into the output if and only
if it is unifiable with one of the literals from the display section of the program.

If the display section is not present, the output contains all the literals formed by all
the predicates of the program.

For example, consider the program:

sorts
#s = {a,b,c,f(a),f(b)}.
predicates
p(#s).
q().
s(#s).
rules
s(a):- #s(b).
s(a) :- #s(b).
-q:- #s(a).
p(a) :- -q.
-p(b).
p(f(a)).
-p(f(b)).
display
-q.
-p(f(X)).
p(X).
#s.

11

The program has one answer set, and the following literals are shown in the output:

{-q, -p(f(b)), p(a), p(f(a)), #s(a), #s(b), #s(c),
#s(f(a)), #s(f(b))}

Note that, for example, p(b) is not shown because it is not unifiable with any of the
literals in the display section.

If the display section is removed from the program, the output is as follows:

{s(a), -q, p(a), p(f(a)), -p(b), -p(f(b))}

Note that, when compared to the previous scenario, the literals formed by sort names
are not included into the output.

5 Answer Sets

A set of ground literals S is an answer set of a SPARC program Π with regular rules
only if S is an answer set of an ASP program consisting of the same rules.

To define the semantics of a general SPARC program, we need notation for abductive
support. By α(r) we denote a regular rule obtained from a consistency restoring rule r
by replacing +← by ←; α is expanded in the standard way to a set X of CR-rules, i.e.,
α(A) = {α(r) : r ∈ A}. A collection A of CR-rules of Π such that

1. R ∪ α(X) is consistent (i.e., has an answer set), and

2. any R0 satisfying the above condition has cardinality which is greater than or
equal to that of R

is called an abductive support of Π. A set of ground literals S is an answer set of a SPARC

program Π if S is an answer set of R ∪ α(A), where R is the set of regular rules of Π, for
some abductive support A of Π.

Example

sorts
#s1={a}. % term "a" has sort "s1"

predicates
p(#s1). %predicate "p" accepts terms of sort s1
q(#s1). %predicate "q" accepts terms of sort s1

rules
p(a) :- not q(a).
-p(a).
q(a):+. % this is a CR-RULE.

12

Result:

username@machine:˜$ java -jar sparc.jar program -A
SPARC V2.25
program translated
DLV [build BEN/Dec 16 2012 gcc 4.6.1]

Best model: {-p(a), appl(r_0), q(a)}
Cost ([Weight:Level]): <[1:1]>

Additional literal appl(r0) was added to the answer set, which means that the first cr-
rule from the program was applied.

6 Typechecking

If no syntax errors are found, a static check of the program is performed. Any type-
related problems found during this check are classified into type errors and type warn-
ings.

6.1 Type errors

Type errors are considered as serious issues which make it impossible to compile and
execute the program. Type errors can occur in all four sections of a SPARC program.

6.1.1 Sort definition errors

The following are possible causes of a sort definition error that will result in a type error
message from SPARC:

1. A set-theoretic expression (statement 5 in section 4.2) containing a sort name that
has not been defined.

Example:

sorts
#s={a}.
#s2=#s1-#s.

2. Declaring a sort more than once.

Example:

sorts
#s={a}.
#s={b}.

13

3. An identifier range id1..id2 (statement 2 in section 4.2) where id1 is greater than id2.

Example:

sorts
#s=zbc..cbz.

4. A numeric range n1..n2 (statement 1 in section 4.2) where n1 is greater than n2.

Example:

sorts
#s=100500..1.

5. A numeric range (statement 2 in section 4.2) n1..n2 that contains an undefined
constant.

Example:

#const n1=5.
sorts
#s=n1..n2.

6. An identifier range id1..id2 (statement 3 in section 4.2) where the length of id1 is
greater than the length of id2.

Example:

sorts
#s=abc..a.

7. A concatenation (statement 4 in section 4.2) that contains a non-basic sort.

Example:

sorts
#s={f(a)}.
#sc=[a][#s].

8. A record definition (statement 5 in section 4.2) that contains an undefined sort.

Example:

sorts
#s=1..2.
#fs=f(#s,#s2).

14

9. A record definition (statement 5 in section 4.2) that contains a condition with rela-
tion >,<,≥,≤ such that the corresponding sorts are not basic.

Example:

#s={a,b}.
#s1=f(#s).
#s2=g(s1(X),s2(Y)):X>Y.

10. A variable that is used more than once in a record definition (statement 5 in section
4.2).

Example:

sorts
#s1={a}.
#s=f(#s1(X),#s1(X)):(X!=X).

11. A sort that contains an empty collection of ground terms.

Example

sorts
#s1={a,b,c}
#s=#s1-{a,b,c}.

6.1.2 Predicate declarations errors

1. A predicate with the same name is defined more than once. Example:

sorts
#s={a}.
predicates
p(#s).
p(#s,#s).

2. A predicate declaration contains an undefined sort. Example:

sorts
#s={a}.
predicates
p(#ss).

6.1.3 Program rules errors

In program rules we first check each atom of the form p(t1, . . . , tn) and each term occur-
ring in the program Π for satisfying the definitions of program atom and program term
correspondingly[1]. Moreover, we check that no sort occurs in a head of a rule of Π.

15

6.2 Type warnings

During this phase each rule in input SPARC program is checked for having at least one
ground instance. Warnings are reported if no ground instance for a SPARC rule was
found. Two options are available:

• -wcon: find warnings using constraint solver algorithm described in [1].

• -wasp: find warnings using ASP-based algorithm.

While both algorithms are intended to produce same results, their execution time
may vary. We recommend using constraint solver based option for programs involving
many arithmetic terms and numeric sorts and ASP-based checker for programs with
many deeply-nested records and symbolic terms.

6.2.1 ASP based warning checking

The option -wasp should be passed to the system to detect and display warnings using
a simple ASP based algorithm. For example, consider the SPARC program below.

sorts
#s1={a}.
#s2=f(#s1).
#s3={b}.

predicates
p(#s2).
q(#s3).

rules
p(f(X)):-q(X).

The only rule of the program has no ground instances with respect to defined sorts.
The execution trace is provided below

username@machine:˜$ java -jar sparc.jar program.sp -A -wasp
-solveropts "-pfilter=warning"

SPARC V2.29.5
program translated
DLV [build BEN/Dec 16 2012 gcc 4.6.1]
{ warning("p(f(X)):-q(X). (line: 11, column: 1)")}

The atom warning("p(f(X)):-q(X). (line: 11, column: 1)") is in-
cluded into the answer set as an indicator of potential problem.

In general, when the -wasp is passed to SPARC system, each answer set will con-
tain

16

warning("rule description")

for each rule which has no ground instances5 and

has_ground_instance("rule description")

for all other rules of the input program.

6.2.2 Constraint solver based warning checking

The option -wcon must be passed to the system in order to detect and display warnings
using the algorithm described in [1]. Consider the following SPARC program:

#maxint = 1000.
sorts
#s = 1..1000.
predicates
p(#s).
q(#s).
rules
p(X-600):- q(X+600).

The only rule of the program has no ground instances with respect to defined sorts.
The execution trace is provided below

username@machine:˜$ java -jar sparc.jar program.sp -A -wcon
-solveropts "-pfilter=p"

%WARNING: Rule p(X-600):-q(X+600). at line 8, column 1
is an empty rule
program translated
DLV [build BEN/Dec 16 2012 gcc 4.6.1]
{}

The message

WARNING: Rule p(f(X)):-q(X). at line 8, column 1 is an empty rule

is an indicator of a potential problem.

5in current version, aggregates are skipped by this algorithm

17

7 SPARC and ASPIDE

7.1 Installation

For using SPARC in ASPIDE, you will need to install ASPIDE(version 1.42 or greater).
The installer is available from https://www.mat.unical.it/ricca/aspide/download.html . See the
instructions here: https://www.mat.unical.it/ricca/aspide/documentation.html . Once ASPIDE
is installed, go to File ->Plug-ins ->Available plugins menu, and press install button in
the row containing SPARC plug-in (see Fig.3).

Figure 3: Installing SPARC plugin

18

https://www.mat.unical.it/ricca/aspide/download.html
https://www.mat.unical.it/ricca/aspide/documentation.html

7.2 Creating Projects and Adding SPARC source files

ASPIDE uses workspaces to store projects. Workspace is a folder that can contain multiple
projects. ASPIDE can have only one workspace opened, that is selected by a user when
ASPIDE starts. Source files should belong to a project to be used by ASPIDE query
engine and answer set computation tools.

• To create a new project, go to the menu File ->New and select New Project submenu.
Specify the project name in the pop-up window and click on Finish button. You
should see a new project appeared in workspace explorer.

• To add a new SPARC file, right click on the project to display context menu and
select New ->File ->SPARC File as it is shown on Figure 4 . Choose the file name
in the pop-up window. You should see a new file added under the project in
workspace explorer and displayed in ASPIDE editor window.

Figure 4: Adding SPARC source file

19

7.3 Executing queries and computing Answer sets

You can execute queries and compute answer sets as for usual ASP file. To execute a
query, open a sparc file in the ASPIDE editor and click on the button with a question
mark in the toolbar:

Figure 5: Open Query Interface

A window will appear where you can input and run queries. To run a query,

• mark Epistemic Mode checkbox (this is to follow the definition of query given in
the class)

• input your query into editbox named Query or select one from history

The results will appear in the listview named Results. See fig 6 for details.

20

Figure 6: Execute a query

21

To compute answer sets of the program, press the button with green arrow marked
on figure 7.

Figure 7: Open answer sets window

In the appeared Run Configurations window:

• make sure a correct path to dlv in selected in Executable listbox.

• press Run button to see the answer sets

Figure 8: Run configurations window

22

In the displayed window, answer sets are grouped by predicate symbols in their
literals. On figure 9, two answer sets are shown. The first one contains two literals
p(a, b) and p(e, f) and some literals with predicate symbol q.

Figure 9: Answer Sets

7.4 Warnings Checking

To see allow ASPIDE to show warnings (section 6.2), you need to install swi-prolog on
your system. Swi-prolog is available from http://www.swi-prolog.org/Download.html

After swi-prolog is installed, go to the ASPIDE menu File ->Preferences. In the ap-
peared window select the tab Executables/Solvers and add a new executable named
swipl with a path pointing to the swi-prolog executable. Usually, it is named swipl in
Unix/MacOS operating system and swipl.exe in Windows. Click on Save button to close
the window. See the details on figure 10. After the executable is added, you need to

23

http://www.swi-prolog.org/Download.html

Figure 10: Adding swi-prolog executable

specify a flag property for the SPARC plug-in to make it check warnings. Go to AS-
PIDE menu File ->Plug-ins ->Manage Plug-ins. In the appeared window click on the cell
Properties in SPARC plug-in line and add a new property CHECK WARNINGS=TRUE as
it is shown on figure 11. Click on Close button to save the results. RESTART ASPIDE
FOR THE NEW CHANGES TO TAKE EFFECT.

24

Figure 11: Adding swi-prolog executable

After the restart, you should be able to see the warnings in the left lower corner of
aspide interface (Error Console).

References

[1] Evgenii Balai, Michael Gelfond, and Yuanlin Zhang. Towards answer set program-
ming with sorts. In Logic Programming and Nonmonotonic Reasoning, pages 135–147.
Springer, 2013.

25

	System installation
	System usage
	Querying mode
	Answer Set Mode

	Command Line Options
	Syntax Description
	Directives
	Sort definitions
	Predicate Declarations
	Program Rules
	Display (New!)

	Answer Sets
	Typechecking
	Type errors
	Sort definition errors
	Predicate declarations errors
	Program rules errors

	Type warnings
	ASP based warning checking
	Constraint solver based warning checking

	SPARC and ASPIDE
	Installation
	Creating Projects and Adding SPARC source files
	Executing queries and computing Answer sets
	Warnings Checking

