SPARC manual

December 25, 2020

Contents

[1 System installation|

2 System usage|
RI Queryingmode|

3 Command Line Options|

|4_l SXntax Descrigtion|
BT Directives v v v o e

4.4 ProgramRules|. 0 oo oo
4.5 Display (New!)[. o

[5__Answer Sets|

|6 TXp_echecking]
6.1 Typeerrors|.
6.1.1 Sortdefinition errors|

.12 Predicate declarations errors|
[0-1.3 Programruleserrors|
b2 Typewarnings|.
6.2.1 ASP based warning checking|00
0.2.2 Constraint solver based warning checking|

7 _SPARC and ASPIDE
[Z1 Installationl
[7.2 Creating Projects and Adding SPARC sourcefiles|
[7.3 " Executing queries and computing Answersets|
74 Warnings Checking|

1 System installation

For using the system, you need to have the following installed:

1. Java Runtime Environment (JRE) can be found at
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads—-2133155.html .
Java versions 1.8.0_181 or higher is required.

2. The SPARC to ASP translator. It can be downloaded at

https://github.com/iensen/sparc/blob/master/sparc. jar?raw=true.
3. An ASP solver. It can be one of the following:

(a) Clmgo (recommended) https://github.com/potassco/clingo/releases .

(b) DLV http://waw.dlvsystem.com/dlv/¢1/. You need to download the static version
of the executable file.

4. (optional) Swi-Prolog. nttp://wwu.swi-proleg.org/. This item is only required if option
-wcon is used for type warning detection. (See sections 3|and 6.2.2).

If you are using the dlv solver, rename the solver executable file to dlv (dlv.exe for win-
dows).

Be sure the PATH system variable includes the directory where the solver executable
is located. For instructions on how to view/modify the PATH system variable, see ei-
ther of the following links:
http://www. java.com/en/download/help/path.xml
http://www.cyberciti.biz/fag/appleosx—-bash-unix-change-set-path-environment-variable/

To check if the solver is installed correctly, run the command d1v -v (for dlv) or
clingo -v (for clingo). See figures (1] for dlv and 2| for clingo for examples of the ex-
pected output.

2 System usage

To demonstrate the usage of the system we will use the program II below.

sorts
#person={bob, tim, andy}.
predicates

teacher (#person) .

rules

teacher (bob) .

The system can work in one of the two modes: querying mode and answer set mode.

http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
https://github.com/iensen/sparc/blob/master/sparc.jar?raw=true
https://github.com/potassco/clingo/releases
http://www.dlvsystem.com/dlv/#1
http://www.swi-prolog.org/
http://www.java.com/en/download/help/path.xml
http://www.cyberciti.biz/faq/appleosx-bash-unix-change-set-path-environment-variable/

Terminal

username@machine:~% dlv -v
DLV [build BEN/Dec 16 2812 gcc 4.6.1]

Copyright 1996-2011 Nicola Leone, Gerald Pfeifer, and Wolfgang Faber.

This software is free for academic and non-commercial educational use,

as well as for use by non-profit organisations.

For further information (including commercial use and evaluation licenses)
please contact leone@unical.it, gerald@pfeifer.com, and wf@wfaber.com.

username@machine:~5% I

Figure 1: Checking the version of DLV solver

iensen@iensen-OptiPlex-755: ~/sparc_project S
username@machine:~$% clingo -v

clingo version 4.2.1

Address model: 32-bit

libgringo version 4.2.1

Copyright (C) Roland Kaminski

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
Gringo is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

libclasp version 2.2-TP (Rev. 38341)

Configuration: WITH_THREADS=0

Copyright (C) Benjamin Kaufmann

License GPLv2+: GNU GPL version 2 or later <http://gnu.org/licenses/gpl.html>
clasp is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

username@machine:~$ [j

Figure 2: Checking the version of Clingo solver

2.1 Querying mode

In this mode we can ask queries about a SPARC program loaded into the system. The
general command line syntax for this mode is java -jar sparc.jar program_file. Queries in
SPARC are positive or negative literals of the forms p(¢1,¢2,...,tn) or —p(t1,12,...,tn)
correspondingly, where p(1,¢2,...,tn) is an atom of the loaded program II (note that
n can be equal to zero, in this case the query will be of the form p or -p).

The queries are answered as follows:

* The answer to a query [not containing variables is yes, if [(with all arithmetic
expressions evaluated) belongs to all answer sets of I1I.

* The answer to a query [not containing variables is no, if —{(with double classical
negation removed and all arithmetic expressions evaluated) belongs to all answer
sets of II.

¢ The answer to a query ! not containing variables is unknown, if it is not yes or no.

* The answer to a query of the form I(/ is an atom of the form p(¢1,...,tn) possibl
preceeded by a negation sign) is a collection of assignments X; = ¢;,..., X, =
t,, where Xi,..., X, are all variables in p(t1,...,tn), t1,...,t, are ground terms,
and the answer to the query p(t1’, ..., tn’), obtained from p(t1,. .., tn) by replacing
each variable X; by a ground term ¢;, is yes.

To run SPARC on the program above, we change current directory to a directory
having the file program. sp with the program written in it, and the downloaded file
sparc. jar. Then, we run the command:

username@machine:~$ java —jar sparc.jar program.sp

SPARC V2.25

program translated

?— teacher (bob) .

yes

?— teacher(tim).

unknown

?— teacher (X) .

X = bob

?— teacher (john) .

program.sp: argument number 1 of predicate teacher/1, "Jjohn",
violates definition of sort "person"

?-exit.

The answer to the first query 2~ teacher (bob) isyes, because the atom teacher(bob)
belongs to the only answer set of II.

The answer to the second query ?— teacher (tim) is unknown, because neither the
atom teacher(bob) nor its negation belongs to the answer set of II.

The answer to the query ?- teacher (X) is X = bob, because there is only one re-
placement (bob) for X, such that teacher(X) belongs to the answer set of I1I.

For the fourth query, we see an error, because teacher(john) is not an atom of II.

To quit the querying engine, use exit command.

2.2 Answer Set Mode

In this mode we can see the computed answer sets of the loaded program. The general
command line syntax for this mode is java -jar sparc.jar program file -A.
For the program II, the answer set may be computed as it is shown below:

username@machine:~$ java —jar sparc.jar program.sp —-A
SPARC V2.25

program translated

DLV [build BEN/Dec 16 2012 gcc 4.6.1]

{teacher (bob) }

3 Command Line Options

In this section we describe the meanings of command line options supported by SPARC.

Some options(flags) do not take an argument and have the form -option, while others re-

quire arguments and can be written in the form -option arg. For each command line

option, we indicate whether it requires an argument, and if so, we describe its meaning.
s -A

Compute answer sets of the loaded program.

® -wcon

Show warnings determined by CLP-based algorithm. See section[6.2.2]
* -wasp[[|Show warnings determined by ASP-based algorithm. See section[6.2.1]

¢ -solver arg Specify the solver which will be used for computing answer sets. arg
can have two possible values: dlv and clingo.
¢ (new!) -n [number]

Specify how many answer sets need to be displayed. This option can only be used
with option -A.

Examples:

e —n 2 will display two arbitrary answer sets. In case the program has less
than two answer sets, all of them will be shown.

IThis option is temporarily broken, use -wcon instead

5

e —n 0 will display all the answer sets.

e -Help, -H, -help, —-Help, -help, -h

Show help message.

* -0arg

Specify the output file where the translated ASP program will be written. arg is
the path to the output file. Note that if the option is not specified, the translated
ASP program will not be stored anywhere.

¢ input file
Specity the file where the sparc program is located.

4 Syntax Description

4.1 Directives

Directives should be written before sort definitions, at the very beginning of a program.
SPARC allows two types of directives:

#maxint

Directive #maxint specifies the maximum nonnegative number that could be used in
arithmetic calculations. For example,

fmaxint=15.
limits integers to [0,15].

#const

Directive #const allows one to define constant values. The syntax is:
#const constantName = constantValue.
where constant Name must begin with a lowercase letter and may be composed of let-

ters, underscores and digits, and constantV alue is either a nonnegative number or the
name of another constant defined before it.

4.2 Sort definitions

This section starts with a keyword sorts followed by a collection of sort definitions of
the form:

sort_name = sort_expression.

sort_name is an identifier preceeded by the pound sign (#). sort_expression on the right
hand side denotes a collection of strings called a sort. We divide all the sorts into basic
sorts and non-basic sorts.

Basic sorts are defined as named collections of numbers and identifiers, i.e, strings con-
sisting of

e letters: {a,b,c,d,...,z,A,B,C,D,.... Z}
e digits: {0,1,2,...,9}
e underscore: _

and starting with a lowercase letter.

A non-basic sort also contains at least one record of the form id(ay, ..., a,) where id is
an identifier and

ai, ..., q, are either identifiers, numbers or records.

We define sorts by means of expressions (in what follows sometimes referred to as state-
ments) of six types:

1. numeric range is of the form:
number;..numbers

where number, and number; are non-negative numbers such that number; < numbers.
The expression defines the set

of sequential numbers
{numbery, number, + 1,... numbers}.

Example:

#sortl=1..3.

#sortl consists of numbers {1, 2, 3}.

2. identifier range is of the form:

1dy..ido

where id; and id; are identifiers both starting with a lowercase letter.

idy should be lexicographically f|smaller than or equal to id, and the length of id;
must be less than or equal to the length of id,. That is, id; < idy and |id;| < |ids|.

The expression defines the set of strings {s : idy < s < idy A |idy| < |s| < |idy|}.
Example:

#sortl=a..f.

#sort1 consists of letters {a,b,c,d, e, f}.

3. set of ground terms is of the form:

{tb "Mtn}

The expression denotes a set of ground terms {ty, ..., t,}, defined as follows:

e numbers and identifiers are ground terms;
e If f is an identifier and a4, ..., a, are ground terms, then f(ay,...,qa,) is a
ground term.

Example:
#sortl={f(a),a,b,2}.

4. set of records is of the form:

f(sort_name;(vary), ..., sort_name,(vary)) : condition(vary, ..., var,)

where f is an identifier, for 1 < i < n, sort_name; occurs in one of the preceeding
sort definitions and a condition on variables vary, ..., var, (written as condition(vary, ..., var,))
is defined as follows:

e if var; and var; occur in the sequence vary, ...,var, and © is an element of
{>, <, <, >}, then var; © var; is a condition on vary, ..., vary,.

e if C; and C; are both conditions on vary, ..., var,, and @ is an element of {U, N},
then (C; @ Cy) is a condition on vary, ..., var,.

e if Cisacondition onvary, ..., var,, then not(C) is also a condition on vary, ..., vary,.

The system default encoding is used for ordering of individual characters

Variables vary, ..., var,, occurring in parenthesis after sort names are optional as
well as the condition :condition(vary, ..., var,).

If a condition contains a subcondition var; ® wvar;, then the sorts sortname; and
sortname; must be defined by basic statements (the definition of which is given
below after the definition of a concatenation statement).

The expression defines a collection of ground terms
{f(t1,.. . tn) tt1 €5, A -+ Aty € 5, A (condition(Xq, ..., Xp)|xi=t1,... Xn=tn) }

Example

#s=1..2.
#sf=f (#s(X),#s(Y),#s(2Z)): (X=Y or Y=Z).

The sort #s £ consists of records { f(1,1,2), f(1,1,1), f(2,1,1)}
. set-theoretic expression is in one of the following forms:

o #Hsort_name
* an expression of the form 3, denoting a set of ground terms

* an expression of the form 4, denoting a set of records

(S1vS2), where 57 € {+, —, *} and both S; and S, are set theoretic expressions

#sort_name must be a name of a sort occurring in one of the preceeding sort def-
initions. The operations + * and — stand for union, intersection and difference
correspondingly.

Example :

#sortl={a,b,2}.
#sort2={1,2,3} + {a,b,f(c)} + f(#sortl).

#sort2 consists of ground terms {1,2,3,a,b, f(c), f(a), f(b), f(2)}.
. concatenation is of the form

[b_stmty]...[b_stmt,,]

b_stmty, ..., b_stmt, must be basic statements, defined as follows:

e statements of the forms 1 to 3 are basic
e statement S of the form 5 is basic if:

— it does not contain sort expressions of the form 4, denoting sets of records,
— there is no records between any pair of matching curly brackets,
— all sorts occurring in S are defined by basic statements .

Note that basic statement can only define a basic sort.
Exampld}:

#sortl=[b][1..100].

sort1 consists of identifiers {01,052, ...,b100}.

4.3 Predicate Declarations

The second part of a SPARC program starts with the keyword predicates and is fol-
lowed by statements of the form

pred_symbol(#sort Namey, . . ., #sort Name,,)

Where pred_symbol is an identifier (in what follows referred to as a predicate sym-
bol) and #sort Namey,...,#sortName, are sorts defined in sort definitions section of the
program.

Multiple declarations containing the same predicate symbol are not allowed. 0-arity
predicates must be declared as pred_symbol(). For any sort name #s, the system in-

cludes declaration #s(#s) automatically.

4.4 Program Rules

The third part of a SPARC program starts with the keyword rules followed by standard
ASP rules(supported by the specified ASP solver [} , possibly enchanced by arithmetic
expressions of arbitrary depth (e.g, p(X*X*X*X+1).) and/or consistency restoring (cr)-
rules. CR-rules are of the following form:

[label Jlg <= 11, ..., L, not Lgyy - . .ot 1. (1)

where [’s are literals. Literals occurring in the heads of the rules must not be formed by
predicate symbols occurring as sort names in sort definitions. In addition, rules must
not contain unrestricted variables.

Definition 1 (Unrestricted Variable) A variable occurrung in a rule of a SPARC program is
called unrestriced if all its occurrences in the rule either belong to some relational atoms of the
form terml rel term2 (where rel € {>, >=, <, <=,=,! =}) and/or some term appearing in a
head of a choice or agqregate element.

3We allow a shorthand ‘b’ for singleton set {b}
Currently, only DLV solver is fully supported(excluding #import directives). Clingo’s choice rules
and minimize statements will be added later

10

Example 1 Consider the following SPARC program:

sorts

#s={f(a),b}.

predicates

p (#s) .

rules

p(f (X)) :-Y<2,2=Z,F>3, #count {Q:Q<W,p (W), T<2},p(Y) .

Variables F,T,Z,Q are unrestricted.

4.5 Display (New!)

The last (optional) section of the program starts from the keyword display and is
followed by a collection of literals of the program. Every literal is followed by a dot
symbol (".").

The section defines which literals are included into the output of answer sets computed
in answer set mode (section 2.2). A ground literal is included into the output if and only
if it is unifiable with one of the literals from the display section of the program.

If the display section is not present, the output contains all the literals formed by all
the predicates of the program.

For example, consider the program:

sorts

#s = {a,b,c,f(a),f(b)}.
predicates

p (#s) .

a().

s (#s) .

rules

s(a):— #s(b).
s(a) :— #s(b).
-q:— #s(a).
p(a) := —q.
-p (b) .
p(f(a)).
-p(f(b)).
display

-q.

-p(f£(X)).
p(X) .

#s.

11

The program has one answer set, and the following literals are shown in the output:

{-g, -p(f(b)), p(a), p(f(a)), #s(a), #s(b), #s(c),
#s(f(a)), #s(f(b))}

Note that, for example, p (b) is not shown because it is not unifiable with any of the
literals in the display section.

If the display section is removed from the program, the output is as follows:
{s(a), —q, p(a), p(f(a)), -pd), -p(f(b))}

Note that, when compared to the previous scenario, the literals formed by sort names
are not included into the output.

5 Answer Sets

A set of ground literals S is an answer set of a SPARC program II with regular rules
only if S is an answer set of an ASP program consisting of the same rules.

To define the semantics of a general SPARC program, we need notation for abductive
support. By «(r) we denote a regular rule obtained from a consistency restoring rule r

by replacing hat by «; « is expanded in the standard way to a set X of CR-rules, i.e.,
a(A) ={a(r) : r € A}. A collection A of CR-rules of II such that
1. RUa(X) is consistent (i.e., has an answer set), and

2. any R, satisfying the above condition has cardinality which is greater than or
equal to that of R

is called an abductive support of 11. A set of ground literals S is an answer set of a SPARC

program II if S is an answer set of R U a(A), where R is the set of regular rules of I, for
some abductive support A of II.

Example

sorts

#sl={a}. % term "a" has sort "sl1"

predicates

p(#sl). %$predicate "p" accepts terms of sort sl
q(#sl). S%predicate "g" accepts terms of sort sl
rules

p(a) :— not g(a).

“p(a).

g(a):+. % this is a CR-RULE.

12

Result:

username@machine:”$ java —jar sparc.jar program —-A
SPARC V2.25

program translated

DLV [build BEN/Dec 16 2012 gcc 4.6.1]

Best model: {-p(a), appl(r_0), g(a)}
Cost ([Weight:Level]): <[1:1]1>

Additional literal appl(ro) was added to the answer set, which means that the first cr-
rule from the program was applied.

6 Typechecking

If no syntax errors are found, a static check of the program is performed. Any type-
related problems found during this check are classified into type errors and type warn-
ings.

6.1 Type errors
Type errors are considered as serious issues which make it impossible to compile and
execute the program. Type errors can occur in all four sections of a SPARC program.

6.1.1 Sort definition errors

The following are possible causes of a sort definition error that will result in a type error
message from SPARC:

1. A set-theoretic expression (statement 5 in section containing a sort name that
has not been defined.

Example:

sorts
#s={a}.
#s2=#sl—#s.

2. Declaring a sort more than once.
Example:
sorts
#s={a}.
#s={b}.

13

. Anidentifier range id, ..id, (statement 2 in section where id, is greater than ids.

Example:

sorts
#s=zbc..cbz.

. A numeric range n;..n, (statement 1 in section where n, is greater than n.

Example:

sorts
#s=100500..1.

. A numeric range (statement 2 in section ni..ny that contains an undefined
constant.

Example:

#const nl=5.
sorts
#s=nl..n2.

. An identifier range id;..idy (statement 3 in section where the length of id; is
greater than the length of id,.

Example:

sorts
#s=abc..a.

. A concatenation (statement 4 in section [4.2) that contains a non-basic sort.

Example:
sorts
#s={f(a)}.
#sc=[a] [#s].

. A record definition (statement 5 in section |4.2)) that contains an undefined sort.

Example:
sorts

#s=1..2.
#fs=f (#s,#s2) .

14

9. A record definition (statement 5 in section 4.2)) that contains a condition with rela-
tion >, <, >, < such that the corresponding sorts are not basic.

Example:

#s={a,b}.
#sl=f (#s).
#s2=g(s1(X),s2(Y)) :X>Y.

10. A variable that is used more than once in a record definition (statement 5 in section
4.2).

Example:

sorts
#sl={a}.
#s=f (#s1 (X), #s1 (X)) : (X!=X) .

11. A sort that contains an empty collection of ground terms.

Example

sorts
#sl={a,b,c}
#s=#sl-{a,b,c}.

6.1.2 Predicate declarations errors

1. A predicate with the same name is defined more than once. Example:

sorts
#s={a}.
predicates
p(#s).

p (#s, #s) .

2. A predicate declaration contains an undefined sort. Example:

sorts
#s={a}.
predicates
p (#ss).

6.1.3 Program rules errors

In program rules we first check each atom of the form p(t,, .. .,t,) and each term occur-
ring in the program II for satisfying the definitions of program atom and program term
correspondingly[1]. Moreover, we check that no sort occurs in a head of a rule of II.

15

6.2 Type warnings

During this phase each rule in input SPARC program is checked for having at least one
ground instance. Warnings are reported if no ground instance for a SPARC rule was
found. Two options are available:

¢ —wcon: find warnings using constraint solver algorithm described in [1]].
* —wasp: find warnings using ASP-based algorithm.

While both algorithms are intended to produce same results, their execution time
may vary. We recommend using constraint solver based option for programs involving
many arithmetic terms and numeric sorts and ASP-based checker for programs with
many deeply-nested records and symbolic terms.

6.2.1 ASP based warning checking

The option ~wasp should be passed to the system to detect and display warnings using
a simple ASP based algorithm. For example, consider the SPARC program below.

sorts
#sl={a}.
#s2=1f (#s1) .
#s3={b}.

predicates
p(#s2).
g(#s3) .

rules
p(f (X)) :—g(X) .

The only rule of the program has no ground instances with respect to defined sorts.
The execution trace is provided below

username@machine:”$ java —-jar sparc.jar program.sp —-A -wasp
—solveropts "-pfilter=warning"

SPARC V2.29.5

program translated

DLV [build BEN/Dec 16 2012 gcc 4.6.1]

{ warning ("p(£f(X)) :—=g(X). (line: 11, column: 1)")}

The atom warning ("p (£ (X)) :=g(X) . (line: 11, column: 1)") isin-
cluded into the answer set as an indicator of potential problem.

In general, when the —wasp is passed to SPARC system, each answer set will con-
tain

16

warning ("rule description")
for each rule which has no ground instances’|and

has_ground_instance ("rule description™)

for all other rules of the input program.

6.2.2 Constraint solver based warning checking

The option ~wcon must be passed to the system in order to detect and display warnings
using the algorithm described in [1]. Consider the following SPARC program:

#maxint = 1000.
sorts

#s = 1..1000.
predicates

p (#s).

q(#s) .

rules

P (X-600) : = g(X+600) .

The only rule of the program has no ground instances with respect to defined sorts.
The execution trace is provided below

username@machine:”$ java —jar sparc.jar program.sp —-A —-wcon
—-solveropts "-pfilter=p"

SWARNING: Rule p (X-600) :—g(X+600). at line 8, column 1

is an empty rule

program translated

DLV [build BEN/Dec 16 2012 gcc 4.6.1]

{1

The message
WARNING: Rule p(f(X)):—-g(X). at line 8, column 1 is an empty rule

is an indicator of a potential problem.

%in current version, aggregates are skipped by this algorithm

17

7 SPARC and ASPIDE

7.1 Installation

For using SPARC in ASPIDE, you will need to install ASPIDE(version 1.42 or greater).
The installer is available from https://www.mat .unical.it/ricca/aspide/download.ntmi|. See the
instructions here: https://www.mat.unical.it/ricca/aspide/documentation.html . Once ASPIDE
is installed, go to File ->Plug-ins ->Available plugins menu, and press install button in
the row containing SPARC plug-in (see Fig[3).

Import existing File

Send Feedback 3| survey § |

o

25 outline —x =k
ASPIDE is a system that allows for developing Answer-Set Programs. The
user can edit text files, or exploit a fully graphic environment, inspired by
QBE (Query By Example) editors, for designing ASP programs.
Import existing File
Install available plug-ins
Click 'Get Plug-ins' to get available plug-ins
Plugin List URL [rttps:/fwww.mat.unical.it/ricca/aspide/pluginsipluginlistxml] | Get Plug-ins
Jar MName Wersion Auther Type Description Libs Licence URL Status Installation
aspide_protege-0.2.jar JASPIDE Pr... 0.2 Kristian R... [INPUT ps:ifww. Install
(OWLDataset 2DLVFacts.jar [OWLDatas...|1.0 Pierfrance... [REWR openrdf-s... ps:ifww. .. Install
OWL2DLVEX. jar [OWL2DLV.. -0 Pierfrance... [REWR owlapi-dis.. ps:ifww. .|__Install
presta_plugin.jar IASPIDE Pr.., [0.1 Onofrio Fe.. [REWR QuenyRefo, . psufww.., Install
laspide_requiemRewriter-0.2.jar IASPIDE Re...|0.2 Kristian R... [REWR requiem.j... DS WW.... Install
aspide_ruleML-0.7 jar JASP AS..[0.7 Kristian R... [INPUT.RE... ps:ifww. .. Install
aspide_aspShifter-0.6.jar JASPIDE AS...[0.6 Onafrio Fe...[REWRITING RS MWW, . Install |0 x
aspide_customXMLOutput-0.5.jar _ |ASP| Cu...|0.6 Kristian R... |[OUTPUT ps:ifww. .. Install__|F—
JASPIDE SP...[0.7 Evgenii Ba...[INPUT.RE... ttps:/A/git... [Not install..| Install
Installed Plug-ins 4% Finish
[| Cancel
Done
H SHOW O ConTguratior ~*|" Create new DLV File, select the destination folder and create a project
| g H storage support for DLV program. 'T subset
(3 T sum
. T symmetricdifference
Show test suite " i
-0x | Create new TYP File T union
= Create new TYP File, select the destination folder and create a
4 worlspace 3 storage support for DLVDB directives.
Show preferences
Create new Test File
Create new Test File, select the destination folder and create
Switch Workspace a storage support for Test.

Figure 3: Installing SPARC plugin

18

https://www.mat.unical.it/ricca/aspide/download.html
https://www.mat.unical.it/ricca/aspide/documentation.html

7.2 Creating Projects and Adding SPARC source files

ASPIDE uses workspaces to store projects. Workspace is a folder that can contain multiple
projects. ASPIDE can have only one workspace opened, that is selected by a user when
ASPIDE starts. Source files should belong to a project to be used by ASPIDE query
engine and answer set computation tools.

¢ To create a new project, go to the menu File ->New and select New Project submenu.
Specity the project name in the pop-up window and click on Finish button. You
should see a new project appeared in workspace explorer.

¢ To add a new SPARC file, right click on the project to display context menu and
select New ->File ->SPARC File as it is shown on Figure[d]. Choose the file name
in the pop-up window. You should see a new file added under the project in
workspace explorer and displayed in ASPIDE editor window.

ASPIDE ¥ ty B) s26pm 3
File Edit View Program Profiler Execute Help
E 3 v] [ee=]f 7| (e ;
@ @l [CX0 €] [F<ER 6 2 vewrrogecu AL riest] send Fesanack ot SIS |
r | "B Workspace Explorer —x "\ [= _nx) [| 3P newritesp _x —a)[5 outline ~x SrE
e i
? 'ff‘gjwo:' New 3 File | DLV File
S[p) n=] Import Project Project | DLV File with Existential Expressions
" Import File Folder | DLV File with Arithmetic Expressions
Execute Test ASP core 2 File
TYP File
Disable Test File
(i SPARC File
Delete Database Source File
Run b Image Visualizer File
Refresh File
Export Project
Export Workspace
Switch Workspace

T Templates — % SOk
Editor append
T before
T collide
"I conditioned_join
'T count
'T difference
T fibonacci
T headOfList
'T intersection
'T max
T min
'T path
'T permutation
'T. project
a . T subset
e | L7 | o T sum
T symmetricdifference
A\ Error Console - x o= T union
A Workspace
o= (/i NewProject

Figure 4: Adding SPARC source file

19

7.3 Executing queries and computing Answer sets

You can execute queries and compute answer sets as for usual ASP file. To execute a
query, open a sparc file in the ASPIDE editor and click on the button with a question

mark in the toolbar:

¢ File Edit View Program Profiler Execute Help

| @ [@e X0 e £ (== (& v o || NewProject:[ALL_FILES] 1| |send Feedbad
8 Work{ ¢\, 5 _ox| S[P:l newkilesp - X {—a)| B Outline —x =
[¢ 85 nawprajact 1 sorts [

o & queries

CHEBES

(s
Z}B Err... =X

A Workspace
o (3 NewProject

-0X

ules

o
4 predicates
5 pl#s).
& gi#s2).

SPARC source file
is opened in the editor

Run Queries

4

T Templates — x

-0x

el e b o b T o b e e T L T T

append
before
collide
conditioned_join
count
difference
fibonacci
headoOfList
intersection
max

min

path
permutation
project
suhset

¥ [T

A window will appear where you can input and run queries. To run a query,

* mark Epistemic Mode checkbox (this is to follow the definition of query given in

the class)

Figure 5: Open Query Interface

* input your query into editbox named Query or select one from history

The results will appear in the listview named Results. See fig[6 for details.

20

Queries

Create, manage and run guerias,

Project : |NewPrnject |v| Run configuration : |[ALL_FILES] |v| | Run Configurations. . |
1uer\+p(a)? I Execute I Query Visual |
m: TISLoTY
MName Query
p(ay?
pE? | Remove
Reasoning Caching Epistemic query
@ Cautious ‘_ Full execution Epistemic mode i Single run Show rewriti
) Brave ® Mone @ Single run all truth values ' Multiple run

Mumber of Tuples - 1
[Done |Generated 1 Answer Set(s) [0.07 seconds | [kil |

‘ QSave Results H $CIuse |

Figure 6: Execute a query

21

To compute answer sets of the program, press the button with green arrow marked
on figure[7]

EIED

@ [0 @ [=R (2 1) (@) T as G

Figure 7: Open answer sets window

In the appeared Run Configurations window:

* make sure a correct path to dlv in selected in Executable listbox.

¢ press Run button to see the answer sets

Run configuration

Run configuration

Create, manage and run configurations

Fun Configurations Fun configuration

o (3 NewProject Project Name : MNewProject

Run Configuration : [ALL_FILES]

Executable:[DLV: fusrflocal/bin/dIv vl 0utput:|Tab|E |v|

On execution, save automatically the results on your Hard Disk

Execution options

[IMax Model Number [IMax It

[]More options I:l
L]

I Filter
Files
This configuration executes all DIv Files, Typ Files and Plugin Files enabled -
[i | [»
o - ‘ ‘ E Apply | Run ‘ 5% Close

Figure 8: Run configurations window

22

In the displayed window, answer sets are grouped by predicate symbols in their
literals. On figure [0 two answer sets are shown. The first one contains two literals
p(a,b) and p(e, f) and some literals with predicate symbol q.

Execution Results W
! Results obtained using the Run Configuration TALL_FILEST
Project: MewProject Run Configuration: [ALL_FILES] Run Configurations...
o B8 List Answer Sets = attrl attr2
T 1}] Answer 5et 1 = E
A q
Bk
T "'F"_‘] Answer Set 2
G
e
1] Il [*|Number of Tuples : 2
‘ QSave Results H ﬁ Close || [E] Testing Mode
[Done |Generated 2 Answer Set(s) | | [kin |

Figure 9: Answer Sets

7.4 Warnings Checking

To see allow ASPIDE to show warnings (section[6.2), you need to install swi-prolog on
your system. Swi-prolog is available from http: //www.swi-prolog.org/bounload.html

After swi-prolog is installed, go to the ASPIDE menu File ->Preferences. In the ap-
peared window select the tab Executables/Solvers and add a new executable named
swipl with a path pointing to the swi-prolog executable. Usually, it is named swipl in
Unix/MacOS operating system and swipl.exe in Windows. Click on Save button to close
the window. See the details on figure After the executable is added, you need to

23

http://www.swi-prolog.org/Download.html

™ Preferences

ExecutablesfSolvers

Add, remove or edit Executables/Solvers names and paths

Visual Editor | Executables/Solvers | Schema | FPlug-ins |
DLV Editor I TYP Editor I Test Editor I File Editor
Specified Executables /Solvers

Mame Type Path
o8 DLV SOLVER Jusrflocal/bin/dhv
w4 DLV +0ODBC SOLVER
4 DLVDB SOLVER
i DLVAE SOLVER
4 IDPDraw EXECUTABLE
o8 DLT EXECUTABLE
4 Profiler EXECUTABLE
4 |Spock EXECUTABLE Jusrflocal/ASPIDE appli. ..
A |ARVis EXECUTABLE .
Clingo EXECUTABLE usr/lecal/bin/clinge Edit Path
swipl m usr/bin/swipl

Remove

Figure 10: Adding swi-prolog executable

specify a flag property for the SPARC plug-in to make it check warnings. Go to AS-
PIDE menu File ->Plug-ins ->Manage Plug-ins. In the appeared window click on the cell
Properties in SPARC plug-in line and add a new property CHECK_WARNINGS=TRUE as
it is shown on figure|11] Click on Close button to save the results. RESTART ASPIDE
FOR THE NEW CHANGES TO TAKE EFFECT.

24

File Edit View Program Profiler Execuie Help

Preference LES] L. | iSend Feedbaclé

a] Plug-ins X utline — x _oOx

_F Manages installed Plug-ins 5

\ Visual Editor rExeculables}'Solvers rSchema rPIug—ins |

| DLV Editor I TYP Editor [Test Editor I File Editor
Flug-in Mame Author Version Type State Libraries [Propertias

SPARC Evgenii Balai, ... |1.04 [INFUT, REWRI... [ACTIVE il

ill Ylscripts Executor |Kristian Reale |1.1 [REWRITE] BUILT _IN 1l M Please insert properties value

Database sour.. |Kristian Reale 1.1 [INFUT] BUILT _IN il i in the Java .properties format

! Database Sour...[Kristian Reale LT [REWRITE] BUILT _IMN [1 i =
CHECK._WARMINCS=TRUE
! | | 3 Delete | | |

MNew Plugin Disable

ML

[v]

Confirm
!o'nunioneu_join

count
difference
fibonacci
headOfList
ntersection
' max

min]
path il
permutation :

Add Libraries | | Remove f;gl;i? =il

[Ee=] T Lzl

Figure 11: Adding swi-prolog executable

After the restart, you should be able to see the warnings in the left lower corner of
aspide interface (Error Console).

References
[1] Evgenii Balai, Michael Gelfond, and Yuanlin Zhang. Towards answer set program-

ming with sorts. In Logic Programming and Nonmonotonic Reasoning, pages 135-147.
Springer, 2013.

25

	System installation
	System usage
	Querying mode
	Answer Set Mode

	Command Line Options
	Syntax Description
	Directives
	Sort definitions
	Predicate Declarations
	Program Rules
	Display (New!)

	Answer Sets
	Typechecking
	Type errors
	Sort definition errors
	Predicate declarations errors
	Program rules errors

	Type warnings
	ASP based warning checking
	Constraint solver based warning checking

	SPARC and ASPIDE
	Installation
	Creating Projects and Adding SPARC source files
	Executing queries and computing Answer sets
	Warnings Checking

