
1

Peer Mount

Alexander Clemm (Futurewei, ludwig@clemm.org)

Eric Voit (Cisco, evoit@cisco.com)

13 September 2023

2

Motivation

• YANG Datastores today provide a view of management data that is maintained and implemented
locally – device-level scope

• Increasingly, use cases appear that require more holistic, network-wide views

Examples: Topology, Digital Map, Network Inventory, Network Digital Twin

Required data may become increasingly redundant (e.g. status, aspects of configuration)

Provided as part of a management hierarchy (e.g. device – controller – orchestrator)

• Issues

Need for redundant model definitions for device and for network context (and redundant augmentations etc)

Separate implementation and instrumentation at device and controller level

Risk of model misalignments (e.g. deviations, different speeds at which models become available, …)

Synchronization of redundant data

In case of data that is not redundantly captured: need for multiple management associations (& potential layer
violations) in management hierarchies, mgmt. communication scaling issues

• Needed: an ability to provide a datastore with a holistic network view that avoids these issues

3

Peer-Mount Concept

• Allow YANG Datastores to reference information in remote datastores

Insert (remote) subtrees under a mount point in a (local) datastore

Mount client: a YANG server that maintains the mounted “view”

Mount server: the original “authoritative” owner of the data

For on-demand object access, mount server does not need to be aware of mount client

• Use to provide federated datastore that provides a holistic view of a network

Network inventory can provide additional system and configuration information

Network topology can provide “live” view of nodes, termination points, links: status, statistics, etc

No need for redundant data models to model aspects both at system and at topology/inventory level

Avoidance of data synchronization and reconciliation issues

• Analogies with mountpoints in a distributed file system (YANG data nodes vs files/directories)

4

Mount Concept – Peer Mount
Concept:

• Refer to data nodes / subtrees in remote datastores

• Remote data nodes visible as part of local data store

• Avoid need for data replication and orchestration
(caching considerations apply)

• Authority remains with original owner

Why:

• Federated datastore - treat network as a system

• “Borderless Agents”, “Network-as-a-System”

• “Live” network topology, network inventory, digital map

Note: do not confuse with schema mount (RFC 8528)

• Mount instances of datastore subtrees in remote servers

vs. extensions of model to be instantiated locally

5

Usage example
rw controller-network

+-- rw network-elements

+-- rw network-element [element-id]

+-- rw element-id

+-- rw element-address

| +-- ...

+-- M interfaces

...

list network-element {

key "element-id";

leaf element-id {

type element-ID;

}

container element-address {

...

}

pmt:mountpoint "interfaces" {

pmt:target "./element-address";

pmt:subtree "/if:interfaces";

}

}

...

<network-element>

<element-id>NE1</element-id>

<element-address> </element-address>

<interfaces>

<if:interface>

<if:name>fastethernet-1/0</if:name>

<if:type>ethernetCsmacd</if:type>

<if:location>1/0</if:location>

...

</if:interface>

... Instance information

Module

structure

Mountpoint declaration

• YANG module defines YANG mount
extensions + data model for
mountpoint management

• YANG extensions:

Mountpoint: Defined under a containing
data node (e.g. container, list)

Target: References data node that
identifies remote server

Subtree: Defines root of remote subtree
to be attached

6

In the context of network inventory

module: my-new-network-inventory

+--rw nw:networks

+--rw nw:network* [nw:network-id]

...

+--rw nw:node* [node-id]

+--rw nw:node-id node-id

+--rw name

+--M node-hardware -->/hardware/component[name]

...

from ietf-network-topology per RFC 8345

augmentation

(here: mounted hw component

data from ietf-hardware

per RFC 8348)

Note: need to associate target system name

with address (may need to add data node)

7

In the context of network inventory

module: my-new-network-inventory

+--rw nw:networks

+--rw nw:network* [nw:network-id]

...

+--rw nw:node* [node-id]

+--rw nw:node-id node-id

+--(hw-data-origin)

+--:(rfc8348)

| +--rw name

| +--M node-hardware -->/hardware/component[name]

+--:(controller-populated)

+--ro component* [uuid]

+--ro uuid yang:uuid

+--ro location

...

Example only; for an actual network inventory can be integrated with other models

e.g. draft-ietf-ccamp-network-inventory-yang or draft-wzwb-opsawg-network-inventory-management

8

draft-ietf-ccamp-network-inventory-yang + RFC 8348
module: ietf-network-hardware-inventory

+--ro network-hardware-inventory

+--ro equipment-rooms

|

+--ro network-elements

+--ro network-element* [uuid]

+--ro uuid yang:uuid

+--ro name? string

+--ro description? string

...................................

+--M components --> [uuid:]/hardware/

+--ro last-change? yang:date-and-time

+--rw component* [name]

+--rw name string

+--rw class identityref

+--ro hardware-rev? string

+--ro firmware-rev? string

+--ro software-rev? string

+--ro serial-num? string

+--ro mfg-name? string

+--ro model-name? string

+--rw alias? string

+--rw asset-id? string

...

mounted subtree from

RFC8348-compliant NE

Note: need to associate

target system UUID with address

(may need to add data node)

9

draft-wzwb-opsawg-network-inventory-management + RFC 8348

mounted subtree from

RFC8348-compliant NE

module: ietf-network-inventory

augment /nw:networks/nw:network/nw:node:

+--rw name? string

+--ro node-type? identityref

+--ro is-virtual? boolean

+--ro is-gateway? boolean

+--ro gateway-ref? -> ../name

+--rw management-ipv6-address? inet:host

...........

+--ro hardware-rev? string

+--ro firmware-rev? string

+--ro software-rev? string

+--ro serial-num? string

+--ro mfg-name? string

+--ro asset-id? string

+--ro mfg-date? yang:date-and-time

.......

+--M components --> [name|management-ipv4/v6-address:]/hardware/

Notes:

1) top level may be obtained from

RFC8348 (may need to add data

node)

2) resolve mgmt. address alternatives

(e.g. choice/union)

+--rw component* [name]

+--rw name string

+--rw class identityref

+--ro hardware-rev? string

+--ro firmware-rev? string

...

10

Integration with network inventory effort
• Can be used in conjunction with network inventory models currently being defined

draft-ietf-ccamp-network-inventory-yang; draft-wzwb-opsawg-network-inventory-management; etc

• Inventory models can be defined to allow for support of RFC8348-enabled and legacy devices

Use “choice” to distinguish cases where required data can be mounted from remote (RFC 8348 supported)
or requires manual population

• Decoupling network inventory effort from peer-mount definition effort is possible

Allow for the possibility of future support of mounting in the inventory model

Use if-feature to create placeholders where mountpoints can be injected once supported

11

• Only needed for explicit / on-demand instantiation of mountpoints

(vs by system operation)

• Might remove

Datastore mountpoint YANG module
• Extensions:

mountpoint

target

subtree

• RPCs:

mount

unmount

• Mountpoint management:

mount status

caching policies

communication / retry policies

• Declares a mountpoint under a containing data node

(container, list, case)

• Two parameters: target and subtree (separate extension)

• Circular mounts prohibited – check on instantiation

• Identifies the subtree in the target system that is being mounted

• Generally, a container (but could be another data node)

• Identifies the target system that is authoritative owner of the data

(e.g. IP address, host name, URI)

• Generally, maintained as part of the same datastore (“inventory”)

12

Mountpoint management
rw mount-server-mgmt

+-- rw mountpoints

| +-- rw mountpoint [mountpoint-id]

| +-- rw mountpoint-id string

| +-- rw mount-target

| | +--: (IP)

| | | +-- rw target-ip yang:ip-address

| | +--: (URI)

| | | +-- rw uri yang:uri

| | +--: (host-name)

| | | +-- rw hostname yang:host

| | +-- (node-ID)

| | | +-- rw node-info-ref pmt:subtree-ref

| | +-- (other)

| | +-- rw opaque-target-id string

| +-- rw subtree-ref pmt:subtree-ref

| +-- ro mountpoint-origin enumeration

| +-- ro mount-status pmt:mount-status

| +-- rw manual-mount? empty

| +-- rw retry-timer? uint16

| +-- rw number-of-retries? uint8

+-- rw global-mount-policies

+-- rw manual-mount? empty

+-- rw retry-time? uint16

+-- rw number-of-retries? uint8

+ RPCs for manual mount, unmount

• Mountpoints can be system-administered

Applications & users will not be exposed to this

Manage caching policies, maintain mount
status

• Instantiation of mountpoints

Via system operation (automatic instantiation)

Via mount / unmount RPC (explicit
instantiation)

• Either case, where mountpoints can be
instantiated must be declared as part of the
model

Cannot mount in arbitrary locations

Retain ability to validate instance documents

13

Other considerations
• Authorization

Target system is the authoritative owner, NACM applies – mount client “just another application”

• Mount cascades supported (but circular mounting is prohibited)

• Focus on read operations and data retrieval, out of scope:

Configuration support (would incur transactional ramifications)

Notifications (cascading subscriptions conceivable but may lead to event replication)

YANG-Push (support for cascading subscriptions is conceivable when need arises)

• Caching

Conceivable as an implementation optimization – cache datanodes when #reads>>#updates

Implementations could leverage YANG-Push – subscribe to updates from mounted subtree in mount server
(distinguish from YANG-Push subscription to the YANG client)

• Mount & connection granularity

Can mount multiple (small) subtrees from the same target system

Implementations should be smart enough to maintain only a single management association

• Datastore qualification and NMDA TBD

14

Comparison Peer-Mount – Schema Mount
Peer-Mount Schema Mount

Provide visibility - create access path to existing

instances hosted in a remote server

Reuse existing definitions to create new models that

are then locally instantiated and locally hosted

Analogy: soft link*
(*with some caveats)

Analogy: grouping/uses (or augments) “after the fact”

Reference mount target has authoritative copy Mount Point has authoritative copy

No validation of data at or by mountpoint; validation of

data is responsibility of authoritative data owner

Validation of data at mount point

Mount point provides visibility to data already

instantiated elsewhere (no redundant data)

Mountpoint instantiates new data

The same target mounted in different mountpoints

does not result in additional data instances

Same target schema mounted in different mountpoints

results in separate unrelated data instances

Commonality between Peer-Mount and Schema-Mount: YANG mountpoint extension

YANG extension introduced to define mountpoints

Differences in terms of additional parameters (to identify target node and target system)

15

Miscellaneous

• Past: History

An earlier proposal for Peer-Mount was made in 2013 but arguably ahead of its time

Included 2 mount variants: alias mount for alternative data tree in addition to peer mount

Implementation as part of Open Daylight’s MD-SAL (SDN Controller)

No IETF interest in data models above device level at the time, so did not gain traction

• Future: Next steps

Revive earlier proposal with view of new context, requirements, use cases, refined scope (eg, no alias)

-00 version is planned, coauthored with Eric Voit (Cisco), outreach to operators & other people interested
in contributing

Outline how network inventory/topology/digital map drafts could leverage this

16

JAVA SAL APIs (Generated)

Open Daylight - Model-Driven SAL

Network Elements

MD-SAL

NETCONF

…

Network
Topology

Nodes

Paths

NE
…NE

SystemFlows

Table…Table

Table

…
FlowFlowFlow

Config Stats

Tunnels

…
NE

Config Stats
…Table

Table

…
Flow FlowFlow

Applications

Internal Plugin RESTCONFNETCONF

NE

RESTCONF

Transformer/
Adapter

NB REST API

Platform Service
Plugin

JAVA SAL APIs (Generated)

Network Service
Plugin

NB REST APINB REST API

BGP-LS PCEP OF x.y OfConfig / OVSDB

NB API NB API

Links EndPoints

	Slide 1: Peer Mount
	Slide 2: Motivation
	Slide 3: Peer-Mount Concept
	Slide 4: Mount Concept – Peer Mount
	Slide 5: Usage example
	Slide 6: In the context of network inventory
	Slide 7: In the context of network inventory
	Slide 8: draft-ietf-ccamp-network-inventory-yang + RFC 8348
	Slide 9: draft-wzwb-opsawg-network-inventory-management + RFC 8348
	Slide 10: Integration with network inventory effort
	Slide 11: Datastore mountpoint YANG module
	Slide 12: Mountpoint management
	Slide 13: Other considerations
	Slide 14: Comparison Peer-Mount – Schema Mount
	Slide 15: Miscellaneous
	Slide 16: Open Daylight - Model-Driven SAL

