Attestation Verifier
Theory of Operation

Ned Smith

Terminology

* Claimset* —Typically, consists of an EMT — Environment-measurement-tuple
—that names an environment to which certain measurements belong

* Authority —the entity(ies) that asserted a Claimset - typically a cryptographic
key / key-id.

* Accepted Claims Set (ACS) — a Claimset that describe a particular Attester
* Condition —a Claimset that is compared with ACS

* Augmentation — a process of extending the ACS through condition matching
* Endorsement — a Claimset that augments the ACS

* Validation Function (VF) — A function that is applied to a Claimset

* View — A Claimset that is a subset of the ACS

* Reference Value (RV), Reference Value Provider (RVP) - See RFC9334

*For consistency, a Claimset can be a set of Claimset

Theory of Operation: Goals

* Basic operational goals
* Construct an ACS for a given Attester that is non-lossy

* Inputs are constrained by RATS roles
* (Attester, RVP, Endorser, V-Owner, RP*)

* All Verifiers will produce the same ACS given the same inputs

* Inputs can occurin any order and can be spaced in time for multiple
Verifiers

* Multiple Verifiers can cooperate to construct a common ACS
* Partial ACS(es) are another type of input

* Verifiers can augment the ACS by following the same operational rules
available to other RATS roles and inputs.

* Verifiers may constrain the ACS by presenting a read-only View of the ACS

*RATS Arch doesn’t name RP as an input, but TCG Attestation Framework does.

Verifier Assumptions

* RFC9334 defined assumptions
* Multiple “Attester” roles can exist on the same attesting device, each lead Attester has an
independent session with the Verifier.
* Attesting Environments rely on a lead Attester to forward Evidence to the Verifier
* Alead Attester might re-publish Evidence, in which case it becomes another Attesting Environment (i.e., AEO)
* Multiple ecosystem entities can supply the same Endorsements and Reference Values but have
different authority (keys).
* There is one Verifier role, but the role can be distributed across multiple entities.
* Appraisal policies from Verifier Owner can constrain Attestation Results.
* Appraisal policies from Verifier Owner can limit the set of Endorsers, Reference Value Providers,
and Attesters that can provide Verifier inputs.

* Additional assumptions
* Relying Parties can supply inputs to the Verifier that constrain Attestation Results
* The Verifier normally can’t tell if multiple independent lead Attesters are on the same device or

have separate devices
* However, a Verifier could in theory discover that an attester device has multiple lead Attesters

* E.g., Endorsements could link lead Attesters.
* E.g., An ontology could link components that belong to a common device.

Example Deployment

\ Endorsers and
/ Reference Value Relying Party
Providers
Attester 1 inputs
(lead / AEO)

° ° / \ Verifier B

Verifier C

Attester 2 Inputs Verifier A
(lead)

(=
/,,\

° ° - - Verifier D

Attester n w W
(=~)— Mo o) [Tor

k Attester Device / \ Verifier Device /

Theory of Operation

e Start by initializing the ACS as the empty set

* Add an Attester binding that associates a lead Attester instance with an ACS.
* Verifier authenticates the lead Attester which forms a lead Attester—ACS binding (a.k.a., session).

* Basic Augmentation — The ACS state changes by processing input tuples:

* Augmentation tuple — an abstract tuple that represents most of the current set of CoMID triples:
* (<condition>, <update>,<authority>) => <output-set>
e <condition> - a Claimset that is matched to the ACS
* <update> -the Claimset to be added to the ACS if <condition> is true (note: constrained by schema expressiveness)
* <authority> - the credential/key of the entity that asserted the tuple
* <output-set> - the Claimset for a record that is added to the ACS
* Therecord includes <authority> and record type
* |f <condition>is true, then copy <update> with entity’s <authority> to <output-set> and append it to the ACS
* Processing begins when new Evidence, RVs, or Endorsements are added to an input queue
* Each type of input follows the Augmentation tuple structure. E.g.:
* Evidence: (kempty-set>, <any claimset in the Evidence domain>, <Attester binding context>) => <evidence-set>
* Reference Values: (<evidence-set>, <any claimset in the Reference Values domain>, <any RVP trust anchor>) => <rvp-set>

* Endorsement: (<evidence-set or rvp-set or previous endorsement-set>, < any claimset in the Endorsement domain>, <any
Endorser trust anchor>) => <endorsement-set>

* Inputs are processed when itis received (in an append-only fashion — more later)
* If a<condition>isn’t met, then the tuple is returned to an input queue where the <condition> is re-tried
* Processing terminates when the Attester session closes

* Tuples with unmet conditions are discarded

* The ACS can be archived for audit/compliance purposes

only

Condition Processing

Append

processing
seguence

0:

ACS

RV

EN

Attester1
(AEO / lead Attester)

(AE1)

Claimset1
(RVP1)

Claimset2
(E1)

EN | Claimset3

(E2)

search scope

Ev | Claimset1 |

\Cmditiom

Condition2

Y
auditable

Condition3

Condition4

. ACS Entry/
Key' Record
record Context
ype
(authority)
Record | _EV: Evidence
Type - RV : Reference Values

- EN : Endorsements

(authority) - AE1 : Attesting Environment 1

- RVP1 : Reference Value Provider 1
- E1:Endorser 1
-E2:Endorser 2

More on Append-only Semantics

* ACS records are marked with the conceptual message type

* This removes the need to protect processing ordering to achieve
deterministic results.

* Record order is an artifact of (unpredictable) workflow processing dynamics.

e Since records can appear in any order, records can be added following
append-only semantics which reduces update contention and facilitates
distributed verifier architectures.

* Conceptual messages have scoped search semantics
* E.g., Reference Values are scoped to Evidence
* Conditions rely on message type context to scope search targets

Basic ACS Augmentation Examples

* Evidence
* (<>, <class-id=.3.2.1 : digest=h’FED4’>, <key-id=h’01’>) =>
* <[class-id=.3.2.1 : digest=h’FED4’], key-id=h’01’>

* RVP
* (<class-id=.3.2.1: digest=h’FED4’>, <>, <key-id=h’02’>) =>
* <[class-id=.3.2.1 : digest=h’FED4’], key-id=h’02’>
* Endorsement #1
* (<class-id=.3.2.1: digest=h’FED4’>, <class-id=.3.2.1 : svn=7>, <key-id=h’03’>) =>
e <class-id=.3.2.1:svn=7>, key-id=h’03’>

Endorsement #2
* (<class-id=.3.2.1:svn=7, key-id=h’03’>, <class-id=.3.2.2 : version=“1.0">, <key-id=h’04’>) =>
e <class-id=.3.2.2 : version=“1.0", key-id=h’04">

Resulting ACS

processing
sequence

1)

W N

[class-id
[class-id
[class-id

)
)
)

N

[class-id

=.3.2.1
=.3.2.1
=.3.2.1
=.3.2.2:

. digest=h’FEDA4’], key-id=h’01’, evs],
. digest=h’FEDA4’], key-id=h’02’, rvs],
: svn=7], key-id=h’03’, ens],

version=“1.0"], key-id=h’04’, ens]

Condition Processing (cont.)

Append
only

processing
seguence

0:

ACS
Attester1
(AEO / lead Attester) |
Ev | Claimset1 -
(AE1)
RV Claimset1
(RVP1)
EN Claimset2
(E1)
EN | Claimset3
(E2)
Ev | Claimset4
(AE2)
RV Claimset5
(RVP1)

search scope

AND

Condition1

Condition2

Condition3

Condition4

Condition5

Condition6

Add new Evidence and Reference Values records

. ACS Entry/
Key' Record
TYPE Context
(authority)

TYPE - EV : Evidence

- RV : Reference Values

- EN : Endorsements

- VF : Validation Function

(authority) - AE1 : Attesting Environment 1

- RVP1 : Reference Value Provider 1
-E1:Endorser1

-E2 : Endorser 2

- AE2 : Attesting Environment 2

Discussion

* If new Evidence is asserted after ACS has processed basic
augmentations
* Evidence #2 is appended to ACS
* E.8., 1) [[class-id=.3.2.1: digest=h’FED4’], key-id=h’01’, ev],
2) [[class-id=.3.2.1:digest=h’FED4’], key-id=h’02’, rv],
3) [[class-id=.3.2.1:svn=7], key-id=h’03’, ens],
4) [[class-id=.3.2.2:version=%“1.0"], key-id=h’04’, en],
5) [[class-id=.3.2.3:digest=n’EDC3’], key-id=h’07’, ev]

e A Reference Values condition could match on either or both
evidence records
 |f it matches, Reference Values #2 entry is appended to ACS

° E-g-, 6) [[class-id=.3.2.3:digest=n’EDCS3’], key-id=h’02’, rv]

Discussion

* Multiple Verifiers may cooperate to produce a distributed ACS1
* VerifierA partitions ACS1 into ACS1,, ACS1z, and ACS1
* VerifierB augments ACS1;y
* VerifierC augments ACS1.
* Verifier D consumes ACS1,, ACS1g, and ACS1 to produce a final ACS1,
* ACS1,should be equal to ACS1 except for record ordering

ACS1; ACS1,

e Attester 1 session context * Attester 1 session context
1) [[class-id=.3.2.1: digest=h’FED4’], key-id=h’01’, ev], ACS1p

2) [[class-id=.3.2.1 :svn=7], key-id=h’03’, en], * Attester 1 session context

3) [[class-id=.3.2.3: digest=n’EDC3’], key-id=h’07", ev] 1) [[class-id=.3.2.1: digest=h’FEDA4’], key-id=h’01’, ev],

ACS1,

— . —) — J J

2) [[class-id=.3.2.1:digest=h’FED4’], key-id=h’02’, rv],

e Attester 1 session context

1
2
3
4

)
)
)
)

3) [[class-id=.3.2.1:svn=7], key-id=h’03’, en],

)

[[class-id=.3.2.1 : digest=h’FED4’], key-id=h’01’, ev],

[[class-id=.3.2.1 : digest=h’FED4’], key-id=h’02’, rv], - . -
[[class-id=.3.2.1 : svn=7], key-id=h’03’, enl], 4) [[class-id=.3.2.3: digest=h’EDC3’], key-id=h’07’, ev]

[[class-id=.3.2.2 : version=“1.0"], key-id=h’04’, en] 5) [[class-id=.3.2.2: version=“1.0"], key-id=h’04’, en]

— — 7

Augmentation by Validation Function

* VF Augmentation — ACS changes state by processing a validation

function:
* VF Augmentation tuple: (condition>, <function>,<authority>) =>
<output-set>
e <condition> - a Claimset that is matched to the ACS
* <function> - An action applied to <condition>in ACS
* <authority> - the credential/key of the entity that asserted the tuple
* <output-set>-The Claimset added to the ACS with authority and tuple context

* |f <condition> is true, then perform <function> and append function result as an
<output-set> Claimset to ACS. Note: <output-set> could be <nil>

 Example VF tuples in CoMID:
* attest-key-triple-record
* identity-key-triple-record

VF Augmentation Example

* |dentity Key Triple

* (<class-id=.3.2.1,[key-id=h’01"]>, <fxey.veriry()>, <key-id=h’05’>) =>
* <[class-id=.3.2.1 : [key-id=h’01’], result=VALID, key-id=h’05’, vf]>

Discussion

* The identity triple is a bit like an endorsement where the function result
Is the endorsed Claimset.

* In CoMID, the function is defined as part of the triple predicate

 Note:

* The Verifier is an agent of the Endorser hence, the result is asserted under the
authority of the Endorser rather than the Verifier.

 Maybe both authorities are needed?

Resulting ACS — with VF Augmentation

[class-id=.3.2.1 : digest=n’FED4’], key-id=h’01’, ev],
[class-id=.3.2.1 : digest=n’FED4’], key-id=h’02’, rv],
[class-id=.3.2.1 : svn=7], key-id=h’03’, en],
[class-id=.3.2.2 : version=“1.0"], key-id=h’04’, en],

* [[[class-id=.3.2.1 : [key-id=h’01"], result=VALID], key-id=h’05’, vf]

ACS Restriction / Views

* \VView Restriction — A “view” of the ACS:

* Restriction tuple: (<view-name>, <condition>, <authority>) => <output-set>
e <condition> - A Claimset that selects Claimsets for placement in a View
* <output-set>-The View

* If <condition> is true, then select matching Claimsets from ACS and make them visible
through <output-set> via a session/context authenticated by <authority>.

* Receipt of RP Requests or Appraisal Policies triggers processing

* If the ACS Augmentation inputs are still active, then ACS Restriction results may differ
each time the same request is processed.

Processing an ACS Restriction / View

ACS

EV

RV

Attester1
(lead Attester)

Claimset1
(AE1)

Claimset1
(RVP1)

:IEN Claimset2

(E1)

El Claimset3

(E2)

[Ev] Claimset4

(AE2)

Y
auditable

View

AP

RP1
(authenticated)

RV

Claimset1
(RVP1)

EN

Claimset3
(E2)

Y
auditable

Views can be a staging
area for creating
Attestation Results

View Examples

* The view restriction tuple has a condition that constrains by Trust Anchors
e (<“MyView”>, <ta=[key-id=h’02’, key-id=h’04’]>, <key-id=h’06’>) => <view-claimset>
 The order of records in a View doesn’t matter

View Results:
* [view-name=“MyView?”, key-id=h’06’],
* [[class-id=.3.2.1: digest=h’FED4’], key-id=h’02’, rv],
* [[class-id=.3.2.2 : version=%1.0"], key-id=h’04’, en]

ACS Integrity Checking Example

processing ACS
sequence Attesteri -- search scope
0 (AEO / lead Attester) | F\
1: eV] Claimset 1] Condtiont
(AE1)) \Of’mon
2: RY Claimset —
(RVP1) Condition2
3: EN Claimset2 Condtiona
(E1) ondition
RV | : ’
Claimset1 —
4: Condition4
(RVP2)
Measurements for Claimset1 prime differ from those in Claimset1.
Verifier will flag 4: and 2: as a possible security issue and possibly
invalidate record #4 or record #2
\ J
|

auditable

