
Attestation Verifier
Theory of Operation

Ned Smith

Terminology
• Claimset* – Typically, consists of an EMT – Environment-measurement-tuple

– that names an environment to which certain measurements belong
• Authority – the entity(ies) that asserted a Claimset – typically a cryptographic

key / key-id.
• Accepted Claims Set (ACS) – a Claimset that describe a particular Attester
• Condition – a Claimset that is compared with ACS
• Augmentation – a process of extending the ACS through condition matching
• Endorsement – a Claimset that augments the ACS
• Validation Function (VF) – A function that is applied to a Claimset
• View – A Claimset that is a subset of the ACS
• Reference Value (RV), Reference Value Provider (RVP) – See RFC9334

*For consistency, a Claimset can be a set of Claimset

Theory of Operation: Goals

• Basic operational goals
• Construct an ACS for a given Attester that is non-lossy
• Inputs are constrained by RATS roles

• (Attester, RVP, Endorser, V-Owner, RP*)
• All Verifiers will produce the same ACS given the same inputs
• Inputs can occur in any order and can be spaced in time for multiple

Verifiers
• Multiple Verifiers can cooperate to construct a common ACS

• Partial ACS(es) are another type of input
• Verifiers can augment the ACS by following the same operational rules

available to other RATS roles and inputs.
• Verifiers may constrain the ACS by presenting a read-only View of the ACS

*RATS Arch doesn’t name RP as an input, but TCG Attestation Framework does.

Verifier Assumptions
• RFC9334 defined assumptions

• Multiple “Attester” roles can exist on the same attesting device, each lead Attester has an
independent session with the Verifier.
• Attesting Environments rely on a lead Attester to forward Evidence to the Verifier
• A lead Attester might re-publish Evidence, in which case it becomes another Attesting Environment (i.e., AE0)

• Multiple ecosystem entities can supply the same Endorsements and Reference Values but have
different authority (keys).

• There is one Verifier role, but the role can be distributed across multiple entities.
• Appraisal policies from Verifier Owner can constrain Attestation Results.
• Appraisal policies from Verifier Owner can limit the set of Endorsers, Reference Value Providers,

and Attesters that can provide Verifier inputs.
• Additional assumptions

• Relying Parties can supply inputs to the Verifier that constrain Attestation Results
• The Verifier normally can’t tell if multiple independent lead Attesters are on the same device or

have separate devices
• However, a Verifier could in theory discover that an attester device has multiple lead Attesters

• E.g., Endorsements could link lead Attesters.
• E.g., An ontology could link components that belong to a common device.

Attester Device

Example Deployment

Verifier Device

Attester 1
(lead / AE0)

AE2 AE1

TE TE TE

Attester 2
(lead)

AE AE

TE TE TE

Attester n
(lead)

AE AE

TE TE TE

Verifier A

Verifier B

Verifier D

Verifier C
inputs

Relying Party
Endorsers and

Reference Value
Providers

inputs

ACS n

ACS 2

ACS 1

View n

View 2

View 1...

Theory of Operation
• Start by initializing the ACS as the empty set
• Add an Attester binding that associates a lead Attester instance with an ACS.

• Verifier authenticates the lead Attester which forms a lead Attester–ACS binding (a.k.a., session).
• Basic Augmentation – The ACS state changes by processing input tuples:

• Augmentation tuple – an abstract tuple that represents most of the current set of CoMID triples:
• (<condition>, <update>,<authority>) => <output-set>

• <condition> - a Claimset that is matched to the ACS
• <update> - the Claimset to be added to the ACS if <condition> is true (note: constrained by schema expressiveness)
• <authority> - the credential/key of the entity that asserted the tuple
• <output-set> - the Claimset for a record that is added to the ACS

• The record includes <authority> and record type
• If <condition> is true, then copy <update> with entity’s <authority> to <output-set> and append it to the ACS

• Processing begins when new Evidence, RVs, or Endorsements are added to an input queue
• Each type of input follows the Augmentation tuple structure. E.g.:

• Evidence: (<empty-set>, <any claimset in the Evidence domain>, <Attester binding context>) => <evidence-set>
• Reference Values: (<evidence-set>, <any claimset in the Reference Values domain>, <any RVP trust anchor>) => <rvp-set>
• Endorsement: (<evidence-set or rvp-set or previous endorsement-set>, < any claimset in the Endorsement domain>, <any

Endorser trust anchor>) => <endorsement-set>
• Inputs are processed when it is received (in an append-only fashion – more later)

• If a <condition> isn’t met, then the tuple is returned to an input queue where the <condition> is re-tried
• Processing terminates when the Attester session closes

• Tuples with unmet conditions are discarded
• The ACS can be archived for audit/compliance purposes

Condition Processing

Attester1
(AE0 / lead Attester)

ACS

Claimset1
(AE1)

Append
only

Claimset1
(RVP1)

EV

RV

Claimset2
(E1)

Claimset3
(E2)

EN

EN

...

Context
(authority)

Record
Type

auditable

Condition1

search scope

Condition2

Condition3

Condition4

0:

1:

2:

3:

4:

Key:

Record
Type

- EV : Evidence
- RV : Reference Values
- EN : Endorsements

processing
sequence

(authority) - AE1 : Attesting Environment 1
- RVP1 : Reference Value Provider 1
- E1 : Endorser 1
- E2 : Endorser 2

ACS Entry /
Record

More on Append-only Semantics

• ACS records are marked with the conceptual message type
• This removes the need to protect processing ordering to achieve

deterministic results.
• Record order is an artifact of (unpredictable) workflow processing dynamics.
• Since records can appear in any order, records can be added following

append-only semantics which reduces update contention and facilitates
distributed verifier architectures.

• Conceptual messages have scoped search semantics
• E.g., Reference Values are scoped to Evidence
• Conditions rely on message type context to scope search targets

Basic ACS Augmentation Examples
• Evidence

• (<>, <class-id=.3.2.1 : digest=h’FED4’>, <key-id=h’01’>) =>
• <[class-id=.3.2.1 : digest=h’FED4’], key-id=h’01’>

• RVP
• (<class-id=.3.2.1 : digest=h’FED4’>, <>, <key-id=h’02’>) =>

• <[class-id=.3.2.1 : digest=h’FED4’], key-id=h’02’>

• Endorsement #1
• (<class-id=.3.2.1 : digest=h’FED4’>, <class-id=.3.2.1 : svn=7>, <key-id=h’03’>) =>

• <class-id=.3.2.1 : svn=7>, key-id=h’03’>

• Endorsement #2
• (<class-id=.3.2.1 : svn=7, key-id=h’03’>, <class-id=.3.2.2 : version=“1.0”>, <key-id=h’04’>) =>

• <class-id=.3.2.2 : version=“1.0”, key-id=h’04’>

Resulting ACS

1) [[class-id=.3.2.1 : digest=h’FED4’], key-id=h’01’, evs],
2) [[class-id=.3.2.1 : digest=h’FED4’], key-id=h’02’, rvs],
3) [[class-id=.3.2.1 : svn=7], key-id=h’03’, ens],
4) [[class-id=.3.2.2 : version=“1.0”], key-id=h’04’, ens]

processing
sequence

Condition Processing (cont.)

Attester1
(AE0 / lead Attester)

ACS

Claimset1
(AE1)

Append
only

Claimset1
(RVP1)

EV

RV

Claimset2
(E1)

Claimset3
(E2)

EN

EN

Claimset4
(AE2)

EV

Context
(authority)

TYPE

Condition1

search scope

Condition2

Condition3

Condition4

Condition5

0:

1:

2:

3:

4:

5:

Key:

TYPE - EV : Evidence
- RV : Reference Values
- EN : Endorsements
- VF : Validation Function

processing
sequence

(authority) - AE1 : Attesting Environment 1
- RVP1 : Reference Value Provider 1
- E1 : Endorser 1
- E2 : Endorser 2
- AE2 : Attesting Environment 2

Claimset5
(RVP1)

RV
6: Condition6

AND

Add new Evidence and Reference Values records

ACS Entry /
Record

Discussion
• If new Evidence is asserted after ACS has processed basic

augmentations
• Evidence #2 is appended to ACS
• E.g., 1) [[class-id=.3.2.1 : digest=h’FED4’], key-id=h’01’, ev],

2) [[class-id=.3.2.1 : digest=h’FED4’], key-id=h’02’, rv],

3) [[class-id=.3.2.1 : svn=7], key-id=h’03’, ens],

4) [[class-id=.3.2.2 : version=“1.0”], key-id=h’04’, en],

5) [[class-id=.3.2.3 : digest=h’EDC3’], key-id=h’07’, ev]

• A Reference Values condition could match on either or both
evidence records
• If it matches, Reference Values #2 entry is appended to ACS
• E.g., 6) [[class-id=.3.2.3 : digest=h’EDC3’], key-id=h’02’, rv]

Discussion
• Multiple Verifiers may cooperate to produce a distributed ACS1

• VerifierA partitions ACS1 into ACS1A, ACS1B, and ACS1C
• VerifierB augments ACS1B
• VerifierC augments ACS1C
• Verifier D consumes ACS1A, ACS1B, and ACS1C to produce a final ACS1D
• ACS1D should be equal to ACS1 except for record ordering

ACS1C

• Attester 1 session context
1) [[class-id=.3.2.1 : digest=h’FED4’], key-id=h’01’, ev],
2) [[class-id=.3.2.1 : digest=h’FED4’], key-id=h’02’, rv],
3) [[class-id=.3.2.1 : svn=7], key-id=h’03’, en],
4) [[class-id=.3.2.2 : version=“1.0”], key-id=h’04’, en]

ACS1B

• Attester 1 session context

1) [[class-id=.3.2.1 : digest=h’FED4’], key-id=h’01’, ev],

2) [[class-id=.3.2.1 : svn=7], key-id=h’03’, en],

3) [[class-id=.3.2.3 : digest=h’EDC3’], key-id=h’07’, ev]

ACS1D

• Attester 1 session context
1) [[class-id=.3.2.1 : digest=h’FED4’], key-id=h’01’, ev],
• [[class-id=.3.2.1 : digest=h’FED4’], key-id=h’01’, ev],
2) [[class-id=.3.2.1 : digest=h’FED4’], key-id=h’02’, rv],
3) [[class-id=.3.2.1 : svn=7], key-id=h’03’, en],
• [[class-id=.3.2.1 : svn=7], key-id=h’03’, en],
4) [[class-id=.3.2.3 : digest=h’EDC3’], key-id=h’07’, ev]
5) [[class-id=.3.2.2 : version=“1.0”], key-id=h’04’, en]

ACS1A

• Attester 1 session context

Augmentation by Validation Function

• VF Augmentation – ACS changes state by processing a validation
function:
• VF Augmentation tuple: (<condition>, <function>,<authority>) =>

<output-set>
• <condition> - a Claimset that is matched to the ACS
• <function> - An action applied to <condition> in ACS
• <authority> - the credential/key of the entity that asserted the tuple
• <output-set> - The Claimset added to the ACS with authority and tuple context
• If <condition> is true, then perform <function> and append function result as an

<output-set> Claimset to ACS. Note: <output-set> could be <nil>
• Example VF tuples in CoMID:

• attest-key-triple-record
• identity-key-triple-record

VF Augmentation Example
• Identity Key Triple

• (<class-id=.3.2.1,[key-id=h’01’]>, <fKEY-VERIFY()>, <key-id=h’05’>) =>
• <[class-id=.3.2.1 : [key-id=h’01’], result=VALID, key-id=h’05’, vf]>

Discussion
• The identity triple is a bit like an endorsement where the function result

is the endorsed Claimset.
• In CoMID, the function is defined as part of the triple predicate
• Note:

• The Verifier is an agent of the Endorser hence, the result is asserted under the
authority of the Endorser rather than the Verifier.

• Maybe both authorities are needed?

Resulting ACS – with VF Augmentation

• [[class-id=.3.2.1 : digest=h’FED4’], key-id=h’01’, ev],
• [[class-id=.3.2.1 : digest=h’FED4’], key-id=h’02’, rv],
• [[class-id=.3.2.1 : svn=7], key-id=h’03’, en],
• [[class-id=.3.2.2 : version=“1.0”], key-id=h’04’, en],
• [[[class-id=.3.2.1 : [key-id=h’01’], result=VALID], key-id=h’05’, vf]

ACS Restriction / Views

• View Restriction – A “view” of the ACS:
• Restriction tuple: (<view-name>, <condition>, <authority>) => <output-set>

• <condition> - A Claimset that selects Claimsets for placement in a View
• <output-set> - The View
• If <condition> is true, then select matching Claimsets from ACS and make them visible

through <output-set> via a session/context authenticated by <authority>.
• Receipt of RP Requests or Appraisal Policies triggers processing

• If the ACS Augmentation inputs are still active, then ACS Restriction results may differ
each time the same request is processed.

Processing an ACS Restriction / View

Attester1
(lead Attester)

ACS

Claimset1
(AE1)

Claimset1
(RVP1)

EV

RV

Claimset2
(E1)

Claimset3
(E2)

EN

EN

...

Claimset4
(AE2)

EV

View
RP1

(authenticated)
AP

Claimset1
(RVP1)

RV

Claimset3
(E2)

EN

auditable

Views can be a staging
area for creating

Attestation Results

auditable

View Examples
• The view restriction tuple has a condition that constrains by Trust Anchors

• (<“MyView”>, <ta=[key-id=h’02’, key-id=h’04’]>, <key-id=h’06’>) => <view-claimset>
• The order of records in a View doesn’t matter

• [view-name=“MyView”, key-id=h’06’],
• [[class-id=.3.2.1 : digest=h’FED4’], key-id=h’02’, rv],
• [[class-id=.3.2.2 : version=“1.0”], key-id=h’04’, en]

View Results:

ACS Integrity Checking Example

Attester1
(AE0 / lead Attester)

ACS

Claimset1
(AE1)

Claimset1
(RVP1)

EV

RV

Claimset2
(E1)

Claimset1’
(RVP2)

EN

RV

...

auditable

Condition1

search scope

Condition2

Condition3

Condition4

0:

1:

2:

3:

4:

processing
sequence

Measurements for Claimset1 prime differ from those in Claimset1.
Verifier will flag 4: and 2: as a possible security issue and possibly

invalidate record #4 or record #2

