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Terminology
• Claimset* – Typically, consists of an EMT – Environment-measurement-tuple 

– that names an environment to which certain measurements belong
• Authority – the entity(ies) that asserted a Claimset – typically a cryptographic 

key / key-id.
• Accepted Claims Set (ACS) – a Claimset that describe a particular Attester
• Condition – a Claimset that is compared with ACS
• Augmentation – a process of extending the ACS through condition matching
• Endorsement – a Claimset that augments the ACS
• Validation Function (VF) – A function that is applied to a Claimset
• View – A Claimset that is a subset of the ACS
• Reference Value (RV), Reference Value Provider (RVP) – See RFC9334

*For consistency, a Claimset can be a set of Claimset



Theory of Operation: Goals

• Basic operational goals
• Construct an ACS for a given Attester that is non-lossy
• Inputs are constrained by RATS roles

• (Attester, RVP, Endorser, V-Owner, RP*)
• All Verifiers will produce the same ACS given the same inputs
• Inputs can occur in any order and can be spaced in time for multiple 

Verifiers
• Multiple Verifiers can cooperate to construct a common ACS

• Partial ACS(es) are another type of input
• Verifiers can augment the ACS by following the same operational rules 

available to other RATS roles and inputs.
• Verifiers may constrain the ACS by presenting a read-only View of the ACS

*RATS Arch doesn’t name RP as an input, but TCG Attestation Framework does.



Verifier Assumptions
• RFC9334 defined assumptions

• Multiple “Attester” roles can exist on the same attesting device, each lead Attester has an 
independent session with the Verifier.
• Attesting Environments rely on a lead Attester to forward Evidence to the Verifier
• A lead Attester might re-publish Evidence, in which case it becomes another Attesting Environment (i.e., AE0)

• Multiple ecosystem entities can supply the same Endorsements and Reference Values but have 
different authority (keys).

• There is one Verifier role, but the role can be distributed across multiple entities.
• Appraisal policies from Verifier Owner can constrain Attestation Results.
• Appraisal policies from Verifier Owner can limit the set of Endorsers, Reference Value Providers, 

and Attesters that can provide Verifier inputs.
• Additional assumptions

• Relying Parties can supply inputs to the Verifier that constrain Attestation Results
• The Verifier normally can’t tell if multiple independent lead Attesters are on the same device or 

have separate devices 
• However, a Verifier could in theory discover that an attester device has multiple lead Attesters

• E.g., Endorsements could link lead Attesters.
• E.g., An ontology could link components that belong to a common device.
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Theory of Operation
• Start by initializing the ACS as the empty set
• Add an Attester binding that associates a lead Attester instance with an ACS. 

• Verifier authenticates the lead Attester which forms a lead Attester–ACS binding (a.k.a., session).
• Basic Augmentation – The ACS state changes by processing input tuples:

• Augmentation tuple – an abstract tuple that represents most of the current set of CoMID triples: 
• (<condition>, <update>,<authority>) => <output-set>

• <condition> - a Claimset that is matched to the ACS
• <update> - the Claimset to be added to the ACS if <condition> is true (note: constrained by schema expressiveness)
• <authority> - the credential/key of the entity that asserted the tuple
• <output-set> - the Claimset for a record that is added to the ACS 

• The record includes <authority> and record type
• If <condition> is true, then copy <update> with entity’s <authority> to <output-set> and append it to the ACS

• Processing begins when new Evidence, RVs, or Endorsements are added to an input queue
• Each type of input follows the Augmentation tuple structure. E.g.:

• Evidence: (<empty-set>, <any claimset in the Evidence domain>, <Attester binding context>) => <evidence-set>
• Reference Values: (<evidence-set>, <any claimset in the Reference Values domain>, <any RVP trust anchor>) => <rvp-set>
• Endorsement: (<evidence-set or rvp-set or previous endorsement-set>, < any claimset in the Endorsement domain>, <any 

Endorser trust anchor>) => <endorsement-set>
• Inputs are processed when it is received (in an append-only fashion – more later)

• If a <condition> isn’t met, then the tuple is returned to an input queue where the <condition> is re-tried
• Processing terminates when the Attester session closes

• Tuples with unmet conditions are discarded
• The ACS can be archived for audit/compliance purposes



Condition Processing
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More on Append-only Semantics

• ACS records are marked with the conceptual message type
• This removes the need to protect processing ordering to achieve 

deterministic results. 
• Record order is an artifact of (unpredictable) workflow processing dynamics.
• Since records can appear in any order, records can be added following 

append-only semantics which reduces update contention and facilitates 
distributed verifier architectures.

• Conceptual messages have scoped search semantics
• E.g., Reference Values are scoped to Evidence
• Conditions rely on message type context to scope search targets



Basic ACS Augmentation Examples
• Evidence

• (<>, <class-id=.3.2.1 : digest=h’FED4’>, <key-id=h’01’>) => 
• <[class-id=.3.2.1 : digest=h’FED4’], key-id=h’01’>

• RVP
• (<class-id=.3.2.1 : digest=h’FED4’>, <>, <key-id=h’02’>) =>

• <[class-id=.3.2.1 : digest=h’FED4’], key-id=h’02’>

• Endorsement #1
• (<class-id=.3.2.1 : digest=h’FED4’>, <class-id=.3.2.1 : svn=7>, <key-id=h’03’>) =>

• <class-id=.3.2.1 : svn=7>, key-id=h’03’>

• Endorsement #2
• (<class-id=.3.2.1 : svn=7, key-id=h’03’>, <class-id=.3.2.2 : version=“1.0”>, <key-id=h’04’>) =>

• <class-id=.3.2.2 : version=“1.0”, key-id=h’04’>



Resulting ACS

1) [[class-id=.3.2.1 : digest=h’FED4’], key-id=h’01’, evs],
2) [[class-id=.3.2.1 : digest=h’FED4’], key-id=h’02’, rvs],
3) [[class-id=.3.2.1 : svn=7], key-id=h’03’, ens],
4) [[class-id=.3.2.2 : version=“1.0”], key-id=h’04’, ens]

processing
sequence



Condition Processing (cont.) 
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Discussion
• If new Evidence is asserted after ACS has processed basic 

augmentations
• Evidence #2 is appended to ACS
• E.g., 1) [[class-id=.3.2.1 : digest=h’FED4’], key-id=h’01’, ev],

2) [[class-id=.3.2.1 : digest=h’FED4’], key-id=h’02’, rv],

3) [[class-id=.3.2.1 : svn=7], key-id=h’03’, ens],

4) [[class-id=.3.2.2 : version=“1.0”], key-id=h’04’, en],

5) [[class-id=.3.2.3 : digest=h’EDC3’], key-id=h’07’, ev]

• A Reference Values condition could match on either or both 
evidence records
• If it matches, Reference Values #2 entry is appended to ACS
• E.g., 6) [[class-id=.3.2.3 : digest=h’EDC3’], key-id=h’02’, rv]



Discussion
• Multiple Verifiers may cooperate to produce a distributed ACS1

• VerifierA partitions ACS1 into ACS1A, ACS1B, and ACS1C
• VerifierB augments ACS1B
• VerifierC augments ACS1C
• Verifier D consumes ACS1A, ACS1B, and ACS1C to produce a final ACS1D
• ACS1D should be equal to ACS1 except for record ordering

ACS1C

• Attester 1 session context
1) [[class-id=.3.2.1 : digest=h’FED4’], key-id=h’01’, ev],
2) [[class-id=.3.2.1 : digest=h’FED4’], key-id=h’02’, rv],
3) [[class-id=.3.2.1 : svn=7], key-id=h’03’, en],
4) [[class-id=.3.2.2 : version=“1.0”], key-id=h’04’, en]

ACS1B

• Attester 1 session context

1) [[class-id=.3.2.1 : digest=h’FED4’], key-id=h’01’, ev],

2) [[class-id=.3.2.1 : svn=7], key-id=h’03’, en],

3) [[class-id=.3.2.3 : digest=h’EDC3’], key-id=h’07’, ev]

ACS1D

• Attester 1 session context
1) [[class-id=.3.2.1 : digest=h’FED4’], key-id=h’01’, ev],
• [[class-id=.3.2.1 : digest=h’FED4’], key-id=h’01’, ev],
2) [[class-id=.3.2.1 : digest=h’FED4’], key-id=h’02’, rv],
3) [[class-id=.3.2.1 : svn=7], key-id=h’03’, en],
• [[class-id=.3.2.1 : svn=7], key-id=h’03’, en],
4) [[class-id=.3.2.3 : digest=h’EDC3’], key-id=h’07’, ev]
5) [[class-id=.3.2.2 : version=“1.0”], key-id=h’04’, en]

ACS1A

• Attester 1 session context



Augmentation by Validation Function

• VF Augmentation – ACS changes state by processing a validation 
function:
• VF Augmentation tuple: (<condition>, <function>,<authority>) => 

<output-set>
• <condition> - a Claimset that is matched to the ACS
• <function> - An action applied to <condition> in ACS
• <authority> - the credential/key of the entity that asserted the tuple
• <output-set> - The Claimset added to the ACS with authority and tuple context
• If <condition> is true, then perform <function> and append function result as an 

<output-set> Claimset to ACS. Note: <output-set> could be <nil>
• Example VF tuples in CoMID:

• attest-key-triple-record
• identity-key-triple-record



VF Augmentation Example
• Identity Key Triple

• (<class-id=.3.2.1,[key-id=h’01’]>, <fKEY-VERIFY()>, <key-id=h’05’>) => 
• <[class-id=.3.2.1 : [key-id=h’01’], result=VALID, key-id=h’05’, vf]>

Discussion
• The identity triple is a bit like an endorsement where the function result 

is the endorsed Claimset.
• In CoMID, the function is defined as part of the triple predicate
• Note: 

• The Verifier is an agent of the Endorser hence, the result is asserted under the 
authority of the Endorser rather than the Verifier.

• Maybe both authorities are needed?



Resulting ACS – with VF Augmentation

• [[class-id=.3.2.1 : digest=h’FED4’], key-id=h’01’, ev],
• [[class-id=.3.2.1 : digest=h’FED4’], key-id=h’02’, rv],
• [[class-id=.3.2.1 : svn=7], key-id=h’03’, en],
• [[class-id=.3.2.2 : version=“1.0”], key-id=h’04’, en],
• [[[class-id=.3.2.1 : [key-id=h’01’], result=VALID], key-id=h’05’, vf]



ACS Restriction / Views

• View Restriction – A “view” of the ACS:
• Restriction tuple: (<view-name>, <condition>, <authority>) => <output-set>

• <condition> - A Claimset that selects Claimsets for placement in a View
• <output-set> - The View
• If <condition> is true, then select matching Claimsets from ACS and make them visible 

through <output-set> via a session/context authenticated by <authority>.
• Receipt of RP Requests or Appraisal Policies triggers processing

• If the ACS Augmentation inputs are still active, then ACS Restriction results may differ 
each time the same request is processed.



Processing an ACS Restriction / View
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View Examples
• The view restriction tuple has a condition that constrains by Trust Anchors 

• (<“MyView”>, <ta=[key-id=h’02’, key-id=h’04’]>, <key-id=h’06’>) => <view-claimset>
• The order of records in a View doesn’t matter

• [view-name=“MyView”, key-id=h’06’],
• [[class-id=.3.2.1 : digest=h’FED4’], key-id=h’02’, rv],
• [[class-id=.3.2.2 : version=“1.0”], key-id=h’04’, en]

View Results:



ACS Integrity Checking Example
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