The global list of Scale bands

Index	MinScale	MaxScale
1	NULL	1:10,000,000
2	1:10,000,000	1: 3,500,000
3	1:3,500,000	1:1,500,000
4	1:1,500,000	1:700,000
5	1:700,000	1:350,000
6	1:350,000	1:180,000
7	1:180,000	1:90,000
8	1:90,000	1:45,000
9	1:45,000	1:22,000
10	1:22,000	1:12,000
11	1:12,000	1:8,000
12	1:8,000	1:4,000
13	1:4,000	1:3,000
14	1:3,000	1:2,000
15	1:2,000	1:1,000

Situation in the System Data Base : Four DataSets and Five DataCoverages

1) INV is the inventory of all data coverages declared in the system database. Each Data Coverage has a maximum-minimum display scales and is linked to the global scale band list by indexes (eg 8-10)

DS-1-DC-B 1/45000-1/180000 (6)
DS-1-DC-A 1/12000-1/45000 (9-10)
DS-3-DC-D 1/180000-1/350000 (6)
DS-2-DC-C 1/45000-1/180000 (7-8)
DS-4-DC-D 1/180000-1/350000 (6)

1) First Sample: a viewport which a MSVS 1/90 000

The start scale band's index of viewport for MSVS (90 000) is 8 = resulting from GetScaleBand(scale)

First Sample: a viewport which a MSVS 1/90 000

1) Start SB = 8 : First Loop through the INV to test each data coverage with the restricted filter : max(minDS, minScale[index]) < min(maxDS, maxScale[index]) : only DC-C is selected

First Sample with implementation based a series of loops

2) As the viewport is not filled, we go on with SB = SB -1 (7) a second Loop for testing data coverage in overscale situation but with a minimum display scale superior to maxDS < maxScale[index] and minDS > minScale[index]

First Sample with implementation based a series of loops

2) As the viewport is not filled, we go on with **SB = SB -1 (6) a thrird Loop** for testing data coverage in overscale situation but with a minimum display scale superior to maxDS < maxScale[index] and minDS > minScale[index]

Result : First Sample is **OK** with two data coverages selected

2) As the viewport is filled, we stop and the result is

