DiaHalu can be replaced with any given dataset.
| Details | Script Name | Input File | Output File |
|---|---|---|---|
| Standardizes DiaHalu dataset from Excel to JSON format. | Extract triples/standardize_diahalu.py |
Extract triples/dataset/DiaHalu_V2.xlsx |
Extract triples/dataset/DiaHalu_V2.json |
| Extracts entities for each dialogue turn. | Temporal Graph/extract_entities_per_dialogue.py |
Extract triples/dataset/DiaHalu_V2.json |
Temporal Graph/processed/diahalu_temporal.json |
| Builds temporal graphs with entity and temporal edges. | Temporal Graph/build_temporal_graphs.py |
Temporal Graph/processed/diahalu_temporal.json |
Temporal Graph/processed/dgl_temporal/ |
| Trains the Temporal Graph Network model. | Temporal Graph/train_temporal.py |
Temporal Graph/processed/dgl_temporal/ |
Temporal Graph/processed/temporal_entity_ckpt.pt |
| Identifies misclassified samples in validation set. | Temporal Graph/find_errors.py |
Temporal Graph/processed/dgl_temporal/, Temporal Graph/processed/temporal_entity_ckpt.pt |
- |
| Checks attention weights for individual validation samples. | Temporal Graph/infer_temporal.py |
Temporal Graph/processed/dgl_temporal/, Temporal Graph/processed/temporal_entity_ckpt.pt, Temporal Graph/processed/diahalu_temporal.json |
- |
| Generates confusion matrix visualization for validation set. | Temporal Graph/plot_confusion_matrix.py |
Temporal Graph/processed/dgl_temporal/, Temporal Graph/processed/temporal_entity_ckpt.pt |
Temporal Graph/processed/confusion_matrix.png |
WikiBio can be replaced with any given dataset.
| Details | Script Name | Input File | Output File |
|---|---|---|---|
| Extracts triples from main text. | GCA/Extract triples/process_dataset.py |
GCA/Extract triples/dataset/WikiBio_dataset/wikibio.json |
GCA/Extract triples/processed/out_triplets_wiki.json |
| Extracts triples from samples. | Reverse Verification of Triples/compare triples/sample.py |
GCA/Extract triples/processed/out_triplets_wiki.json |
GCA/Extract triples/processed/out_samples_wiki.json |
| Verifies triplets of main text based on entailment from triplets of samples. | Reverse Verification of Triples/compare triples/gpt4_compare.py |
GCA/Extract triples/processed/out_samples_wiki.json |
GCA/Extract triples/processed/out_supports_wiki_rr.json |
| Marks triplets of main text as facts based on entailment. | Reverse Verification of Triples/compare triples/fact_triples.py |
GCA/Extract triples/processed/out_supports_wiki_rr.json |
Same file (in-place modification) |
| Reverse verification of all the triplets of main text. | Reverse Verification of Triples/mask_relationship.py |
GCA/Extract triples/processed/out_supports_wiki.json |
GCA/Extract triples/processed/out_mask_wiki_rr.json |
| Builds the graph using the triplets. | Graph-based Contextual Consistency Comparison/extract_nodes&edges.py |
GCA/Extract triples/processed/out_triplets_wiki.json |
GCA/Extract triples/processed/graphs_wiki.json |
| Generates relation mapping and DGL files. | rgcn_training/prepare_dgl_graphs.py |
GCA/Extract triples/processed/graphs_wiki.json |
data/relation2id_wiki.json, data/dgl_graphs_wiki/ |
| Trains the RGCN for the Wikibio dataset. | rgcn_training/train_gca_rgcn.py |
GCA/rgcn_training/data/dgl_graphs_wiki/ |
GCA/checkpoints/gca_rgcn_wiki.ckpt |
| Calculates the final score for each triplet of main text. | Graph-based Contextual Consistency Comparison/score_with_rgcn.py |
GCA/Extract triples/processed/graphs_wiki.json, data/relation2id_wiki.json, GCA/checkpoints/gca_rgcn_wiki.ckpt |
GCA/Extract triples/processed/scored_wiki.json |
| Calculates the classification metrics for different thresholds on the final score. | wikiBio/cal_metric_gca.py |
GCA/Extract triples/processed/scored_wiki.json |
- |
To execute any script from the pipelines above:
-
Synchronize dependencies:
uv sync
-
View script arguments:
uv run <script_name> --help
-
Match the arguments with the corresponding pipeline table (TGN or GCA) to identify required input files and expected outputs.
Pre-trained model files are available at: Google Drive.