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1 ABSTRACT

Containerization technology, epitomized by Docker and Kuber-
netes, has revolutionized the world of cloud computing by providing
a lightweight and scalable solution for deploying applications. How-
ever, efficient inter-container communication across hosts remains
a critical challenge. This paper introduces an innovative approach
to tackle this problem by combining Remote Direct Memory Access
(RDMA) and Redis, a high-performance, in-memory data store. Our
solution leverages the low-latency, high-throughput capabilities
of RDMA to enable direct memory-to-memory communication be-
tween containers, while Redis serves as a distributed, fault-tolerant
data structure server to manage communication and coordination.
We present a comprehensive analysis of the architecture, design
considerations, and performance results, demonstrating significant
inter-container communication speed and reliability improvements.
This research contributes to the ongoing efforts to enhance con-
tainerized applications’ orchestration and communication capa-
bilities in multi-host environments, opening new possibilities for
high-performance, microservices-based applications in cloud com-
puting.

2 INTRODUCTION

The motivation behind this project stems from the increasing de-
mand for high-speed, low-latency, and efficient communication
between distributed Docker containers, particularly when they are
running on separate hosts. In today’s technology landscape, con-
tainerization has become a cornerstone of application deployment
and scaling. However, traditional methods of inter-container com-
munication, such as HTTPS/HTTP, gRPC, and messaging queues,
while secure and reliable, may not always meet the requirements
of real-time, low-latency communication.

The need for low-latency communication becomes particularly
critical in various use cases, such as real-time data processing, dis-
tributed computing, and microservices architectures, where delays
in data transfer can lead to inefficiencies and bottlenecks. This
project aims to address this challenge and explore innovative solu-
tions for improving communication efficiency between containers
in different hosts.

The project also recognizes that shared memory can be a power-
ful resource for achieving low-latency communication. Containers
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running on the same host can efficiently use shared memory for
synchronized communication. However, extending this concept to
containers on different hosts is a challenge that requires innovative
solutions. The idea of using shared memory over RDMA for inter-
container communication across distributed hosts is a unique and
promising approach.

The motivation behind this project is not only to experiment with
cutting-edge technologies but also to address a significant chal-
lenge in containerized environments. The project’s outcomes can
have a wide range of applications, from optimizing data-intensive
workloads to enabling real-time data processing and improving the
overall efficiency of distributed systems. Ultimately, the goal is to
contribute to the advancement of containerization technology and
empower businesses and developers to harness the full potential of
their distributed containerized applications.

3 LITERATURE SURVEY

To prepare for this project, we consulted three papers, and for imple-
mentation we followed one blog. In this section, we have provided
a summary of each resource we used.

The paper titled “FreeFlow: Software-based Virtual RDMA Net-
working for Containerized Clouds” [3] explains about the FreeFlow,
which is a software-based virtual RDMA networking framework de-
signed to bridge the gap between containerization and RDMA tech-
nologies in cloud-based applications. Its primary goal is to enable
containerized applications running in shared cloud environments
to harness the high-performance benefits of RDMA, while simulta-
neously ensuring the critical properties of isolation, portability, and
controllability that are essential for efficient container management.
Unlike existing solutions, FreeFlow does not require specialized
hardware or hardware-based I/O virtualization. It achieves this
by employing a software virtual switch on each server, offering
transparent integration with applications running inside contain-
ers. This innovative approach eliminates performance bottlenecks,
allowing FreeFlow to deliver throughput and latency comparable to
bare-metal RDMA while significantly enhancing the performance
of data-intensive applications like Spark and TensorFlow. FreeFlow
represents a promising solution for optimizing the performance,
cost efficiency, and resource control in cloud-based containerized
applications

The paper titled “MasQ: RDMA for Virtual Private Cloud” [5] In
this paper, the authors address the challenge of enabling Remote
Direct Memory Access (RDMA) in Virtual Private Clouds (VPCs)
within public cloud environments, focusing on RoCEv2 networks.
They propose MasQ, a novel RDMA virtualization approach that



combines software-defined rules for communication with hardware
execution to achieve both high performance and scalability. MasQ
introduces techniques such as vBond and RConntrack for abstract-
ing virtual RoCE networks, providing virtual IP communication
between RDMA applications, and supporting security measures
like security groups and firewall as a service. The solution operates
primarily in the control path, resulting in negligible performance
overhead. Their prototype implementation demonstrates the feasi-
bility of deploying RDMA in virtualized data centers, making it a
significant contribution to the field of RDMA network virtualiza-
tion for VPCs.

The paper "Using One-Sided RDMA Reads to Builda Fast, CPU-
Efficient Key-Value Store" [2] explores the design of Pilaf, a dis-
tributed in-memory key-value store that takes advantage of Remote
Direct Memory Access (RDMA) to achieve high performance with
minimal CPU overhead. Pilaf leverages RDMA for read-only service
requests, such as "gets," while traditional messaging handles other
types of requests. This approach simplifies the design and restricts
the class of memory access races that can occur, mainly concerning
read operations. To address read-write races between clients and
the server, Pilaf introduces self-verifying data structures, which in-
clude checksummed root data objects and pointers with checksums.
Clients can bypass the server’s CPU for processing read requests,
achieving optimal CPU overhead. Pilaf demonstrates its high per-
formance and low CPU utilization in experiments on Infiniband-
equipped machines, outperforming traditional key-value stores like
Memcached and Redis, making it a significant contribution to the
utilization of RDMA in datacenter-scale systems infrastructure.

In paper "High Performance Design for Redis with Fast Event-
Driven RDMA RPCs"[4], the authors address the limitations of
existing key-value stores, such as Redis, which use conventional
socket I/O interfaces, resulting in significant CPU copy overhead
and performance constraints, especially when used with low-speed
Network Interface Cards (NICs). To overcome these challenges, the
paper introduces FeRR, a fast event-driven RDMA RPC framework
that prioritizes low latency and high throughput. FeRR considers
the network primitives of RDMA hardware and offers an efficient
event-driven request notification mechanism, making it suitable
for integration into existing systems. Furthermore, the authors
implement a novel branch of Redis called FeRR-driven Redis to
demonstrate the framework’s performance enhancements. To re-
solve additional challenges arising from this integration, the paper
addresses issues related to Redis Serialization Protocol (RESP) and
the single-threaded framework of Redis. Their proposed solutions,
including an optimized serialization protocol and a parallel task
engine based on cuckoo hashing with optimistic locking, are shown
to significantly boost Redis’s performance. Through experiments,
FeRR-driven Redis achieves remarkable throughput and low latency,
making it a promising solution for high-performance key-value
stores.
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Figure 1: Proposed Architecture Model

docker
Container

Our architecture comprises two nodes: a master and a client node,
each hosting a master and client container, respectively. The pri-
mary objective is to establish data synchronization over RDMA
between these containers, ensuring that when the master container
writes data, the client container can read it with minimal latency.
The data synchronization process is as follows:

Step 1: Container on Server writes a message on Redis running on
the server.

Step 2: The Redis instance on server updates its in-memory Key-
Value store.

Step 3: RDMA-Agent on Server recognizes the change.

Step 4: RDMA-Agent syncs its Memory Map with the updated data.
Step 5: RDMA-Agent on the Client node sends a sync request.
Step 6: The sync request is forwarded over RoCE connection.
Step 7: RDMA-Agent on the Server Node receives the request.
Step 8: RDMA-Agent on the Server Node replies back with the
Memory data.

Step 9: RDMA-Agent on the Client Node updates Redis.

Step 10: Redis on the Client Node updates its Key-Value Store with
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the latest data.
Step 11: Container on Client Node requests for a Key from Redis.
Step 12: Container on the client node receives response for the
requested Key.

5 PROPOSED WORK

The project focuses on creating a high-performance communica-
tion framework for inter-container communication across hosts
in cloud computing environments. The framework will use tech-
nologies such as Remote Direct Memory Access (RDMA), Redis,
Virtual machines, SoftROCE, Docker, and Socket Programming. Our
project has three main tasks: the first is setting up RDMA connec-
tions between nodes using SoftROCE, the next task is to establish an
RDMA-accelerated communication between Redis Master and Re-
dis Worker, and finally, enabling real-time communication between
containers across hosts. These tasks aim to mitigate the challenges
of latency and improve reliability in microservices orchestration.

Task 1: Establish RDMA Connection Between Nodes In the
first phase of the project, we aim to establish a reliable RDMA con-
nection between two nodes. For this purpose, we will employ two
virtual machines (VMs) running with Ubuntu 22.0 equipped with
SoftiROCE, a tool that emulates a Remote Network Interface Card
(RNIC) within VMs. This setup will enable us to simulate RDMA
communication between the VM nodes. Our goal is to evaluate the
feasibility and efficiency of RDMA for inter-node communication,
with a focus on latency and data throughput.

Task 2: Establish a Connection Between Redis Master on
Node 1 and Redis Worker on Node 2 Using RDMA

We plan to integrate Redis, a high-performance, in-memory data
store, into the communication framework. To achieve this, we will
refer to the documentation provided by the open-source project
RdmaAcceleratingRedis [1], which explores the acceleration of Re-
dis using RDMA. We will also draw insights from the paper titled
"High Performance Design for Redis with Fast Event-Driven RDMA
RPCs"[4] to improve the approach. The objective is to establish a
seamless RDMA connection between Redis Master on Node 1 and
Redis Worker on Node 2, enabling high-speed, low-latency data
transfers. We will conduct experiments to verify the reliability and
performance of this connection, focusing on the synchronization
of the Redis memory table from the Master to the Worker node.

Subtask 2A: RDMA connection between Node 1 and Node 2

Each node will have one or more RDMA enabled NIC devices. Each
RDMA device is like a PCI device. RDMA communication between
two devices happens based on three queues: send queue, receive
queue, and completion queue. Send queue and Receive queue will
always be created as a Queue Pair. Applications enqueues a work re-
quest into the send and receive queues, send queue acts as a pointer
for message buffer and receive queue acts as a pointer in which
incoming message should be stored. Once the work request is com-
pleted, it gets enqueued into the completion queue. These queue
pairs (QP), except for the completion queues, can be registered in
a protection domain (PD). In RDMA read and write operations,
only the sender is actively involved. The receiver remains passive,

requiring no operation, CPU cycles, or even awareness of the data
transfer. To initiate a read or write, the sender needs two pieces of
information from the receiver: the remote memory address and a
unique memory registration key. These details are usually acquired
beforehand through traditional RDMA send/receive mechanisms.
Similarly, memory regions that are registered to work with the
RDMA will also be registered in a protection domain. These pro-
tection domains are a means of grouping and protecting resources
from arbitrary accesses from the remote. This limits which memory
regions can be accessed by which queue pairs (QP), providing a
degree of protection from unauthorized access. We are using the
library libibverbs, developed and maintained by Roland Dreier since
2006, that enables programs to use RDMA "verbs" for direct access
to RDMA hardware from userspace.

Subtask 2B: Redis connection between Node 1 and Node 2
Traditionally, Redis Master-Slave architecture uses the asynchro-
nous method for transferring the data from master to slave. The
slave/replica node issues a SLAVEOF command to become a replica
of the master node. During data synchronization, the master node
dumps the data from the memory to the disk, and then starts a
thread to send the data in the disk to the other replicas. This disk
Read/Write operation becomes a really big network performance
overhead and since the master is responsible for sending the data to
the clients, the large amount of data transfer also incurs high over-
load to network and CPU of master. In order to reduce this overload,
we plan to use the RDMA memory map for synchronization. The
Redis master dumps the data to the RDMA memory map, and the
Redis slave can use RDMA read to read the data from the master’s
memory map in synchronization. This eliminates the network load
and enhances the overall performance.

Task 3: Communication Between Containers Across Hosts
In the final phase of the project, we will extend the benefits of
RDMA-accelerated Redis communication to containerized appli-
cations spanning multiple hosts. We will set up a container on
Host 1 with a link to the Redis Master, and a container on Host
2 with a link to the Redis Worker. The ultimate goal of this task
is to achieve seamless, real-time communication between these
containers. Specifically, when the container on host 1 writes a mes-
sage to Redis Master, the container on Host 2 should promptly and
securely be able to read the message. This experiment will vali-
date the practicality of the approach in enhancing inter-container
communication across hosts, showcasing the potential for high-
performance, microservices-based applications in cloud computing
environments.

6 SECURITY

Security stands as a paramount consideration for any application,
and our system addresses this concern with a comprehensive ap-
proach. Notably, we have identified two potential avenues through
which malicious entities could compromise the integrity of our
system: Our architectural design addresses both these challenges
by harnessing the security features provided by RDMA and Redis,
thereby establishing a robust defense against potential threats.



1. Unauthorized Write Access to Redis Data Store:A malicious
system may attempt to tamper with our Redis data store by initiat-
ing unauthorized write operations.

Prevention stratergy: Our security strategy in Redis hinges on
the deployment of a unidirectional SSL secured connection. This
proactive measure serves as a robust deterrent against unautho-
rized hosts attempting to write to our Redis data store. To elaborate,
any application seeking to write to Redis must undergo a stringent
certificate validation process with the server.

By enforcing this one-way SSL secured connection, we ensure that
only recognized and authenticated hosts with valid certificates are
granted the privilege to interact with our Redis data store. Con-
sequently, this security mechanism serves as an effective barrier,
mitigating our primary security concern related to unauthorized
write access. The stringent validation process eliminates the first
risk explained above.

2. Manipulation of Data in RDMA Memory Regions by Mali-
cious Users: Another potential security concern involves malicious
users attempting to manipulate data within RDMA memory regions.
Prevention Stratergy: RDMA, a high-performance networking
technology, relies on a unique memory management strategy called
memory registration. This process, orchestrated by the operating
system’s internal driver, defines specific properties for a designated
memory region. These properties include:

o Protection: Safeguarding the memory from unauthorized
access.

e Byte-level range: Defining the precise boundaries of the
memory region.

e Permissions: Specifying Read/Write access for local and
remote entities.

¢ Pinning: Ensuring the memory remains resident in RAM,
preventing swapping and guaranteeing low latency.

Once registered, this memory becomes readily accessible for RDMA
operations. However, for additional security, these regions are fur-
ther fortified by protection domains. Imagine these as virtual walls
around each memory region, controlling access and preventing
unauthorized entry. Thus protection domains act as a robust bar-
rier, safeguarding the confidentiality and integrity of data within
the RDMA framework. By implementing this security measure, we
successfully mitigate our second security concern.

7 EVALUATION

In this section, we will delve into the performance differences be-
tween various data transfer protocols. We will compare and analyze
key aspects such as latency, bandwidth, and data size for TCP, UDP,
and RDMA. This analysis will serve to highlight the significant
speed advantage offered by RDMA over traditional TCP/UDP pro-
tocols.

The second part of this section delves deeper into the performance
benefits of RDMA in comparison to other protocols. We present em-
pirical results showcasing the contrasting speeds achieved by Redis
when utilizing RDMA versus traditional RDMA and other protocols
like HTTP and RPC. This analysis provides concrete evidence of
RDMA’s superior performance for key operations.
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In our initial phase of evaluation, we plotted various graphs com-
paring different aspects of network to understand the performances
of TCP, UDP and Remote Direct Memory Access (RDMA).
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Figure 2: Graph plot between ping and Rping RTT’s

In further analysis, we observed a notable distinction in the behav-
ior of regular ping packets, which adhere to the traditional routing
methods, compared to the RDMA-based communications. As the
count of ping packets increased, the Round-Trip Time (RTT) ex-
hibited a linear growth for regular ping packets. In contrast, the
RTT for RDMA remained remarkably constant, showcasing the in-
herent efficiency of Remote Direct Memory Access in maintaining
consistent low-latency performance even under varying loads.

To delve deeper into these experiments, we directed our atten-
tion toward comparing latencies and bandwidths.
We performed bandwidth test using qperf and id_read_bw tools to
evaluate TCP, UDP, and RDMA-ROCE performances.
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If we observe the graph Fig. 3, we can say that RDMA out performed
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both TCP and UDP. As data size increases, there is an improvement
in the bandwidth of TCP and UDP but is no where comparable to
RDMA.

In the next step, we performed the latency test among TCP, UDP
and RDMA to understand the RDMA’s latency performance.

Latency Vs. Data size
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Figure 4: Graph plot between Latency and Data size

It can be clearly observed from Fig. 4 that RDMA’s latency is much
much lower compared to TCP and UDP. As, the data size increases,
there is a sharp increase of latency in both TCP and UDP but, the
latency of RDMA is almost constant.

Having established RDMA’s superiority over TCP and UDP, next
section is dedicated to compare RDMA-REDIS, REDIS, HTTP, and
RPC. To comprehensively assess their performance, extensive tests
are conducted with varying data sizes and sending a different num-
ber of packets in each iteration. This meticulous analysis will re-
veal the nuances of each protocol’s performance under various
conditions, providing valuable insights into their strengths and
weaknesses.
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Figure 6: Average latency comparing RDMA-Redis, Redis,
HTTP and RPC, with data sizes ( 1KB, 10KB, 50KB, 100KB )

Figure 5,6 shows the experiment results and it vividly demonstrates
the superior performance of RDMA-REDIS compared to traditional
Redis. As data size increases, this advantage becomes even more pro-
nounced. Furthermore, RDMA-REDIS surpasses the performance of
HTTP across all data sizes. While ideally RDMA should outperform
RPC as well, the utilization of ROCE (Virtualized RDMA) in this
experiment limited its ability to do so for larger data sizes.
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