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Attacks against E-Safenet encryption

Abstract

The Chinese company E-Safenet specializes in data leak prevention
and provides software to encrypt files using a proprietary encryp-
tion algorithm. Manufacturers are using the E-Safenet encryption
to protect their source code. Since several licenses require that code
modifications are made public, it must be possible to audit the source
code for license compliance. For this purpose it is interesting to be
able to decrypt this specific file format.

In this report, the E-Safenet encryption algorithm and data format are
detailed. Methods are given to find the encryption key and reverse the
encryption using a known-plaintext attack, probable-plaintext attack,
and a ciphertext-only attack.
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1 Introduction

Many open source software products can be freely used, as long as their
license terms are upheld. The GPL [1] license is an example of an often
used licensing scheme. Modifications of source code that falls under the
GPL license have to be published freely. Some manufacturers however, do
not comply with these terms. European vendors sometimes import devices
from other countries, such as China, where license terms are frequently
violated [2]. In order to make sure the used software license terms are
upheld, an audit of the source code has to be performed.

A China-based company called E-Safenet [3] specializes in data leak preven-
tion, and provides tools for source code encryption. Source code encrypted
with E-Safenet’s proprietary encryption algorithm cannot be read by third
parties, which makes it difficult to verify license compliance. Furthermore,
the manufacturer of a product can cease to exist, or cease to provide sup-
port. With only the encrypted files available, other parties cannot improve
the product anymore by having bugs fixed or features added.

This report details the process of reverse engineering the E-Safenet encryp-
tion. Tjaldur Software Governance Solutions, a company that specializes in
consultancy in the field of software governance and license compliance engi-
neering [4], made the research into this encryption possible by supplying an
archive of encrypted source code files. There are possibly other encryption
algorithms that were developed by the E-Safenet company. However, the
specific encryption used by these source code files is implied when the term
”E-Safenet encryption” is used.
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2 Research

This research was supervised by Armijn Hemel of Tjaldur Software Gover-
nance Solutions. Tjaldur deals with license compliance issues and encoun-
tered the E-Safenet encryption during an audit.

The research into E-Safenet encryption aims to answer the following ques-
tion:

Can files encrypted with E-Safenet encryption be decrypted?

Research questions that are relevant during the reverse engineering process
are:

1. Is it possible to decrypt the given archive of files into readable code
given known plaintext?

2. How are E-Safenet keys generated? Are there any repetitions or pat-
terns in the keys?

3. Can arbitrary files be decrypted based on file signatures/patterns
instead of plaintext?
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3 Related work

There seems to be no prior research into the E-Safenet encryption algorithm
at the moment of writing. However, encryption software like E-Safenet that
can work transparently on the kernel or network level, has previously been
looked into [5] [6].

Bruce Schneier’s book on applied cryptography discusses many of the
encryption mechanisms that are used by the E-Safenet algorithm. Schneier
explains how a simple XOR cipher does not provide any security at all,
and is easy to break [7]. A paper has been published on how simple
XOR encryption can be broken by making use of n-grams in the English
language [8].

Previous research has been done in finding software license violations
through binary code clone detection, for which the Binary Analysis Tool
was created [9]. The Binary Analysis Tool makes it easier and cheaper
to look inside binary code, find compliance issues, and reduce uncertainty
when deploying Free and Open Source Software [10]. Another tool named
DebCheck was released by Cordy, J.R. and Roy, C.K [11], which also allows
to check for open source code clones in software systems.
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4 Analysis

Tjaldur Software Governance Solutions provided an archive of encrypted
source code files that were encrypted using the E-Safenet encryption algo-
rithm. The encrypted files still had the same filenames as the plaintext ver-
sion of the files. They appeared to be source files from the U-Boot [12] and
Android Linux kernel repositories [13]. These repositories contain mostly C
files and header files.

The encrypted files all have the same structured header format in which the
literals ”E-SafeNet” and ”LOCK” can be read in plain text. This header
format is further documented in section 4.2. As illustrated by figure 1, a
hex dump of an E-Safenet encrypted file shows a few header bytes, followed
by a range of null-bytes, followed by ciphertext.

Figure 1: The first 256 bytes of an E-Safenet file

To find out what cipher was being used by E-Safenet, the encrypted files
were subjected to statistical techniques for attacking ciphertext, such as
autocorrelation.

4.1 Autocorrelation

To search for patterns in the encrypted files, the autocorrelation of an E-
Safenet file was plotted, as shown in figure 2. During autocorrelation, the
file is compared with itself at different offsets, and the correlation calculated,
in order to identify patterns.
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Figure 2: Autocorrelation of an E-Safenet file

The autocorrelation graph clearly shows a spike at values 512 and 1024.
Based on these observations, it was assumed that the file was encrypted
using a block cipher in ECB mode with a key length of 512 bytes.

When splitting the ciphertext into blocks of 512 bytes, and plotting the byte
values, the correlation becomes very visible, as depicted by figure 3. While
this figure only shows the results for bytes 480-512, this pattern is visible
for all 512 bytes.
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Figure 3: Blocks of 512 bytes of an E-Safenet file. Each color represents one
block of 512 bytes.
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This pattern emerges because typical C files only contain printable charac-
ters, which are in the byte range 32-126, a much smaller range than the 0-255
byte values of random data. In addition, only a subset of these characters
is in regular use, namely the lowercase letters, and some special characters
such as underscore and parentheses. As a result, characters encrypted with
the same key byte result in encrypted bytes that fall within the same range.

Several attacks are proposed in section 5 to extract the encryption key.

4.2 E-Safenet data format

Each encrypted file starts with a custom header. Knowing that a file contains
literals in the header that indicate the E-Safenet encryption, and the length
of the ciphertext file is still equal to the length of the plaintext file, the only
plausible possibility is that compression was used.

After executing a known-plaintext attack on the E-Safenet files, as explained
in section 5.1, the plaintext was retrieved. The first block did not contain the
actual plaintext, but the expected compressed version. These first 512 bytes
are compressed with the LZO algorithm, as is further detailed in section 4.3.
After the 21 header bytes and the compressed data, some extra padding is
added to total 512 bytes again.

An important remark is that some data cannot be compressed (truly random
data), which would result in a failure to preserve the file length. However,
it is unclear what happens in this case for E-Safenet files.

The first 6 bytes define where this padding starts and ends, the next 2
bytes contain the size of the compressed data in bytes. Then follow 3 bytes
which act as a checksum. These bytes contain the sum of all byte values in
plaintext bytes 512-1023. The next byte, byte 11, has an unknown meaning,
however its value was always 1 for the files in our possession.

Bytes 12-20 contain the string ”E-SafeNet”, a signature of the company.
After this, the padding described above starts. After 3 bytes of padding,
the string ”LOCK” is inserted.

At the end of the padding, an encrypted version of the compressed first 512
bytes is stored, followed by an encryption of the rest of the file. Encryption
is done by a XOR-operation using a 512-byte key. This key is repeated as
often as needed. Note that the compressed data is encrypted with the key
starting at byte 0, For plaintext bytes 512 and onwards, the key starts at 0
again and is repeated.
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A full overview of each byte and its meaning is shown in table 1.

Byte(s) Value
0 b (literal string, for Begin)
1 offset, padding starts after this value, always 0x14
2 # (separator?)
3 e (literal string, for End)
4-5 offset, padding ends before this value
6-7 size of compressed data in bytes
8-10 checksum: sum of bytes 512-1023 of the plaintext
11 value 1, meaning unknown
12-20 E-SafeNet (literal string)
21-23 padding, all null-bytes
24-27 LOCK (literal string)
28-xx null-byte padding, lasts until the value in bytes 4-5
xx-511 encrypted, compressed version of the first 512 plaintext-bytes,

xx is the value of bytes 4-5
512-end encrypted version of the rest of the file

Table 1: E-Safenet data format, all multi-byte numbers are little-endian

4.2.1 Checksum deductions

The checksum that is found in the header of E-Safenet files can sometimes
”leak” information. The checksum is taken over the second 512 bytes block
of plaintext.

• The lowest printable ASCII character has an ordinal value of 32.
32 ∗ 512 = 0x004000h

• The highest printable ASCII character has an ordinal value of 126.
126 ∗ 512 = 0x00FC00h

All checksums that fall out of the bounds [0x004000, 0x00FC00] therefore
likely indicate binary data, assuming that the file contains at least 1024
bytes. This does not work both ways, as checksums that fall between these
bounds do not necessarily indicate printable data.
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4.3 Compression

After the decryption of an E-Safenet file, the first 512 bytes are still com-
pressed. When inspecting the hex dump of the compressed data, as shown
in figure 4, two important observations can be made. First, when the same
data occurs multiple times, the earlier copy is referenced by the following
ones, effectively eliminating duplicate strings. Second, duplicate strings do
occur after a while, indicating that references can only go back a certain
amount of bytes (using a sliding window). This particular way of compress-
ing data is characteristic for Lempel-Ziv based compression [14].

Several Lempel-Ziv based algorithms (LZ77, LZSS, LZJB, LZF, LZO, LZW)
were investigated by compressing the same chunk of known plaintext and
comparing it with the decrypted, compressed E-Safenet data block. Very
similar results were obtained with LZF and LZO, of which LZO will be
further discussed in the next section.

Figure 4: Decrypted, compressed E-Safenet bytes

4.3.1 Lempel-Ziv-Oberhumer

The LZO (Lempel-Ziv-Oberhumer) algorithm was particularly interesting
because it produced compressed data that only differed from the E-Safenet
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version in how it referenced previous string occurrences. The choice of which
bytes were compressed was the same as in the decrypted compressed E-
Safenet data.

The LZO library provides different algorithms (LZO1, LZO1A, LZO1B,
LZO1C, LZO1F, LZO1X, LZO1Y, LZO1Z, and LZO2A). Each of these can
also be used with different compression levels. None of these algorithms
exactly matched the decrypted compressed data. However, LZO1X-1 pro-
duced very similar results.

On FTP archives, a total of 13 different LZO versions were found. After
making small modifications to 1.x LZO versions, a shared library was com-
piled for each version. The library was then linked against a C file that
outputted the compressed version of some plain text, after which the com-
pression was compared with the compressed header of an E-Safenet file.

LZO1X-1: LZO1X algorithm compression level 1
Version Hash of compressed data
lzo-1.00 d2dc6668f8bb5d2dc6668f8bb5279
lzo-1.02 d2dc6668f8bb5d2dc6668f8bb5279
lzo-1.04 d323f82fbd201147edb0c7aaa4237
lzo-1.06 d323f82fbd201147edb0c7aaa4237
lzo-1.07 d323f82fbd201147edb0c7aaa4237
lzo-1.08 d323f82fbd201147edb0c7aaa4237
lzo-2.00 d323f82fbd201147edb0c7aaa4237
lzo-2.01 d323f82fbd201147edb0c7aaa4237
lzo-2.02 d323f82fbd201147edb0c7aaa4237
lzo-2.03 d323f82fbd201147edb0c7aaa4237
lzo-2.04 d323f82fbd201147edb0c7aaa4237
lzo-2.05 b3fdf08c375a63637f52e73ccaf7c
lzo-2.06 b3fdf08c375a63637f52e73ccaf7c
E-Safenet d2dc6668f8bb5d2dc6668f8bb5279

Table 2: LZO compression differs among different LZO versions.

Out of the versions that were tested, lzo-1.00 and lzo-1.02 compressed the
test data in the exact same way as the E-Safenet file, when using the LZO1X-
1 algorithm. Table 2 shows how LZO1X-1 compression produces different
output for different LZO versions. Now that the exact compression algo-
rithm was known, the full plaintext of E-Safenet files could be recovered.

Choosing LZO as compression library may indicate that the authors of E-
Safenet had performance in mind. LZO outperforms most compression algo-
rithms in speed, although at the cost of compression ratio [15].
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4.4 The E-Safenet company

To further understand the E-Safenet file format, it is desirable to know the
origin and reasoning behind its existence. The E-Safenet files are of Chinese
origin. This claim is validated by the fact that many of the encrypted files
contain Chinese text, were found on Chinese websites, and by the existence
of a Chinese company called E-Safenet [3].

This company provides multiple solutions for data leak prevention. An
interesting product is UltraSec, which promises to be an easy to use file
encryption platform. Important is the mention of real time and transparent
encryption, which explains the algorithms focus on performance. In nor-
mal use, the UltraSec files are plaintext, but when stored/saved they are
encrypted transparently. UltraSec is marketed to high-tech, embedded and
mobile software development, which fits the source code files which were
found.

Another product is SmartSec, which does something similar as UltraSec. It
provides transparent encryption and decryption of documents in the same
way. This would explain the found Microsoft Excel and Word files encrypted
using the E-Safenet format.

We believe that UltraSec and SmartSec use the E-Safenet file format which
is the target of our research. This claim, however, could not be validated.
It is possible that these products use another method, or that the E-Safenet
encryption method is used by other software of this company.
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5 Attacks

Three different types of attacks were constructed for E-Safenet encrypted
files. Implementations of these attacks can be found in the source code
repository belonging to this paper. See Appendix C.

5.1 Known-plaintext attack

Thanks to the archive of E-Safenet encrypted source code supplied by Tjal-
dur, a working known-plaintext attack could be constructed. For this attack,
512 bytes of the plaintext are xored with the corresponding fragment of
ciphertext. This immediately yields the encryption key. This key can then
be used to decrypt the entire file, or files using the same encryption key.
The first data block still has to be decompressed to complete the decryp-
tion process, as described in section 4.3. A python implementation for the
known-plaintext attack is given in Appendix B.

5.2 Probable-plaintext attack

Known-plaintext decryption of E-Safenet files was shown to be easy. How-
ever, known plaintext is not always available. A probable-plaintext attack
can be constructed based on expected patterns in the encrypted text, in
order to find the encryption key. This method requires the definition of
specific patterns for each file type however.

A pattern is a small piece of probable plaintext, which is expected to occur
in the targeted file(s). For example, in a C file, the keyword return is
expected to occur often.

After defining a set of patterns, a part of the encrypted file is decrypted using
these patterns one by one. Start with the first pattern at the start of the
encrypted text, and XOR the pattern with the encrypted text. The result
is assumed to be part of the key. These key bytes are then applied at future
offsets in the 512 bytes blocks of the ciphertext. If printable characters1 are
found after applying these key bytes, this part of the key will be assumed
to be correct. Then, the pattern is xored starting with the second byte of
the encrypted text, and so on. This process is repeated until the end of the
encrypted text, and for all defined patterns.

1A printable character is any character with a decimal ASCII value in the range 32-126.
Here, 9 (tab), 10 (LF) and 13 (CR) were included as well.
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Each pattern will result in a set of key bytes. Where the key bytes overlap,
the most occurring byte value is chosen as correct key byte. Combining all
the key bytes should result in the complete key, given enough data.

This method is especially useful in programming languages, as they are
highly structured, and have frequently occurring (longer) patterns. A nat-
ural language, such as English, also has frequently occurring patterns, but
these are usually smaller words (n-grams), resulting in less key bytes found
per match, and a larger chance of false positives.

5.2.1 A probable-plaintext attack for source code files

Partial decryption, without known plaintext, was first attempted with two
different file types: C programming language files, and PHP files. Both
are programming languages and are highly structured. A list of common
patterns was defined for these languages [16], as shown in table 3. Finding
the key for another plaintext format can be done by changing the patterns
to frequently occurring patterns in that specific file format.

(a) Probable PHP patterns
this

array(
function_
return_
return;
public
<?php
class_
false
true
null

______
________
Copyright

(b) Probable C patterns
return_
return;

#include_
#DEFINE_
#define_
#IFDEF
static void
const char

const
char *
struct
extern
static

______
________

malloc
printf
sprintf
stdio.h

Copyright
GNU General Public License

Table 3: Probable plaintext patterns
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5.2.2 A probable-plaintext attack for binary files

For binary data there is no easy way to check if a pattern results in a correct
decryption, as the method of finding printable characters at future offsets
cannot be applied in this case. Some binary files, however, have other inter-
esting characteristics. Files using Microsoft’s MS-XML format for instance
(the old Microsoft Excel, Powerpoint and Word format) contain many null-
byte sequences. Null-bytes are often used as padding in binary file for-
mats [17]. Possibly, many software implementations create data structures
of a fixed size, which initialize the data to null-bytes due to underlying calls
to the calloc function in C.

By searching for common substrings over different blocks in the encrypted
text, and then assuming them as null-bytes, a probable cipherkey can be
extracted.

The longest of the found common substrings are then combined, until the
entire cipherkey can be covered. This is illustrated by figure 5. The result
of this can immediately be assumed as the correct key, since xoring with 0
has no effect.

Figure 5: Common substrings spread over the entire key size

It is interesting to note that if the binary file has a checksum of 0x000000,
the second block of ciphertext can directly be assumed as the cipherkey. A
checksum of 0x000000 can only be obtained if this second block of plaintext
bytes contains null-bytes only, as explained in section 4.2.1.

5.2.3 Results

Several decryption attempts were performed using the probable-plaintext
attack for source code described in section 5.2.1. The results of the attack
on various amounts of encrypted data are shown in table 4. Finding the
entire correct key was successful with as few as 17 kB of encrypted data for
source code files. However, results varied greatly, even within files of the
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same programming language. More data will in general result in a greater
chance of obtaining the entire correct key, however, chance plays a large role
in the amount of data needed.

For binary files, the test data was limited to files that could publicly be
found, being Excel and Word documents.

(a) C source code files
Amount of data (kB) 22 34 36 49 53 60 60 66 78

% of key found 51 100 39 98 100 100 99 100 100

(b) PHP source code files
Amount of data (kB) 4 10 17 27 30 33 47 90

% of key found 43 97 100 97 100 99 100 100

(c) Binary files
File type xls xls xls docx docx docx

Amount of data (kB) 19 27 183 49 51 1605
% of key found 100 100 100 96 100 100

Table 4: Data needed for probable-plaintext decryption

5.3 Ciphertext-only attack

There are cases in which the file is not structured, does not contain patterns,
or the file type is unknown. Hence, no probable-plaintext attack can be
constructed. For instance, this may happen for encrypted text documents
that contain a natural language.

A strategy for gaining more insight into the contents of the files is to choose
the cipherkey in a way that the resulting plaintext bytes fall as much as
possible in an expected, predefined range. E.g. for text documents, the
cipherkey can be chosen in a way that the number of printable characters1

in the plaintext will be maximized.

This attack may reveal recognizable patterns or keywords in the plaintext.
In the best case, the key can be recovered entirely. The result can also be
used to create a more general, faster probable-plaintext attack.

The model for this optimization problem is constructed as follows. An OPL
implementation for CPLEX2 can be found in the source code repository (see
Appendix C).

2IBM ILOG CPLEX Optimization Studio: MIP solver
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Data:

Ci : encrypted ciphertext bytes
Ci,0..7 : encrypted ciphertext bits (boolean)

Decision variables:

Ki : key bytes [0, 512) Pi : plaintext bytes
Ki,0..7 : key bits (boolean) Pi,0..7 : plaintext bits (boolean)

Objective:

max
P∑
i

32 ≤ Pi ≤ 126 (1)

Subject to:

Pi,b = Ci,b +K(i mod 512),b (mod 2) ∀i ∈ C,∀b ∈ [0, 7] (2)

Ci,b =

⌊
Ci

2b

⌋
(mod 2) ∀i ∈ C, ∀b ∈ [0, 7] (3)

In this model, (2) means that each ciphertext bit is xored with the cor-
responding key bit, resulting in a plaintext bit. In modulo 2, this can be
represented as an addition.

The amount of printable characters is then maximized, in accordance with
(1). The range [32, 126] is assumed for printable characters, although 9d
(horizontal tab) 10d (new line) and 13d (carriage return) are also often
occuring and may be included in this range.

Furthermore, (3) is provided as translation constraint between the binary
and the bit representation.

5.3.1 Practical implementation

A practical implementation for this model can be developed as follows.

First, the data is chopped into sections of 512 bytes. These bytes are then
grouped together (all first bytes of all sections, all second bytes, etc.). Each
group is xored with all 256 possible key values (Ki) and a record is kept
of how many of the resulting plaintext bytes Pi are in the printable range.
The most likely key byte is the one with the most printable characters found
during this process, Ki.
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This process is repeated 512 times to get all 512 bytes of the key. In only
256× 512 = 1× 106 attempts, the most likely key is found.

Because not all possible characters occur in every printable text, the chance
that all Ki are actually the real key value, i.e. the amount of data needed for
this to succeed, varies per file type. However, when the file type is known,
a more specific attack can be performed, as shown in section 5.2.

5.3.2 Results

Results vary using this method. Applying it on a number of C files, totalling
220 kB of data, returned the entire correct encryption key. When this
method was applied on a number of PHP files, totalling 440 kB, the entire
key was not found. Most bytes of the 512-byte key were found correctly,
however, some bytes were wrong, but still near the correct value. For exam-
ple, the incorrectly decrypted text showed strings such as Lepser Geneqal
Publjc License, $this.>macros and Ex`el_Style+true. For these cases,
most characters are correct, and some are only off by a few characters.
It is easy to correct this, given some knowledge about the language used.
The strings in the example can be fixed to show Lesser General Public
License, $this->macros and Excel_Style=true. By fixing these strings
manually, all 512 bytes of the key can be found. Of course, each wrong offset
only needs to be fixed once, after which the correct character will show in
every instance of that offset.
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6 Keys

It is interesting to know how E-Safenet encryption keys are generated, and
how they correlate. If multiple keys are similar in some way, this information
can be used for decryption of other E-safenet files. If it is known how the
keys are being generated, creating new, valid keys becomes a possibility.

In order to find out more about the keys, they will be placed next to each
other, and analyzed to see if there are similarities.

For this purpose, there are seven keys available, retrieved from various E-
Safenet files and archives. The keys were not available immediately, they
were calculated from the decryption of the files. This is a relatively small
number of keys for this kind of analysis, therefore expectations were low.

6.1 Key correlation

As expected, no real correlation between the keys could be found. There
were no overlapping sequences of bytes, or bytes which were the same for
all keys. The frequency distribution for bytes throughout the keys was very
random.
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Figure 6: Typical excerpt from key values. This shows that the value of key
bytes appear to be random.

As shown in figure 6, every byte occurred in the keys. On average each byte
should occur 14 times. (There are 256 possible values in seven 512-byte
keys. 7×512

256 = 14) Due to the small number of keys, this could not be seen,
however the graph does show results near that number for every byte, with
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all bytes occurring between 5 and 25 times. Figure 7 shows that subsequent
keys do not have any bytes in common.
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Figure 7: Typical excerpt from key values. This shows that different keys
share no same key bytes between them.

No relation could be found between the obtained E-Safenet keys. They could
be random, created by some key derivation method, or obtained by some
other method.
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7 Suggestions for improvement

The E-Safenet algorithm is a very fast, but insecure encryption method.
Nothing is known about the authors’ true intentions and design goals, how-
ever it seems that performance was a major factor. The XOR encryption
is extremely fast, and the chosen LZO compression algorithm favors per-
formance over compression ratio. Even with these design goals in mind,
improvements can be made. In this section, some possible improvements
are discussed.

The XOR encryption is extremely weak. No suitable encryption method,
however will outperform it. As a replacement, another cipher is needed.
Stream ciphers have generally better performance than block ciphers. A
secure modern stream cipher that performs well is Salsa20/12 [18]. While
not as fast as the XOR encryption, Salsa20/12 was designed to have good
performance. Its performance is good enough for almost any application,
and provides proper security [19].

The first 512 bytes of the data are compressed in order to keep the encrypted
file length, including E-Safenet header, the same as the file length of the
plaintext file. This header of the encrypted file contains readable information
about the plaintext file, such as the checksum of bytes 512-1023 and the
length of the compressed data. If keeping the same file length is not a
requirement, this metadata should be omitted, as it leaks information about
the plaintext file.

If both keeping the same file length after encryption, and adding text such
as E-Safenet in front of the encrypted file are required, for whatever reason,
compression is a good option, with the observation that truly random data
cannot be compressed, resulting in a failure to preserve the file length.

At least the 3-byte checksum could be omitted. The checksum is of little
value, as it only validates the second 512 bytes of the data. As documented
in section 4.2.1, it could leak information about the plaintext.
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8 Conclusion

The E-Safenet encryption as described in this research uses a very weak
XOR cipher. It can be easily broken. In this research, three methods to
obtain the decryption/encryption key have been shown, each with its own
merits.

When known plaintext is available, finding the key is trivial (5.1). With-
out known plaintext, but with knowledge of the file format, the key can be
obtained with relatively little data using a probable-plaintext attack (5.2).
Finally, when nothing is known about the encrypted data, maximizing the
printable characters in the plaintext can reveal useful information, as demon-
strated by the ciphertext-only attack (5.3). Either a probable-plaintext
attack can be constructed from the result, or the encryption key can be
derived immediately, besides some manual work. It is unknown how the
encryption keys are generated.

The range of presented attack methods show the weakness of the encryption.
The encryption is an excellent example of the statement ”Don’t roll your
own crypto”. Therefore it is unsuitable to securely store data. A better
algorithm is needed for this purpose.
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9 Further work

The E-Safenet format has been analyzed, and the meaning of all but one
byte in the file header is known, however this single byte does not seem to be
of any significance. It was possible to decrypt most available files, however
some other file formats may prove more difficult. This can be solved by
either obtaining more data encrypted with the same key, or by improving
on the used decryption/key finding methods.

The compressed first 512 bytes are not used at all in finding the key. How-
ever, they do contain a great amount of readable data, even after compres-
sion. This data can be exploited to aid in finding the encryption key.

The presented probable-plaintext attack works only for specific file types,
and a list of probable patterns must be defined for every plaintext file type.
For binary files, the probable-plaintext attack is heavily dependent on large
amounts of the same byte value occurring after each other in an encrypted
file.

It is still unknown how the 512 byte E-Safenet keys are being generated.
Analysis revealed no similarities between the obtained keys. Perhaps they
are generated by some key derivation function, or simply randomly generated
and stored. More keys are needed to thoroughly analyze this.

It is unknown what happens with the E-Safenet file if the first 512 bytes
cannot be compressed. If this occurs, there is no room for the E-Safenet
header without changing the file size or compressing another part of the
data.
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Appendix A: Definitions

ECB Electronic codebook cipher mode: the message is divided into
blocks, and each block is encrypted separately.

LZO Lempel-Ziv-Oberhumer compression: lossless compression
algorithm.

ASCII American Standard Code for Information Interchange: encoding
scheme based on the English alphabet. In this report, the 8-bit
variant is assumed.

GPL GNU General Public License: Often used licensing scheme for
open-source software. See [1].

Known-plaintext attack: an attack where both the plaintext and corre-
sponding ciphertext are known.

Probable-plaintext attack: an attack based on plaintext that likely, but
not necessarily occurs in an encrypted file.

Ciphertext-only attack: an attack that relies solely on a set of known
ciphertexts.
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Appendix B: Decryption code

1 import simplelzo1x
2
3 """
4 Decrypt a given text, with the key.
5 Returns the file's text
6 """
7 def decrypt_file(text, key):
8 plain = ""
9 # offset is stored in these 2 bytes in little-endian order.

10 offset = ord(text[4]) | ord(text[5]) << 8
11 decr_header = __xor_with_key(text[offset:512], key)
12 plain_header = simplelzo1x.decompress(decr_header)
13 plain_file = __xor_with_key(text[512:], key)
14
15 return plain_header + plain_file
16
17 """
18 Xor any text with a given key.
19 The key should be an array of byte values.
20 An Esafenet key has a length of 512 bytes.
21 """
22 def __xor_with_key(text, key):
23 xored = ""
24 for idx, c in enumerate(text):
25 xored += chr(ord(c) ^ key[idx % len(key)])
26 return xored
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Appendix C: Full source code

The full source code of the encryption/decryption programs created, as
well as some scripts to perform analysis on E-Safenet files, can be found
on GitHub at https://github.com/c3c/E-Safenet. This includes practical
implementations of all attack methods.

28

https://github.com/c3c/E-Safenet

	Introduction
	Research
	Related work
	Analysis
	Autocorrelation
	E-Safenet data format
	Checksum deductions

	Compression
	Lempel-Ziv-Oberhumer

	The E-Safenet company

	Attacks
	Known-plaintext attack
	Probable-plaintext attack
	A probable-plaintext attack for source code files
	A probable-plaintext attack for binary files
	Results

	Ciphertext-only attack
	Practical implementation
	Results


	Keys
	Key correlation

	Suggestions for improvement
	Conclusion
	Further work
	References
	Appendix A: Definitions
	Appendix B: Decryption code
	Appendix C: Full source code

