Permalink
Cannot retrieve contributors at this time
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
2299 lines (2042 sloc)
62.3 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
* CDDL HEADER START | |
* | |
* The contents of this file are subject to the terms of the | |
* Common Development and Distribution License (the "License"). | |
* You may not use this file except in compliance with the License. | |
* | |
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE | |
* or http://www.opensolaris.org/os/licensing. | |
* See the License for the specific language governing permissions | |
* and limitations under the License. | |
* | |
* When distributing Covered Code, include this CDDL HEADER in each | |
* file and include the License file at usr/src/OPENSOLARIS.LICENSE. | |
* If applicable, add the following below this CDDL HEADER, with the | |
* fields enclosed by brackets "[]" replaced with your own identifying | |
* information: Portions Copyright [yyyy] [name of copyright owner] | |
* | |
* CDDL HEADER END | |
*/ | |
/* | |
* Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. | |
*/ | |
/* Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */ | |
/* Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T */ | |
/* All Rights Reserved */ | |
/* */ | |
/* Copyright (c) 1987, 1988 Microsoft Corporation */ | |
/* All Rights Reserved */ | |
/* */ | |
/* | |
* Copyright 2018 Joyent, Inc. | |
*/ | |
#include <sys/types.h> | |
#include <sys/sysmacros.h> | |
#include <sys/param.h> | |
#include <sys/signal.h> | |
#include <sys/systm.h> | |
#include <sys/user.h> | |
#include <sys/proc.h> | |
#include <sys/disp.h> | |
#include <sys/class.h> | |
#include <sys/core.h> | |
#include <sys/syscall.h> | |
#include <sys/cpuvar.h> | |
#include <sys/vm.h> | |
#include <sys/sysinfo.h> | |
#include <sys/fault.h> | |
#include <sys/stack.h> | |
#include <sys/psw.h> | |
#include <sys/regset.h> | |
#include <sys/fp.h> | |
#include <sys/trap.h> | |
#include <sys/kmem.h> | |
#include <sys/vtrace.h> | |
#include <sys/cmn_err.h> | |
#include <sys/prsystm.h> | |
#include <sys/mutex_impl.h> | |
#include <sys/machsystm.h> | |
#include <sys/archsystm.h> | |
#include <sys/sdt.h> | |
#include <sys/avintr.h> | |
#include <sys/kobj.h> | |
#include <vm/hat.h> | |
#include <vm/seg_kmem.h> | |
#include <vm/as.h> | |
#include <vm/seg.h> | |
#include <vm/hat_pte.h> | |
#include <vm/hat_i86.h> | |
#include <sys/procfs.h> | |
#include <sys/reboot.h> | |
#include <sys/debug.h> | |
#include <sys/debugreg.h> | |
#include <sys/modctl.h> | |
#include <sys/aio_impl.h> | |
#include <sys/tnf.h> | |
#include <sys/tnf_probe.h> | |
#include <sys/cred.h> | |
#include <sys/mman.h> | |
#include <sys/x86_archext.h> | |
#include <sys/copyops.h> | |
#include <c2/audit.h> | |
#include <sys/ftrace.h> | |
#include <sys/panic.h> | |
#include <sys/traptrace.h> | |
#include <sys/ontrap.h> | |
#include <sys/cpc_impl.h> | |
#include <sys/bootconf.h> | |
#include <sys/bootinfo.h> | |
#include <sys/promif.h> | |
#include <sys/mach_mmu.h> | |
#if defined(__xpv) | |
#include <sys/hypervisor.h> | |
#endif | |
#include <sys/contract/process_impl.h> | |
#define USER 0x10000 /* user-mode flag added to trap type */ | |
static const char *trap_type_mnemonic[] = { | |
"de", "db", "2", "bp", | |
"of", "br", "ud", "nm", | |
"df", "9", "ts", "np", | |
"ss", "gp", "pf", "15", | |
"mf", "ac", "mc", "xf" | |
}; | |
static const char *trap_type[] = { | |
"Divide error", /* trap id 0 */ | |
"Debug", /* trap id 1 */ | |
"NMI interrupt", /* trap id 2 */ | |
"Breakpoint", /* trap id 3 */ | |
"Overflow", /* trap id 4 */ | |
"BOUND range exceeded", /* trap id 5 */ | |
"Invalid opcode", /* trap id 6 */ | |
"Device not available", /* trap id 7 */ | |
"Double fault", /* trap id 8 */ | |
"Coprocessor segment overrun", /* trap id 9 */ | |
"Invalid TSS", /* trap id 10 */ | |
"Segment not present", /* trap id 11 */ | |
"Stack segment fault", /* trap id 12 */ | |
"General protection", /* trap id 13 */ | |
"Page fault", /* trap id 14 */ | |
"Reserved", /* trap id 15 */ | |
"x87 floating point error", /* trap id 16 */ | |
"Alignment check", /* trap id 17 */ | |
"Machine check", /* trap id 18 */ | |
"SIMD floating point exception", /* trap id 19 */ | |
}; | |
#define TRAP_TYPES (sizeof (trap_type) / sizeof (trap_type[0])) | |
#define SLOW_SCALL_SIZE 2 | |
#define FAST_SCALL_SIZE 2 | |
int tudebug = 0; | |
int tudebugbpt = 0; | |
int tudebugfpe = 0; | |
int tudebugsse = 0; | |
#if defined(TRAPDEBUG) || defined(lint) | |
int tdebug = 0; | |
int lodebug = 0; | |
int faultdebug = 0; | |
#else | |
#define tdebug 0 | |
#define lodebug 0 | |
#define faultdebug 0 | |
#endif /* defined(TRAPDEBUG) || defined(lint) */ | |
#if defined(TRAPTRACE) | |
/* | |
* trap trace record for cpu0 is allocated here. | |
* trap trace records for non-boot cpus are allocated in mp_startup_init(). | |
*/ | |
static trap_trace_rec_t trap_tr0[TRAPTR_NENT]; | |
trap_trace_ctl_t trap_trace_ctl[NCPU] = { | |
{ | |
(uintptr_t)trap_tr0, /* next record */ | |
(uintptr_t)trap_tr0, /* first record */ | |
(uintptr_t)(trap_tr0 + TRAPTR_NENT), /* limit */ | |
(uintptr_t)0 /* current */ | |
}, | |
}; | |
/* | |
* default trap buffer size | |
*/ | |
size_t trap_trace_bufsize = TRAPTR_NENT * sizeof (trap_trace_rec_t); | |
int trap_trace_freeze = 0; | |
int trap_trace_off = 0; | |
/* | |
* A dummy TRAPTRACE entry to use after death. | |
*/ | |
trap_trace_rec_t trap_trace_postmort; | |
static void dump_ttrace(void); | |
#endif /* TRAPTRACE */ | |
static void dumpregs(struct regs *); | |
static void showregs(uint_t, struct regs *, caddr_t); | |
static int kern_gpfault(struct regs *); | |
/*ARGSUSED*/ | |
static int | |
die(uint_t type, struct regs *rp, caddr_t addr, processorid_t cpuid) | |
{ | |
struct panic_trap_info ti; | |
const char *trap_name, *trap_mnemonic; | |
if (type < TRAP_TYPES) { | |
trap_name = trap_type[type]; | |
trap_mnemonic = trap_type_mnemonic[type]; | |
} else { | |
trap_name = "trap"; | |
trap_mnemonic = "-"; | |
} | |
#ifdef TRAPTRACE | |
TRAPTRACE_FREEZE; | |
#endif | |
ti.trap_regs = rp; | |
ti.trap_type = type & ~USER; | |
ti.trap_addr = addr; | |
curthread->t_panic_trap = &ti; | |
if (type == T_PGFLT && addr < (caddr_t)kernelbase) { | |
panic("BAD TRAP: type=%x (#%s %s) rp=%p addr=%p " | |
"occurred in module \"%s\" due to %s", | |
type, trap_mnemonic, trap_name, (void *)rp, (void *)addr, | |
mod_containing_pc((caddr_t)rp->r_pc), | |
addr < (caddr_t)PAGESIZE ? | |
"a NULL pointer dereference" : | |
"an illegal access to a user address"); | |
} else | |
panic("BAD TRAP: type=%x (#%s %s) rp=%p addr=%p", | |
type, trap_mnemonic, trap_name, (void *)rp, (void *)addr); | |
return (0); | |
} | |
/* | |
* Rewrite the instruction at pc to be an int $T_SYSCALLINT instruction. | |
* | |
* int <vector> is two bytes: 0xCD <vector> | |
*/ | |
static int | |
rewrite_syscall(caddr_t pc) | |
{ | |
uchar_t instr[SLOW_SCALL_SIZE] = { 0xCD, T_SYSCALLINT }; | |
if (uwrite(curthread->t_procp, instr, SLOW_SCALL_SIZE, | |
(uintptr_t)pc) != 0) | |
return (1); | |
return (0); | |
} | |
/* | |
* Test to see if the instruction at pc is sysenter or syscall. The second | |
* argument should be the x86 feature flag corresponding to the expected | |
* instruction. | |
* | |
* sysenter is two bytes: 0x0F 0x34 | |
* syscall is two bytes: 0x0F 0x05 | |
* int $T_SYSCALLINT is two bytes: 0xCD 0x91 | |
*/ | |
static int | |
instr_is_other_syscall(caddr_t pc, int which) | |
{ | |
uchar_t instr[FAST_SCALL_SIZE]; | |
ASSERT(which == X86FSET_SEP || which == X86FSET_ASYSC || which == 0xCD); | |
if (copyin_nowatch(pc, (caddr_t)instr, FAST_SCALL_SIZE) != 0) | |
return (0); | |
switch (which) { | |
case X86FSET_SEP: | |
if (instr[0] == 0x0F && instr[1] == 0x34) | |
return (1); | |
break; | |
case X86FSET_ASYSC: | |
if (instr[0] == 0x0F && instr[1] == 0x05) | |
return (1); | |
break; | |
case 0xCD: | |
if (instr[0] == 0xCD && instr[1] == T_SYSCALLINT) | |
return (1); | |
break; | |
} | |
return (0); | |
} | |
static const char * | |
syscall_insn_string(int syscall_insn) | |
{ | |
switch (syscall_insn) { | |
case X86FSET_SEP: | |
return ("sysenter"); | |
case X86FSET_ASYSC: | |
return ("syscall"); | |
case 0xCD: | |
return ("int"); | |
default: | |
return ("Unknown"); | |
} | |
} | |
static int | |
ldt_rewrite_syscall(struct regs *rp, proc_t *p, int syscall_insn) | |
{ | |
caddr_t linearpc; | |
int return_code = 0; | |
mutex_enter(&p->p_ldtlock); /* Must be held across linear_pc() */ | |
if (linear_pc(rp, p, &linearpc) == 0) { | |
/* | |
* If another thread beat us here, it already changed | |
* this site to the slower (int) syscall instruction. | |
*/ | |
if (instr_is_other_syscall(linearpc, 0xCD)) { | |
return_code = 1; | |
} else if (instr_is_other_syscall(linearpc, syscall_insn)) { | |
if (rewrite_syscall(linearpc) == 0) { | |
return_code = 1; | |
} | |
#ifdef DEBUG | |
else | |
cmn_err(CE_WARN, "failed to rewrite %s " | |
"instruction in process %d", | |
syscall_insn_string(syscall_insn), | |
p->p_pid); | |
#endif /* DEBUG */ | |
} | |
} | |
mutex_exit(&p->p_ldtlock); /* Must be held across linear_pc() */ | |
return (return_code); | |
} | |
/* | |
* Test to see if the instruction at pc is a system call instruction. | |
* | |
* The bytes of an lcall instruction used for the syscall trap. | |
* static uchar_t lcall[7] = { 0x9a, 0, 0, 0, 0, 0x7, 0 }; | |
* static uchar_t lcallalt[7] = { 0x9a, 0, 0, 0, 0, 0x27, 0 }; | |
*/ | |
#define LCALLSIZE 7 | |
static int | |
instr_is_lcall_syscall(caddr_t pc) | |
{ | |
uchar_t instr[LCALLSIZE]; | |
if (copyin_nowatch(pc, (caddr_t)instr, LCALLSIZE) == 0 && | |
instr[0] == 0x9a && | |
instr[1] == 0 && | |
instr[2] == 0 && | |
instr[3] == 0 && | |
instr[4] == 0 && | |
(instr[5] == 0x7 || instr[5] == 0x27) && | |
instr[6] == 0) | |
return (1); | |
return (0); | |
} | |
#ifdef __amd64 | |
/* | |
* In the first revisions of amd64 CPUs produced by AMD, the LAHF and | |
* SAHF instructions were not implemented in 64-bit mode. Later revisions | |
* did implement these instructions. An extension to the cpuid instruction | |
* was added to check for the capability of executing these instructions | |
* in 64-bit mode. | |
* | |
* Intel originally did not implement these instructions in EM64T either, | |
* but added them in later revisions. | |
* | |
* So, there are different chip revisions by both vendors out there that | |
* may or may not implement these instructions. The easy solution is to | |
* just always emulate these instructions on demand. | |
* | |
* SAHF == store %ah in the lower 8 bits of %rflags (opcode 0x9e) | |
* LAHF == load the lower 8 bits of %rflags into %ah (opcode 0x9f) | |
*/ | |
#define LSAHFSIZE 1 | |
static int | |
instr_is_lsahf(caddr_t pc, uchar_t *instr) | |
{ | |
if (copyin_nowatch(pc, (caddr_t)instr, LSAHFSIZE) == 0 && | |
(*instr == 0x9e || *instr == 0x9f)) | |
return (1); | |
return (0); | |
} | |
/* | |
* Emulate the LAHF and SAHF instructions. The reference manuals define | |
* these instructions to always load/store bit 1 as a 1, and bits 3 and 5 | |
* as a 0. The other, defined, bits are copied (the PS_ICC bits and PS_P). | |
* | |
* Note that %ah is bits 8-15 of %rax. | |
*/ | |
static void | |
emulate_lsahf(struct regs *rp, uchar_t instr) | |
{ | |
if (instr == 0x9e) { | |
/* sahf. Copy bits from %ah to flags. */ | |
rp->r_ps = (rp->r_ps & ~0xff) | | |
((rp->r_rax >> 8) & PSL_LSAHFMASK) | PS_MB1; | |
} else { | |
/* lahf. Copy bits from flags to %ah. */ | |
rp->r_rax = (rp->r_rax & ~0xff00) | | |
(((rp->r_ps & PSL_LSAHFMASK) | PS_MB1) << 8); | |
} | |
rp->r_pc += LSAHFSIZE; | |
} | |
#endif /* __amd64 */ | |
#ifdef OPTERON_ERRATUM_91 | |
/* | |
* Test to see if the instruction at pc is a prefetch instruction. | |
* | |
* The first byte of prefetch instructions is always 0x0F. | |
* The second byte is 0x18 for regular prefetch or 0x0D for AMD 3dnow prefetch. | |
* The third byte (ModRM) contains the register field bits (bits 3-5). | |
* These bits must be between 0 and 3 inclusive for regular prefetch and | |
* 0 and 1 inclusive for AMD 3dnow prefetch. | |
* | |
* In 64-bit mode, there may be a one-byte REX prefex (0x40-0x4F). | |
*/ | |
static int | |
cmp_to_prefetch(uchar_t *p) | |
{ | |
#ifdef _LP64 | |
if ((p[0] & 0xF0) == 0x40) /* 64-bit REX prefix */ | |
p++; | |
#endif | |
return ((p[0] == 0x0F && p[1] == 0x18 && ((p[2] >> 3) & 7) <= 3) || | |
(p[0] == 0x0F && p[1] == 0x0D && ((p[2] >> 3) & 7) <= 1)); | |
} | |
static int | |
instr_is_prefetch(caddr_t pc) | |
{ | |
uchar_t instr[4]; /* optional REX prefix plus 3-byte opcode */ | |
return (copyin_nowatch(pc, instr, sizeof (instr)) == 0 && | |
cmp_to_prefetch(instr)); | |
} | |
#endif /* OPTERON_ERRATUM_91 */ | |
/* | |
* Called from the trap handler when a processor trap occurs. | |
* | |
* Note: All user-level traps that might call stop() must exit | |
* trap() by 'goto out' or by falling through. | |
* Note Also: trap() is usually called with interrupts enabled, (PS_IE == 1) | |
* however, there are paths that arrive here with PS_IE == 0 so special care | |
* must be taken in those cases. | |
*/ | |
void | |
trap(struct regs *rp, caddr_t addr, processorid_t cpuid) | |
{ | |
kthread_t *ct = curthread; | |
enum seg_rw rw; | |
unsigned type; | |
proc_t *p = ttoproc(ct); | |
klwp_t *lwp = ttolwp(ct); | |
uintptr_t lofault; | |
label_t *onfault; | |
faultcode_t pagefault(), res, errcode; | |
enum fault_type fault_type; | |
k_siginfo_t siginfo; | |
uint_t fault = 0; | |
int mstate; | |
int sicode = 0; | |
int watchcode; | |
int watchpage; | |
caddr_t vaddr; | |
size_t sz; | |
int ta; | |
#ifdef __amd64 | |
uchar_t instr; | |
#endif | |
ASSERT_STACK_ALIGNED(); | |
errcode = 0; | |
mstate = 0; | |
rw = S_OTHER; | |
type = rp->r_trapno; | |
CPU_STATS_ADDQ(CPU, sys, trap, 1); | |
ASSERT(ct->t_schedflag & TS_DONT_SWAP); | |
if (type == T_PGFLT) { | |
errcode = rp->r_err; | |
if (errcode & PF_ERR_WRITE) | |
rw = S_WRITE; | |
else if ((caddr_t)rp->r_pc == addr || | |
(mmu.pt_nx != 0 && (errcode & PF_ERR_EXEC))) | |
rw = S_EXEC; | |
else | |
rw = S_READ; | |
#if defined(__i386) | |
/* | |
* Pentium Pro work-around | |
*/ | |
if ((errcode & PF_ERR_PROT) && pentiumpro_bug4046376) { | |
uint_t attr; | |
uint_t priv_violation; | |
uint_t access_violation; | |
if (hat_getattr(addr < (caddr_t)kernelbase ? | |
curproc->p_as->a_hat : kas.a_hat, addr, &attr) | |
== -1) { | |
errcode &= ~PF_ERR_PROT; | |
} else { | |
priv_violation = (errcode & PF_ERR_USER) && | |
!(attr & PROT_USER); | |
access_violation = (errcode & PF_ERR_WRITE) && | |
!(attr & PROT_WRITE); | |
if (!priv_violation && !access_violation) | |
goto cleanup; | |
} | |
} | |
#endif /* __i386 */ | |
} else if (type == T_SGLSTP && lwp != NULL) | |
lwp->lwp_pcb.pcb_drstat = (uintptr_t)addr; | |
if (tdebug) | |
showregs(type, rp, addr); | |
if (USERMODE(rp->r_cs)) { | |
/* | |
* Set up the current cred to use during this trap. u_cred | |
* no longer exists. t_cred is used instead. | |
* The current process credential applies to the thread for | |
* the entire trap. If trapping from the kernel, this | |
* should already be set up. | |
*/ | |
if (ct->t_cred != p->p_cred) { | |
cred_t *oldcred = ct->t_cred; | |
/* | |
* DTrace accesses t_cred in probe context. t_cred | |
* must always be either NULL, or point to a valid, | |
* allocated cred structure. | |
*/ | |
ct->t_cred = crgetcred(); | |
crfree(oldcred); | |
} | |
ASSERT(lwp != NULL); | |
type |= USER; | |
ASSERT(lwptoregs(lwp) == rp); | |
lwp->lwp_state = LWP_SYS; | |
switch (type) { | |
case T_PGFLT + USER: | |
if ((caddr_t)rp->r_pc == addr) | |
mstate = LMS_TFAULT; | |
else | |
mstate = LMS_DFAULT; | |
break; | |
default: | |
mstate = LMS_TRAP; | |
break; | |
} | |
/* Kernel probe */ | |
TNF_PROBE_1(thread_state, "thread", /* CSTYLED */, | |
tnf_microstate, state, mstate); | |
mstate = new_mstate(ct, mstate); | |
bzero(&siginfo, sizeof (siginfo)); | |
} | |
switch (type) { | |
case T_PGFLT + USER: | |
case T_SGLSTP: | |
case T_SGLSTP + USER: | |
case T_BPTFLT + USER: | |
break; | |
default: | |
FTRACE_2("trap(): type=0x%lx, regs=0x%lx", | |
(ulong_t)type, (ulong_t)rp); | |
break; | |
} | |
switch (type) { | |
case T_SIMDFPE: | |
/* Make sure we enable interrupts before die()ing */ | |
sti(); /* The SIMD exception comes in via cmninttrap */ | |
/*FALLTHROUGH*/ | |
default: | |
if (type & USER) { | |
if (tudebug) | |
showregs(type, rp, (caddr_t)0); | |
printf("trap: Unknown trap type %d in user mode\n", | |
type & ~USER); | |
siginfo.si_signo = SIGILL; | |
siginfo.si_code = ILL_ILLTRP; | |
siginfo.si_addr = (caddr_t)rp->r_pc; | |
siginfo.si_trapno = type & ~USER; | |
fault = FLTILL; | |
} else { | |
(void) die(type, rp, addr, cpuid); | |
/*NOTREACHED*/ | |
} | |
break; | |
case T_PGFLT: /* system page fault */ | |
/* | |
* If we're under on_trap() protection (see <sys/ontrap.h>), | |
* set ot_trap and bounce back to the on_trap() call site | |
* via the installed trampoline. | |
*/ | |
if ((ct->t_ontrap != NULL) && | |
(ct->t_ontrap->ot_prot & OT_DATA_ACCESS)) { | |
ct->t_ontrap->ot_trap |= OT_DATA_ACCESS; | |
rp->r_pc = ct->t_ontrap->ot_trampoline; | |
goto cleanup; | |
} | |
/* | |
* If we have an Instruction fault in kernel mode, then that | |
* means we've tried to execute a user page (SMEP) or both of | |
* PAE and NXE are enabled. In either case, given that it's a | |
* kernel fault, we should panic immediately and not try to make | |
* any more forward progress. This indicates a bug in the | |
* kernel, which if execution continued, could be exploited to | |
* wreak havoc on the system. | |
*/ | |
if (errcode & PF_ERR_EXEC) { | |
(void) die(type, rp, addr, cpuid); | |
} | |
/* | |
* We need to check if SMAP is in play. If SMAP is in play, then | |
* any access to a user page will show up as a protection | |
* violation. To see if SMAP is enabled we first check if it's a | |
* user address and whether we have the feature flag set. If we | |
* do and the interrupted registers do not allow for user | |
* accesses (PS_ACHK is not enabled), then we need to die | |
* immediately. | |
*/ | |
if (addr < (caddr_t)kernelbase && | |
is_x86_feature(x86_featureset, X86FSET_SMAP) == B_TRUE && | |
(rp->r_ps & PS_ACHK) == 0) { | |
(void) die(type, rp, addr, cpuid); | |
} | |
/* | |
* See if we can handle as pagefault. Save lofault and onfault | |
* across this. Here we assume that an address less than | |
* KERNELBASE is a user fault. We can do this as copy.s | |
* routines verify that the starting address is less than | |
* KERNELBASE before starting and because we know that we | |
* always have KERNELBASE mapped as invalid to serve as a | |
* "barrier". | |
*/ | |
lofault = ct->t_lofault; | |
onfault = ct->t_onfault; | |
ct->t_lofault = 0; | |
mstate = new_mstate(ct, LMS_KFAULT); | |
if (addr < (caddr_t)kernelbase) { | |
res = pagefault(addr, | |
(errcode & PF_ERR_PROT)? F_PROT: F_INVAL, rw, 0); | |
if (res == FC_NOMAP && | |
addr < p->p_usrstack && | |
grow(addr)) | |
res = 0; | |
} else { | |
res = pagefault(addr, | |
(errcode & PF_ERR_PROT)? F_PROT: F_INVAL, rw, 1); | |
} | |
(void) new_mstate(ct, mstate); | |
/* | |
* Restore lofault and onfault. If we resolved the fault, exit. | |
* If we didn't and lofault wasn't set, die. | |
*/ | |
ct->t_lofault = lofault; | |
ct->t_onfault = onfault; | |
if (res == 0) | |
goto cleanup; | |
#if defined(OPTERON_ERRATUM_93) && defined(_LP64) | |
if (lofault == 0 && opteron_erratum_93) { | |
/* | |
* Workaround for Opteron Erratum 93. On return from | |
* a System Managment Interrupt at a HLT instruction | |
* the %rip might be truncated to a 32 bit value. | |
* BIOS is supposed to fix this, but some don't. | |
* If this occurs we simply restore the high order bits. | |
* The HLT instruction is 1 byte of 0xf4. | |
*/ | |
uintptr_t rip = rp->r_pc; | |
if ((rip & 0xfffffffful) == rip) { | |
rip |= 0xfffffffful << 32; | |
if (hat_getpfnum(kas.a_hat, (caddr_t)rip) != | |
PFN_INVALID && | |
(*(uchar_t *)rip == 0xf4 || | |
*(uchar_t *)(rip - 1) == 0xf4)) { | |
rp->r_pc = rip; | |
goto cleanup; | |
} | |
} | |
} | |
#endif /* OPTERON_ERRATUM_93 && _LP64 */ | |
#ifdef OPTERON_ERRATUM_91 | |
if (lofault == 0 && opteron_erratum_91) { | |
/* | |
* Workaround for Opteron Erratum 91. Prefetches may | |
* generate a page fault (they're not supposed to do | |
* that!). If this occurs we simply return back to the | |
* instruction. | |
*/ | |
caddr_t pc = (caddr_t)rp->r_pc; | |
/* | |
* If the faulting PC is not mapped, this is a | |
* legitimate kernel page fault that must result in a | |
* panic. If the faulting PC is mapped, it could contain | |
* a prefetch instruction. Check for that here. | |
*/ | |
if (hat_getpfnum(kas.a_hat, pc) != PFN_INVALID) { | |
if (cmp_to_prefetch((uchar_t *)pc)) { | |
#ifdef DEBUG | |
cmn_err(CE_WARN, "Opteron erratum 91 " | |
"occurred: kernel prefetch" | |
" at %p generated a page fault!", | |
(void *)rp->r_pc); | |
#endif /* DEBUG */ | |
goto cleanup; | |
} | |
} | |
(void) die(type, rp, addr, cpuid); | |
} | |
#endif /* OPTERON_ERRATUM_91 */ | |
if (lofault == 0) | |
(void) die(type, rp, addr, cpuid); | |
/* | |
* Cannot resolve fault. Return to lofault. | |
*/ | |
if (lodebug) { | |
showregs(type, rp, addr); | |
traceregs(rp); | |
} | |
if (FC_CODE(res) == FC_OBJERR) | |
res = FC_ERRNO(res); | |
else | |
res = EFAULT; | |
rp->r_r0 = res; | |
rp->r_pc = ct->t_lofault; | |
goto cleanup; | |
case T_PGFLT + USER: /* user page fault */ | |
if (faultdebug) { | |
char *fault_str; | |
switch (rw) { | |
case S_READ: | |
fault_str = "read"; | |
break; | |
case S_WRITE: | |
fault_str = "write"; | |
break; | |
case S_EXEC: | |
fault_str = "exec"; | |
break; | |
default: | |
fault_str = ""; | |
break; | |
} | |
printf("user %s fault: addr=0x%lx errcode=0x%x\n", | |
fault_str, (uintptr_t)addr, errcode); | |
} | |
#if defined(OPTERON_ERRATUM_100) && defined(_LP64) | |
/* | |
* Workaround for AMD erratum 100 | |
* | |
* A 32-bit process may receive a page fault on a non | |
* 32-bit address by mistake. The range of the faulting | |
* address will be | |
* | |
* 0xffffffff80000000 .. 0xffffffffffffffff or | |
* 0x0000000100000000 .. 0x000000017fffffff | |
* | |
* The fault is always due to an instruction fetch, however | |
* the value of r_pc should be correct (in 32 bit range), | |
* so we ignore the page fault on the bogus address. | |
*/ | |
if (p->p_model == DATAMODEL_ILP32 && | |
(0xffffffff80000000 <= (uintptr_t)addr || | |
(0x100000000 <= (uintptr_t)addr && | |
(uintptr_t)addr <= 0x17fffffff))) { | |
if (!opteron_erratum_100) | |
panic("unexpected erratum #100"); | |
if (rp->r_pc <= 0xffffffff) | |
goto out; | |
} | |
#endif /* OPTERON_ERRATUM_100 && _LP64 */ | |
ASSERT(!(curthread->t_flag & T_WATCHPT)); | |
watchpage = (pr_watch_active(p) && pr_is_watchpage(addr, rw)); | |
#ifdef __i386 | |
/* | |
* In 32-bit mode, the lcall (system call) instruction fetches | |
* one word from the stack, at the stack pointer, because of the | |
* way the call gate is constructed. This is a bogus | |
* read and should not be counted as a read watchpoint. | |
* We work around the problem here by testing to see if | |
* this situation applies and, if so, simply jumping to | |
* the code in locore.s that fields the system call trap. | |
* The registers on the stack are already set up properly | |
* due to the match between the call gate sequence and the | |
* trap gate sequence. We just have to adjust the pc. | |
*/ | |
if (watchpage && addr == (caddr_t)rp->r_sp && | |
rw == S_READ && instr_is_lcall_syscall((caddr_t)rp->r_pc)) { | |
extern void watch_syscall(void); | |
rp->r_pc += LCALLSIZE; | |
watch_syscall(); /* never returns */ | |
/* NOTREACHED */ | |
} | |
#endif /* __i386 */ | |
vaddr = addr; | |
if (!watchpage || (sz = instr_size(rp, &vaddr, rw)) <= 0) | |
fault_type = (errcode & PF_ERR_PROT)? F_PROT: F_INVAL; | |
else if ((watchcode = pr_is_watchpoint(&vaddr, &ta, | |
sz, NULL, rw)) != 0) { | |
if (ta) { | |
do_watch_step(vaddr, sz, rw, | |
watchcode, rp->r_pc); | |
fault_type = F_INVAL; | |
} else { | |
bzero(&siginfo, sizeof (siginfo)); | |
siginfo.si_signo = SIGTRAP; | |
siginfo.si_code = watchcode; | |
siginfo.si_addr = vaddr; | |
siginfo.si_trapafter = 0; | |
siginfo.si_pc = (caddr_t)rp->r_pc; | |
fault = FLTWATCH; | |
break; | |
} | |
} else { | |
/* XXX pr_watch_emul() never succeeds (for now) */ | |
if (rw != S_EXEC && pr_watch_emul(rp, vaddr, rw)) | |
goto out; | |
do_watch_step(vaddr, sz, rw, 0, 0); | |
fault_type = F_INVAL; | |
} | |
res = pagefault(addr, fault_type, rw, 0); | |
/* | |
* If pagefault() succeeded, ok. | |
* Otherwise attempt to grow the stack. | |
*/ | |
if (res == 0 || | |
(res == FC_NOMAP && | |
addr < p->p_usrstack && | |
grow(addr))) { | |
lwp->lwp_lastfault = FLTPAGE; | |
lwp->lwp_lastfaddr = addr; | |
if (prismember(&p->p_fltmask, FLTPAGE)) { | |
bzero(&siginfo, sizeof (siginfo)); | |
siginfo.si_addr = addr; | |
(void) stop_on_fault(FLTPAGE, &siginfo); | |
} | |
goto out; | |
} else if (res == FC_PROT && addr < p->p_usrstack && | |
(mmu.pt_nx != 0 && (errcode & PF_ERR_EXEC))) { | |
report_stack_exec(p, addr); | |
} | |
#ifdef OPTERON_ERRATUM_91 | |
/* | |
* Workaround for Opteron Erratum 91. Prefetches may generate a | |
* page fault (they're not supposed to do that!). If this | |
* occurs we simply return back to the instruction. | |
* | |
* We rely on copyin to properly fault in the page with r_pc. | |
*/ | |
if (opteron_erratum_91 && | |
addr != (caddr_t)rp->r_pc && | |
instr_is_prefetch((caddr_t)rp->r_pc)) { | |
#ifdef DEBUG | |
cmn_err(CE_WARN, "Opteron erratum 91 occurred: " | |
"prefetch at %p in pid %d generated a trap!", | |
(void *)rp->r_pc, p->p_pid); | |
#endif /* DEBUG */ | |
goto out; | |
} | |
#endif /* OPTERON_ERRATUM_91 */ | |
if (tudebug) | |
showregs(type, rp, addr); | |
/* | |
* In the case where both pagefault and grow fail, | |
* set the code to the value provided by pagefault. | |
* We map all errors returned from pagefault() to SIGSEGV. | |
*/ | |
bzero(&siginfo, sizeof (siginfo)); | |
siginfo.si_addr = addr; | |
switch (FC_CODE(res)) { | |
case FC_HWERR: | |
case FC_NOSUPPORT: | |
siginfo.si_signo = SIGBUS; | |
siginfo.si_code = BUS_ADRERR; | |
fault = FLTACCESS; | |
break; | |
case FC_ALIGN: | |
siginfo.si_signo = SIGBUS; | |
siginfo.si_code = BUS_ADRALN; | |
fault = FLTACCESS; | |
break; | |
case FC_OBJERR: | |
if ((siginfo.si_errno = FC_ERRNO(res)) != EINTR) { | |
siginfo.si_signo = SIGBUS; | |
siginfo.si_code = BUS_OBJERR; | |
fault = FLTACCESS; | |
} | |
break; | |
default: /* FC_NOMAP or FC_PROT */ | |
siginfo.si_signo = SIGSEGV; | |
siginfo.si_code = | |
(res == FC_NOMAP)? SEGV_MAPERR : SEGV_ACCERR; | |
fault = FLTBOUNDS; | |
break; | |
} | |
break; | |
case T_ILLINST + USER: /* invalid opcode fault */ | |
/* | |
* If the syscall instruction is disabled due to LDT usage, a | |
* user program that attempts to execute it will trigger a #ud | |
* trap. Check for that case here. If this occurs on a CPU which | |
* doesn't even support syscall, the result of all of this will | |
* be to emulate that particular instruction. | |
*/ | |
if (p->p_ldt != NULL && | |
ldt_rewrite_syscall(rp, p, X86FSET_ASYSC)) | |
goto out; | |
#ifdef __amd64 | |
/* | |
* Emulate the LAHF and SAHF instructions if needed. | |
* See the instr_is_lsahf function for details. | |
*/ | |
if (p->p_model == DATAMODEL_LP64 && | |
instr_is_lsahf((caddr_t)rp->r_pc, &instr)) { | |
emulate_lsahf(rp, instr); | |
goto out; | |
} | |
#endif | |
/*FALLTHROUGH*/ | |
if (tudebug) | |
showregs(type, rp, (caddr_t)0); | |
siginfo.si_signo = SIGILL; | |
siginfo.si_code = ILL_ILLOPC; | |
siginfo.si_addr = (caddr_t)rp->r_pc; | |
fault = FLTILL; | |
break; | |
case T_ZERODIV + USER: /* integer divide by zero */ | |
if (tudebug && tudebugfpe) | |
showregs(type, rp, (caddr_t)0); | |
siginfo.si_signo = SIGFPE; | |
siginfo.si_code = FPE_INTDIV; | |
siginfo.si_addr = (caddr_t)rp->r_pc; | |
fault = FLTIZDIV; | |
break; | |
case T_OVFLW + USER: /* integer overflow */ | |
if (tudebug && tudebugfpe) | |
showregs(type, rp, (caddr_t)0); | |
siginfo.si_signo = SIGFPE; | |
siginfo.si_code = FPE_INTOVF; | |
siginfo.si_addr = (caddr_t)rp->r_pc; | |
fault = FLTIOVF; | |
break; | |
/* | |
* When using an eager FPU on x86, the #NM trap is no longer meaningful. | |
* Userland should not be able to trigger it. Anything that does | |
* represents a fatal error in the kernel and likely in the register | |
* state of the system. User FPU state should always be valid. | |
*/ | |
case T_NOEXTFLT + USER: /* math coprocessor not available */ | |
case T_NOEXTFLT: | |
(void) die(type, rp, addr, cpuid); | |
break; | |
/* | |
* Kernel threads leveraging floating point need to mask the exceptions | |
* or ensure that they cannot happen. There is no recovery from this. | |
*/ | |
case T_EXTERRFLT: /* x87 floating point exception pending */ | |
sti(); /* T_EXTERRFLT comes in via cmninttrap */ | |
(void) die(type, rp, addr, cpuid); | |
break; | |
case T_EXTERRFLT + USER: /* x87 floating point exception pending */ | |
if (tudebug && tudebugfpe) | |
showregs(type, rp, addr); | |
if (sicode = fpexterrflt(rp)) { | |
siginfo.si_signo = SIGFPE; | |
siginfo.si_code = sicode; | |
siginfo.si_addr = (caddr_t)rp->r_pc; | |
fault = FLTFPE; | |
} | |
break; | |
case T_SIMDFPE + USER: /* SSE and SSE2 exceptions */ | |
if (tudebug && tudebugsse) | |
showregs(type, rp, addr); | |
if (!is_x86_feature(x86_featureset, X86FSET_SSE) && | |
!is_x86_feature(x86_featureset, X86FSET_SSE2)) { | |
/* | |
* There are rumours that some user instructions | |
* on older CPUs can cause this trap to occur; in | |
* which case send a SIGILL instead of a SIGFPE. | |
*/ | |
siginfo.si_signo = SIGILL; | |
siginfo.si_code = ILL_ILLTRP; | |
siginfo.si_addr = (caddr_t)rp->r_pc; | |
siginfo.si_trapno = type & ~USER; | |
fault = FLTILL; | |
} else if ((sicode = fpsimderrflt(rp)) != 0) { | |
siginfo.si_signo = SIGFPE; | |
siginfo.si_code = sicode; | |
siginfo.si_addr = (caddr_t)rp->r_pc; | |
fault = FLTFPE; | |
} | |
sti(); /* The SIMD exception comes in via cmninttrap */ | |
break; | |
case T_BPTFLT: /* breakpoint trap */ | |
/* | |
* Kernel breakpoint traps should only happen when kmdb is | |
* active, and even then, it'll have interposed on the IDT, so | |
* control won't get here. If it does, we've hit a breakpoint | |
* without the debugger, which is very strange, and very | |
* fatal. | |
*/ | |
if (tudebug && tudebugbpt) | |
showregs(type, rp, (caddr_t)0); | |
(void) die(type, rp, addr, cpuid); | |
break; | |
case T_SGLSTP: /* single step/hw breakpoint exception */ | |
#if !defined(__xpv) | |
/* | |
* We'd never normally get here, as kmdb handles its own single | |
* step traps. There is one nasty exception though, as | |
* described in more detail in sys_sysenter(). Note that | |
* checking for all four locations covers both the KPTI and the | |
* non-KPTI cases correctly: the former will never be found at | |
* (brand_)sys_sysenter, and vice versa. | |
*/ | |
if (lwp != NULL && (lwp->lwp_pcb.pcb_drstat & DR_SINGLESTEP)) { | |
if (rp->r_pc == (greg_t)brand_sys_sysenter || | |
rp->r_pc == (greg_t)sys_sysenter || | |
rp->r_pc == (greg_t)tr_brand_sys_sysenter || | |
rp->r_pc == (greg_t)tr_sys_sysenter) { | |
rp->r_pc += 0x3; /* sizeof (swapgs) */ | |
rp->r_ps &= ~PS_T; /* turn off trace */ | |
lwp->lwp_pcb.pcb_flags |= DEBUG_PENDING; | |
ct->t_post_sys = 1; | |
aston(curthread); | |
goto cleanup; | |
} else { | |
if (tudebug && tudebugbpt) | |
showregs(type, rp, (caddr_t)0); | |
} | |
} | |
#endif /* !__xpv */ | |
if (boothowto & RB_DEBUG) | |
debug_enter((char *)NULL); | |
else | |
(void) die(type, rp, addr, cpuid); | |
break; | |
case T_NMIFLT: /* NMI interrupt */ | |
printf("Unexpected NMI in system mode\n"); | |
goto cleanup; | |
case T_NMIFLT + USER: /* NMI interrupt */ | |
printf("Unexpected NMI in user mode\n"); | |
break; | |
case T_GPFLT: /* general protection violation */ | |
/* | |
* Any #GP that occurs during an on_trap .. no_trap bracket | |
* with OT_DATA_ACCESS or OT_SEGMENT_ACCESS protection, | |
* or in a on_fault .. no_fault bracket, is forgiven | |
* and we trampoline. This protection is given regardless | |
* of whether we are 32/64 bit etc - if a distinction is | |
* required then define new on_trap protection types. | |
* | |
* On amd64, we can get a #gp from referencing addresses | |
* in the virtual address hole e.g. from a copyin or in | |
* update_sregs while updating user segment registers. | |
* | |
* On the 32-bit hypervisor we could also generate one in | |
* mfn_to_pfn by reaching around or into where the hypervisor | |
* lives which is protected by segmentation. | |
*/ | |
/* | |
* If we're under on_trap() protection (see <sys/ontrap.h>), | |
* set ot_trap and trampoline back to the on_trap() call site | |
* for OT_DATA_ACCESS or OT_SEGMENT_ACCESS. | |
*/ | |
if (ct->t_ontrap != NULL) { | |
int ttype = ct->t_ontrap->ot_prot & | |
(OT_DATA_ACCESS | OT_SEGMENT_ACCESS); | |
if (ttype != 0) { | |
ct->t_ontrap->ot_trap |= ttype; | |
if (tudebug) | |
showregs(type, rp, (caddr_t)0); | |
rp->r_pc = ct->t_ontrap->ot_trampoline; | |
goto cleanup; | |
} | |
} | |
/* | |
* If we're under lofault protection (copyin etc.), | |
* longjmp back to lofault with an EFAULT. | |
*/ | |
if (ct->t_lofault) { | |
/* | |
* Fault is not resolvable, so just return to lofault | |
*/ | |
if (lodebug) { | |
showregs(type, rp, addr); | |
traceregs(rp); | |
} | |
rp->r_r0 = EFAULT; | |
rp->r_pc = ct->t_lofault; | |
goto cleanup; | |
} | |
/* | |
* We fall through to the next case, which repeats | |
* the OT_SEGMENT_ACCESS check which we've already | |
* done, so we'll always fall through to the | |
* T_STKFLT case. | |
*/ | |
/*FALLTHROUGH*/ | |
case T_SEGFLT: /* segment not present fault */ | |
/* | |
* One example of this is #NP in update_sregs while | |
* attempting to update a user segment register | |
* that points to a descriptor that is marked not | |
* present. | |
*/ | |
if (ct->t_ontrap != NULL && | |
ct->t_ontrap->ot_prot & OT_SEGMENT_ACCESS) { | |
ct->t_ontrap->ot_trap |= OT_SEGMENT_ACCESS; | |
if (tudebug) | |
showregs(type, rp, (caddr_t)0); | |
rp->r_pc = ct->t_ontrap->ot_trampoline; | |
goto cleanup; | |
} | |
/*FALLTHROUGH*/ | |
case T_STKFLT: /* stack fault */ | |
case T_TSSFLT: /* invalid TSS fault */ | |
if (tudebug) | |
showregs(type, rp, (caddr_t)0); | |
if (kern_gpfault(rp)) | |
(void) die(type, rp, addr, cpuid); | |
goto cleanup; | |
/* | |
* ONLY 32-bit PROCESSES can USE a PRIVATE LDT! 64-bit apps | |
* should have no need for them, so we put a stop to it here. | |
* | |
* So: not-present fault is ONLY valid for 32-bit processes with | |
* a private LDT trying to do a system call. Emulate it. | |
* | |
* #gp fault is ONLY valid for 32-bit processes also, which DO NOT | |
* have a private LDT, and are trying to do a system call. Emulate it. | |
*/ | |
case T_SEGFLT + USER: /* segment not present fault */ | |
case T_GPFLT + USER: /* general protection violation */ | |
#ifdef _SYSCALL32_IMPL | |
if (p->p_model != DATAMODEL_NATIVE) { | |
#endif /* _SYSCALL32_IMPL */ | |
if (instr_is_lcall_syscall((caddr_t)rp->r_pc)) { | |
if (type == T_SEGFLT + USER) | |
ASSERT(p->p_ldt != NULL); | |
if ((p->p_ldt == NULL && type == T_GPFLT + USER) || | |
type == T_SEGFLT + USER) { | |
/* | |
* The user attempted a system call via the obsolete | |
* call gate mechanism. Because the process doesn't have | |
* an LDT (i.e. the ldtr contains 0), a #gp results. | |
* Emulate the syscall here, just as we do above for a | |
* #np trap. | |
*/ | |
/* | |
* Since this is a not-present trap, rp->r_pc points to | |
* the trapping lcall instruction. We need to bump it | |
* to the next insn so the app can continue on. | |
*/ | |
rp->r_pc += LCALLSIZE; | |
lwp->lwp_regs = rp; | |
/* | |
* Normally the microstate of the LWP is forced back to | |
* LMS_USER by the syscall handlers. Emulate that | |
* behavior here. | |
*/ | |
mstate = LMS_USER; | |
dosyscall(); | |
goto out; | |
} | |
} | |
#ifdef _SYSCALL32_IMPL | |
} | |
#endif /* _SYSCALL32_IMPL */ | |
/* | |
* If the current process is using a private LDT and the | |
* trapping instruction is sysenter, the sysenter instruction | |
* has been disabled on the CPU because it destroys segment | |
* registers. If this is the case, rewrite the instruction to | |
* be a safe system call and retry it. If this occurs on a CPU | |
* which doesn't even support sysenter, the result of all of | |
* this will be to emulate that particular instruction. | |
*/ | |
if (p->p_ldt != NULL && | |
ldt_rewrite_syscall(rp, p, X86FSET_SEP)) | |
goto out; | |
/*FALLTHROUGH*/ | |
case T_BOUNDFLT + USER: /* bound fault */ | |
case T_STKFLT + USER: /* stack fault */ | |
case T_TSSFLT + USER: /* invalid TSS fault */ | |
if (tudebug) | |
showregs(type, rp, (caddr_t)0); | |
siginfo.si_signo = SIGSEGV; | |
siginfo.si_code = SEGV_MAPERR; | |
siginfo.si_addr = (caddr_t)rp->r_pc; | |
fault = FLTBOUNDS; | |
break; | |
case T_ALIGNMENT + USER: /* user alignment error (486) */ | |
if (tudebug) | |
showregs(type, rp, (caddr_t)0); | |
bzero(&siginfo, sizeof (siginfo)); | |
siginfo.si_signo = SIGBUS; | |
siginfo.si_code = BUS_ADRALN; | |
siginfo.si_addr = (caddr_t)rp->r_pc; | |
fault = FLTACCESS; | |
break; | |
case T_SGLSTP + USER: /* single step/hw breakpoint exception */ | |
if (tudebug && tudebugbpt) | |
showregs(type, rp, (caddr_t)0); | |
/* Was it single-stepping? */ | |
if (lwp->lwp_pcb.pcb_drstat & DR_SINGLESTEP) { | |
pcb_t *pcb = &lwp->lwp_pcb; | |
rp->r_ps &= ~PS_T; | |
/* | |
* If both NORMAL_STEP and WATCH_STEP are in effect, | |
* give precedence to WATCH_STEP. If neither is set, | |
* user must have set the PS_T bit in %efl; treat this | |
* as NORMAL_STEP. | |
*/ | |
if ((fault = undo_watch_step(&siginfo)) == 0 && | |
((pcb->pcb_flags & NORMAL_STEP) || | |
!(pcb->pcb_flags & WATCH_STEP))) { | |
siginfo.si_signo = SIGTRAP; | |
siginfo.si_code = TRAP_TRACE; | |
siginfo.si_addr = (caddr_t)rp->r_pc; | |
fault = FLTTRACE; | |
} | |
pcb->pcb_flags &= ~(NORMAL_STEP|WATCH_STEP); | |
} | |
break; | |
case T_BPTFLT + USER: /* breakpoint trap */ | |
if (tudebug && tudebugbpt) | |
showregs(type, rp, (caddr_t)0); | |
/* | |
* int 3 (the breakpoint instruction) leaves the pc referring | |
* to the address one byte after the breakpointed address. | |
* If the P_PR_BPTADJ flag has been set via /proc, We adjust | |
* it back so it refers to the breakpointed address. | |
*/ | |
if (p->p_proc_flag & P_PR_BPTADJ) | |
rp->r_pc--; | |
siginfo.si_signo = SIGTRAP; | |
siginfo.si_code = TRAP_BRKPT; | |
siginfo.si_addr = (caddr_t)rp->r_pc; | |
fault = FLTBPT; | |
break; | |
case T_AST: | |
/* | |
* This occurs only after the cs register has been made to | |
* look like a kernel selector, either through debugging or | |
* possibly by functions like setcontext(). The thread is | |
* about to cause a general protection fault at common_iret() | |
* in locore. We let that happen immediately instead of | |
* doing the T_AST processing. | |
*/ | |
goto cleanup; | |
case T_AST + USER: /* profiling, resched, h/w error pseudo trap */ | |
if (lwp->lwp_pcb.pcb_flags & ASYNC_HWERR) { | |
proc_t *p = ttoproc(curthread); | |
extern void print_msg_hwerr(ctid_t ct_id, proc_t *p); | |
lwp->lwp_pcb.pcb_flags &= ~ASYNC_HWERR; | |
print_msg_hwerr(p->p_ct_process->conp_contract.ct_id, | |
p); | |
contract_process_hwerr(p->p_ct_process, p); | |
siginfo.si_signo = SIGKILL; | |
siginfo.si_code = SI_NOINFO; | |
} else if (lwp->lwp_pcb.pcb_flags & CPC_OVERFLOW) { | |
lwp->lwp_pcb.pcb_flags &= ~CPC_OVERFLOW; | |
if (kcpc_overflow_ast()) { | |
/* | |
* Signal performance counter overflow | |
*/ | |
if (tudebug) | |
showregs(type, rp, (caddr_t)0); | |
bzero(&siginfo, sizeof (siginfo)); | |
siginfo.si_signo = SIGEMT; | |
siginfo.si_code = EMT_CPCOVF; | |
siginfo.si_addr = (caddr_t)rp->r_pc; | |
fault = FLTCPCOVF; | |
} | |
} | |
break; | |
} | |
/* | |
* We can't get here from a system trap | |
*/ | |
ASSERT(type & USER); | |
if (fault) { | |
/* We took a fault so abort single step. */ | |
lwp->lwp_pcb.pcb_flags &= ~(NORMAL_STEP|WATCH_STEP); | |
/* | |
* Remember the fault and fault adddress | |
* for real-time (SIGPROF) profiling. | |
*/ | |
lwp->lwp_lastfault = fault; | |
lwp->lwp_lastfaddr = siginfo.si_addr; | |
DTRACE_PROC2(fault, int, fault, ksiginfo_t *, &siginfo); | |
/* | |
* If a debugger has declared this fault to be an | |
* event of interest, stop the lwp. Otherwise just | |
* deliver the associated signal. | |
*/ | |
if (siginfo.si_signo != SIGKILL && | |
prismember(&p->p_fltmask, fault) && | |
stop_on_fault(fault, &siginfo) == 0) | |
siginfo.si_signo = 0; | |
} | |
if (siginfo.si_signo) | |
trapsig(&siginfo, (fault != FLTFPE && fault != FLTCPCOVF)); | |
if (lwp->lwp_oweupc) | |
profil_tick(rp->r_pc); | |
if (ct->t_astflag | ct->t_sig_check) { | |
/* | |
* Turn off the AST flag before checking all the conditions that | |
* may have caused an AST. This flag is on whenever a signal or | |
* unusual condition should be handled after the next trap or | |
* syscall. | |
*/ | |
astoff(ct); | |
/* | |
* If a single-step trap occurred on a syscall (see above) | |
* recognize it now. Do this before checking for signals | |
* because deferred_singlestep_trap() may generate a SIGTRAP to | |
* the LWP or may otherwise mark the LWP to call issig(FORREAL). | |
*/ | |
if (lwp->lwp_pcb.pcb_flags & DEBUG_PENDING) | |
deferred_singlestep_trap((caddr_t)rp->r_pc); | |
ct->t_sig_check = 0; | |
/* | |
* As in other code paths that check against TP_CHANGEBIND, | |
* we perform the check first without p_lock held -- only | |
* acquiring p_lock in the unlikely event that it is indeed | |
* set. This is safe because we are doing this after the | |
* astoff(); if we are racing another thread setting | |
* TP_CHANGEBIND on us, we will pick it up on a subsequent | |
* lap through. | |
*/ | |
if (curthread->t_proc_flag & TP_CHANGEBIND) { | |
mutex_enter(&p->p_lock); | |
if (curthread->t_proc_flag & TP_CHANGEBIND) { | |
timer_lwpbind(); | |
curthread->t_proc_flag &= ~TP_CHANGEBIND; | |
} | |
mutex_exit(&p->p_lock); | |
} | |
/* | |
* for kaio requests that are on the per-process poll queue, | |
* aiop->aio_pollq, they're AIO_POLL bit is set, the kernel | |
* should copyout their result_t to user memory. by copying | |
* out the result_t, the user can poll on memory waiting | |
* for the kaio request to complete. | |
*/ | |
if (p->p_aio) | |
aio_cleanup(0); | |
/* | |
* If this LWP was asked to hold, call holdlwp(), which will | |
* stop. holdlwps() sets this up and calls pokelwps() which | |
* sets the AST flag. | |
* | |
* Also check TP_EXITLWP, since this is used by fresh new LWPs | |
* through lwp_rtt(). That flag is set if the lwp_create(2) | |
* syscall failed after creating the LWP. | |
*/ | |
if (ISHOLD(p)) | |
holdlwp(); | |
/* | |
* All code that sets signals and makes ISSIG evaluate true must | |
* set t_astflag afterwards. | |
*/ | |
if (ISSIG_PENDING(ct, lwp, p)) { | |
if (issig(FORREAL)) | |
psig(); | |
ct->t_sig_check = 1; | |
} | |
if (ct->t_rprof != NULL) { | |
realsigprof(0, 0, 0); | |
ct->t_sig_check = 1; | |
} | |
/* | |
* /proc can't enable/disable the trace bit itself | |
* because that could race with the call gate used by | |
* system calls via "lcall". If that happened, an | |
* invalid EFLAGS would result. prstep()/prnostep() | |
* therefore schedule an AST for the purpose. | |
*/ | |
if (lwp->lwp_pcb.pcb_flags & REQUEST_STEP) { | |
lwp->lwp_pcb.pcb_flags &= ~REQUEST_STEP; | |
rp->r_ps |= PS_T; | |
} | |
if (lwp->lwp_pcb.pcb_flags & REQUEST_NOSTEP) { | |
lwp->lwp_pcb.pcb_flags &= ~REQUEST_NOSTEP; | |
rp->r_ps &= ~PS_T; | |
} | |
} | |
out: /* We can't get here from a system trap */ | |
ASSERT(type & USER); | |
if (ISHOLD(p)) | |
holdlwp(); | |
/* | |
* Set state to LWP_USER here so preempt won't give us a kernel | |
* priority if it occurs after this point. Call CL_TRAPRET() to | |
* restore the user-level priority. | |
* | |
* It is important that no locks (other than spinlocks) be entered | |
* after this point before returning to user mode (unless lwp_state | |
* is set back to LWP_SYS). | |
*/ | |
lwp->lwp_state = LWP_USER; | |
if (ct->t_trapret) { | |
ct->t_trapret = 0; | |
thread_lock(ct); | |
CL_TRAPRET(ct); | |
thread_unlock(ct); | |
} | |
if (CPU->cpu_runrun || curthread->t_schedflag & TS_ANYWAITQ) | |
preempt(); | |
prunstop(); | |
(void) new_mstate(ct, mstate); | |
/* Kernel probe */ | |
TNF_PROBE_1(thread_state, "thread", /* CSTYLED */, | |
tnf_microstate, state, LMS_USER); | |
return; | |
cleanup: /* system traps end up here */ | |
ASSERT(!(type & USER)); | |
} | |
/* | |
* Patch non-zero to disable preemption of threads in the kernel. | |
*/ | |
int IGNORE_KERNEL_PREEMPTION = 0; /* XXX - delete this someday */ | |
struct kpreempt_cnts { /* kernel preemption statistics */ | |
int kpc_idle; /* executing idle thread */ | |
int kpc_intr; /* executing interrupt thread */ | |
int kpc_clock; /* executing clock thread */ | |
int kpc_blocked; /* thread has blocked preemption (t_preempt) */ | |
int kpc_notonproc; /* thread is surrendering processor */ | |
int kpc_inswtch; /* thread has ratified scheduling decision */ | |
int kpc_prilevel; /* processor interrupt level is too high */ | |
int kpc_apreempt; /* asynchronous preemption */ | |
int kpc_spreempt; /* synchronous preemption */ | |
} kpreempt_cnts; | |
/* | |
* kernel preemption: forced rescheduling, preempt the running kernel thread. | |
* the argument is old PIL for an interrupt, | |
* or the distingished value KPREEMPT_SYNC. | |
*/ | |
void | |
kpreempt(int asyncspl) | |
{ | |
kthread_t *ct = curthread; | |
if (IGNORE_KERNEL_PREEMPTION) { | |
aston(CPU->cpu_dispthread); | |
return; | |
} | |
/* | |
* Check that conditions are right for kernel preemption | |
*/ | |
do { | |
if (ct->t_preempt) { | |
/* | |
* either a privileged thread (idle, panic, interrupt) | |
* or will check when t_preempt is lowered | |
* We need to specifically handle the case where | |
* the thread is in the middle of swtch (resume has | |
* been called) and has its t_preempt set | |
* [idle thread and a thread which is in kpreempt | |
* already] and then a high priority thread is | |
* available in the local dispatch queue. | |
* In this case the resumed thread needs to take a | |
* trap so that it can call kpreempt. We achieve | |
* this by using siron(). | |
* How do we detect this condition: | |
* idle thread is running and is in the midst of | |
* resume: curthread->t_pri == -1 && CPU->dispthread | |
* != CPU->thread | |
* Need to ensure that this happens only at high pil | |
* resume is called at high pil | |
* Only in resume_from_idle is the pil changed. | |
*/ | |
if (ct->t_pri < 0) { | |
kpreempt_cnts.kpc_idle++; | |
if (CPU->cpu_dispthread != CPU->cpu_thread) | |
siron(); | |
} else if (ct->t_flag & T_INTR_THREAD) { | |
kpreempt_cnts.kpc_intr++; | |
if (ct->t_pil == CLOCK_LEVEL) | |
kpreempt_cnts.kpc_clock++; | |
} else { | |
kpreempt_cnts.kpc_blocked++; | |
if (CPU->cpu_dispthread != CPU->cpu_thread) | |
siron(); | |
} | |
aston(CPU->cpu_dispthread); | |
return; | |
} | |
if (ct->t_state != TS_ONPROC || | |
ct->t_disp_queue != CPU->cpu_disp) { | |
/* this thread will be calling swtch() shortly */ | |
kpreempt_cnts.kpc_notonproc++; | |
if (CPU->cpu_thread != CPU->cpu_dispthread) { | |
/* already in swtch(), force another */ | |
kpreempt_cnts.kpc_inswtch++; | |
siron(); | |
} | |
return; | |
} | |
if (getpil() >= DISP_LEVEL) { | |
/* | |
* We can't preempt this thread if it is at | |
* a PIL >= DISP_LEVEL since it may be holding | |
* a spin lock (like sched_lock). | |
*/ | |
siron(); /* check back later */ | |
kpreempt_cnts.kpc_prilevel++; | |
return; | |
} | |
if (!interrupts_enabled()) { | |
/* | |
* Can't preempt while running with ints disabled | |
*/ | |
kpreempt_cnts.kpc_prilevel++; | |
return; | |
} | |
if (asyncspl != KPREEMPT_SYNC) | |
kpreempt_cnts.kpc_apreempt++; | |
else | |
kpreempt_cnts.kpc_spreempt++; | |
ct->t_preempt++; | |
preempt(); | |
ct->t_preempt--; | |
} while (CPU->cpu_kprunrun); | |
} | |
/* | |
* Print out debugging info. | |
*/ | |
static void | |
showregs(uint_t type, struct regs *rp, caddr_t addr) | |
{ | |
int s; | |
s = spl7(); | |
type &= ~USER; | |
if (PTOU(curproc)->u_comm[0]) | |
printf("%s: ", PTOU(curproc)->u_comm); | |
if (type < TRAP_TYPES) | |
printf("#%s %s\n", trap_type_mnemonic[type], trap_type[type]); | |
else | |
switch (type) { | |
case T_SYSCALL: | |
printf("Syscall Trap:\n"); | |
break; | |
case T_AST: | |
printf("AST\n"); | |
break; | |
default: | |
printf("Bad Trap = %d\n", type); | |
break; | |
} | |
if (type == T_PGFLT) { | |
printf("Bad %s fault at addr=0x%lx\n", | |
USERMODE(rp->r_cs) ? "user": "kernel", (uintptr_t)addr); | |
} else if (addr) { | |
printf("addr=0x%lx\n", (uintptr_t)addr); | |
} | |
printf("pid=%d, pc=0x%lx, sp=0x%lx, eflags=0x%lx\n", | |
(ttoproc(curthread) && ttoproc(curthread)->p_pidp) ? | |
ttoproc(curthread)->p_pid : 0, rp->r_pc, rp->r_sp, rp->r_ps); | |
#if defined(__lint) | |
/* | |
* this clause can be deleted when lint bug 4870403 is fixed | |
* (lint thinks that bit 32 is illegal in a %b format string) | |
*/ | |
printf("cr0: %x cr4: %b\n", | |
(uint_t)getcr0(), (uint_t)getcr4(), FMT_CR4); | |
#else | |
printf("cr0: %b cr4: %b\n", | |
(uint_t)getcr0(), FMT_CR0, (uint_t)getcr4(), FMT_CR4); | |
#endif /* __lint */ | |
printf("cr2: %lx ", getcr2()); | |
#if !defined(__xpv) | |
printf("cr3: %lx ", getcr3()); | |
#if defined(__amd64) | |
printf("cr8: %lx\n", getcr8()); | |
#endif | |
#endif | |
printf("\n"); | |
dumpregs(rp); | |
splx(s); | |
} | |
static void | |
dumpregs(struct regs *rp) | |
{ | |
#if defined(__amd64) | |
const char fmt[] = "\t%3s: %16lx %3s: %16lx %3s: %16lx\n"; | |
printf(fmt, "rdi", rp->r_rdi, "rsi", rp->r_rsi, "rdx", rp->r_rdx); | |
printf(fmt, "rcx", rp->r_rcx, " r8", rp->r_r8, " r9", rp->r_r9); | |
printf(fmt, "rax", rp->r_rax, "rbx", rp->r_rbx, "rbp", rp->r_rbp); | |
printf(fmt, "r10", rp->r_r10, "r11", rp->r_r11, "r12", rp->r_r12); | |
printf(fmt, "r13", rp->r_r13, "r14", rp->r_r14, "r15", rp->r_r15); | |
printf(fmt, "fsb", rdmsr(MSR_AMD_FSBASE), "gsb", rdmsr(MSR_AMD_GSBASE), | |
" ds", rp->r_ds); | |
printf(fmt, " es", rp->r_es, " fs", rp->r_fs, " gs", rp->r_gs); | |
printf(fmt, "trp", rp->r_trapno, "err", rp->r_err, "rip", rp->r_rip); | |
printf(fmt, " cs", rp->r_cs, "rfl", rp->r_rfl, "rsp", rp->r_rsp); | |
printf("\t%3s: %16lx\n", " ss", rp->r_ss); | |
#elif defined(__i386) | |
const char fmt[] = "\t%3s: %8lx %3s: %8lx %3s: %8lx %3s: %8lx\n"; | |
printf(fmt, " gs", rp->r_gs, " fs", rp->r_fs, | |
" es", rp->r_es, " ds", rp->r_ds); | |
printf(fmt, "edi", rp->r_edi, "esi", rp->r_esi, | |
"ebp", rp->r_ebp, "esp", rp->r_esp); | |
printf(fmt, "ebx", rp->r_ebx, "edx", rp->r_edx, | |
"ecx", rp->r_ecx, "eax", rp->r_eax); | |
printf(fmt, "trp", rp->r_trapno, "err", rp->r_err, | |
"eip", rp->r_eip, " cs", rp->r_cs); | |
printf("\t%3s: %8lx %3s: %8lx %3s: %8lx\n", | |
"efl", rp->r_efl, "usp", rp->r_uesp, " ss", rp->r_ss); | |
#endif /* __i386 */ | |
} | |
/* | |
* Test to see if the instruction is iret on i386 or iretq on amd64. | |
* | |
* On the hypervisor we can only test for nopop_sys_rtt_syscall. If true | |
* then we are in the context of hypervisor's failsafe handler because it | |
* tried to iret and failed due to a bad selector. See xen_failsafe_callback. | |
*/ | |
static int | |
instr_is_iret(caddr_t pc) | |
{ | |
#if defined(__xpv) | |
extern void nopop_sys_rtt_syscall(void); | |
return ((pc == (caddr_t)nopop_sys_rtt_syscall) ? 1 : 0); | |
#else | |
#if defined(__amd64) | |
static const uint8_t iret_insn[2] = { 0x48, 0xcf }; /* iretq */ | |
#elif defined(__i386) | |
static const uint8_t iret_insn[1] = { 0xcf }; /* iret */ | |
#endif /* __i386 */ | |
return (bcmp(pc, iret_insn, sizeof (iret_insn)) == 0); | |
#endif /* __xpv */ | |
} | |
#if defined(__i386) | |
/* | |
* Test to see if the instruction is part of __SEGREGS_POP | |
* | |
* Note carefully the appallingly awful dependency between | |
* the instruction sequence used in __SEGREGS_POP and these | |
* instructions encoded here. | |
*/ | |
static int | |
instr_is_segregs_pop(caddr_t pc) | |
{ | |
static const uint8_t movw_0_esp_gs[4] = { 0x8e, 0x6c, 0x24, 0x0 }; | |
static const uint8_t movw_4_esp_fs[4] = { 0x8e, 0x64, 0x24, 0x4 }; | |
static const uint8_t movw_8_esp_es[4] = { 0x8e, 0x44, 0x24, 0x8 }; | |
static const uint8_t movw_c_esp_ds[4] = { 0x8e, 0x5c, 0x24, 0xc }; | |
if (bcmp(pc, movw_0_esp_gs, sizeof (movw_0_esp_gs)) == 0 || | |
bcmp(pc, movw_4_esp_fs, sizeof (movw_4_esp_fs)) == 0 || | |
bcmp(pc, movw_8_esp_es, sizeof (movw_8_esp_es)) == 0 || | |
bcmp(pc, movw_c_esp_ds, sizeof (movw_c_esp_ds)) == 0) | |
return (1); | |
return (0); | |
} | |
#endif /* __i386 */ | |
/* | |
* Test to see if the instruction is part of _sys_rtt (or the KPTI trampolines | |
* which are used by _sys_rtt). | |
* | |
* Again on the hypervisor if we try to IRET to user land with a bad code | |
* or stack selector we will get vectored through xen_failsafe_callback. | |
* In which case we assume we got here via _sys_rtt since we only allow | |
* IRET to user land to take place in _sys_rtt. | |
*/ | |
static int | |
instr_is_sys_rtt(caddr_t pc) | |
{ | |
extern void _sys_rtt(), _sys_rtt_end(); | |
#if !defined(__xpv) | |
extern void tr_sysc_ret_start(), tr_sysc_ret_end(); | |
extern void tr_intr_ret_start(), tr_intr_ret_end(); | |
if ((uintptr_t)pc >= (uintptr_t)tr_sysc_ret_start && | |
(uintptr_t)pc <= (uintptr_t)tr_sysc_ret_end) | |
return (1); | |
if ((uintptr_t)pc >= (uintptr_t)tr_intr_ret_start && | |
(uintptr_t)pc <= (uintptr_t)tr_intr_ret_end) | |
return (1); | |
#endif | |
if ((uintptr_t)pc < (uintptr_t)_sys_rtt || | |
(uintptr_t)pc > (uintptr_t)_sys_rtt_end) | |
return (0); | |
return (1); | |
} | |
/* | |
* Handle #gp faults in kernel mode. | |
* | |
* One legitimate way this can happen is if we attempt to update segment | |
* registers to naughty values on the way out of the kernel. | |
* | |
* This can happen in a couple of ways: someone - either accidentally or | |
* on purpose - creates (setcontext(2), lwp_create(2)) or modifies | |
* (signal(2)) a ucontext that contains silly segment register values. | |
* Or someone - either accidentally or on purpose - modifies the prgregset_t | |
* of a subject process via /proc to contain silly segment register values. | |
* | |
* (The unfortunate part is that we can end up discovering the bad segment | |
* register value in the middle of an 'iret' after we've popped most of the | |
* stack. So it becomes quite difficult to associate an accurate ucontext | |
* with the lwp, because the act of taking the #gp trap overwrites most of | |
* what we were going to send the lwp.) | |
* | |
* OTOH if it turns out that's -not- the problem, and we're -not- an lwp | |
* trying to return to user mode and we get a #gp fault, then we need | |
* to die() -- which will happen if we return non-zero from this routine. | |
*/ | |
static int | |
kern_gpfault(struct regs *rp) | |
{ | |
kthread_t *t = curthread; | |
proc_t *p = ttoproc(t); | |
klwp_t *lwp = ttolwp(t); | |
struct regs tmpregs, *trp = NULL; | |
caddr_t pc = (caddr_t)rp->r_pc; | |
int v; | |
uint32_t auditing = AU_AUDITING(); | |
/* | |
* if we're not an lwp, or in the case of running native the | |
* pc range is outside _sys_rtt, then we should immediately | |
* be die()ing horribly. | |
*/ | |
if (lwp == NULL || !instr_is_sys_rtt(pc)) | |
return (1); | |
/* | |
* So at least we're in the right part of the kernel. | |
* | |
* Disassemble the instruction at the faulting pc. | |
* Once we know what it is, we carefully reconstruct the stack | |
* based on the order in which the stack is deconstructed in | |
* _sys_rtt. Ew. | |
*/ | |
if (instr_is_iret(pc)) { | |
/* | |
* We took the #gp while trying to perform the IRET. | |
* This means that either %cs or %ss are bad. | |
* All we know for sure is that most of the general | |
* registers have been restored, including the | |
* segment registers, and all we have left on the | |
* topmost part of the lwp's stack are the | |
* registers that the iretq was unable to consume. | |
* | |
* All the rest of the state was crushed by the #gp | |
* which pushed -its- registers atop our old save area | |
* (because we had to decrement the stack pointer, sigh) so | |
* all that we can try and do is to reconstruct the | |
* crushed frame from the #gp trap frame itself. | |
*/ | |
trp = &tmpregs; | |
trp->r_ss = lwptoregs(lwp)->r_ss; | |
trp->r_sp = lwptoregs(lwp)->r_sp; | |
trp->r_ps = lwptoregs(lwp)->r_ps; | |
trp->r_cs = lwptoregs(lwp)->r_cs; | |
trp->r_pc = lwptoregs(lwp)->r_pc; | |
bcopy(rp, trp, offsetof(struct regs, r_pc)); | |
/* | |
* Validate simple math | |
*/ | |
ASSERT(trp->r_pc == lwptoregs(lwp)->r_pc); | |
ASSERT(trp->r_err == rp->r_err); | |
} | |
#if defined(__amd64) | |
if (trp == NULL && PCB_NEED_UPDATE_SEGS(&lwp->lwp_pcb)) { | |
/* | |
* This is the common case -- we're trying to load | |
* a bad segment register value in the only section | |
* of kernel code that ever loads segment registers. | |
* | |
* We don't need to do anything at this point because | |
* the pcb contains all the pending segment register | |
* state, and the regs are still intact because we | |
* didn't adjust the stack pointer yet. Given the fidelity | |
* of all this, we could conceivably send a signal | |
* to the lwp, rather than core-ing. | |
*/ | |
trp = lwptoregs(lwp); | |
ASSERT((caddr_t)trp == (caddr_t)rp->r_sp); | |
} | |
#elif defined(__i386) | |
if (trp == NULL && instr_is_segregs_pop(pc)) | |
trp = lwptoregs(lwp); | |
#endif /* __i386 */ | |
if (trp == NULL) | |
return (1); | |
/* | |
* If we get to here, we're reasonably confident that we've | |
* correctly decoded what happened on the way out of the kernel. | |
* Rewrite the lwp's registers so that we can create a core dump | |
* the (at least vaguely) represents the mcontext we were | |
* being asked to restore when things went so terribly wrong. | |
*/ | |
/* | |
* Make sure that we have a meaningful %trapno and %err. | |
*/ | |
trp->r_trapno = rp->r_trapno; | |
trp->r_err = rp->r_err; | |
if ((caddr_t)trp != (caddr_t)lwptoregs(lwp)) | |
bcopy(trp, lwptoregs(lwp), sizeof (*trp)); | |
mutex_enter(&p->p_lock); | |
lwp->lwp_cursig = SIGSEGV; | |
mutex_exit(&p->p_lock); | |
/* | |
* Terminate all LWPs but don't discard them. If another lwp beat | |
* us to the punch by calling exit(), evaporate now. | |
*/ | |
proc_is_exiting(p); | |
if (exitlwps(1) != 0) { | |
mutex_enter(&p->p_lock); | |
lwp_exit(); | |
} | |
if (auditing) /* audit core dump */ | |
audit_core_start(SIGSEGV); | |
v = core(SIGSEGV, B_FALSE); | |
if (auditing) /* audit core dump */ | |
audit_core_finish(v ? CLD_KILLED : CLD_DUMPED); | |
exit(v ? CLD_KILLED : CLD_DUMPED, SIGSEGV); | |
return (0); | |
} | |
/* | |
* dump_tss() - Display the TSS structure | |
*/ | |
#if !defined(__xpv) | |
#if defined(__amd64) | |
static void | |
dump_tss(void) | |
{ | |
const char tss_fmt[] = "tss.%s:\t0x%p\n"; /* Format string */ | |
tss_t *tss = CPU->cpu_tss; | |
printf(tss_fmt, "tss_rsp0", (void *)tss->tss_rsp0); | |
printf(tss_fmt, "tss_rsp1", (void *)tss->tss_rsp1); | |
printf(tss_fmt, "tss_rsp2", (void *)tss->tss_rsp2); | |
printf(tss_fmt, "tss_ist1", (void *)tss->tss_ist1); | |
printf(tss_fmt, "tss_ist2", (void *)tss->tss_ist2); | |
printf(tss_fmt, "tss_ist3", (void *)tss->tss_ist3); | |
printf(tss_fmt, "tss_ist4", (void *)tss->tss_ist4); | |
printf(tss_fmt, "tss_ist5", (void *)tss->tss_ist5); | |
printf(tss_fmt, "tss_ist6", (void *)tss->tss_ist6); | |
printf(tss_fmt, "tss_ist7", (void *)tss->tss_ist7); | |
} | |
#elif defined(__i386) | |
static void | |
dump_tss(void) | |
{ | |
const char tss_fmt[] = "tss.%s:\t0x%p\n"; /* Format string */ | |
tss_t *tss = CPU->cpu_tss; | |
printf(tss_fmt, "tss_link", (void *)(uintptr_t)tss->tss_link); | |
printf(tss_fmt, "tss_esp0", (void *)(uintptr_t)tss->tss_esp0); | |
printf(tss_fmt, "tss_ss0", (void *)(uintptr_t)tss->tss_ss0); | |
printf(tss_fmt, "tss_esp1", (void *)(uintptr_t)tss->tss_esp1); | |
printf(tss_fmt, "tss_ss1", (void *)(uintptr_t)tss->tss_ss1); | |
printf(tss_fmt, "tss_esp2", (void *)(uintptr_t)tss->tss_esp2); | |
printf(tss_fmt, "tss_ss2", (void *)(uintptr_t)tss->tss_ss2); | |
printf(tss_fmt, "tss_cr3", (void *)(uintptr_t)tss->tss_cr3); | |
printf(tss_fmt, "tss_eip", (void *)(uintptr_t)tss->tss_eip); | |
printf(tss_fmt, "tss_eflags", (void *)(uintptr_t)tss->tss_eflags); | |
printf(tss_fmt, "tss_eax", (void *)(uintptr_t)tss->tss_eax); | |
printf(tss_fmt, "tss_ebx", (void *)(uintptr_t)tss->tss_ebx); | |
printf(tss_fmt, "tss_ecx", (void *)(uintptr_t)tss->tss_ecx); | |
printf(tss_fmt, "tss_edx", (void *)(uintptr_t)tss->tss_edx); | |
printf(tss_fmt, "tss_esp", (void *)(uintptr_t)tss->tss_esp); | |
} | |
#endif /* __amd64 */ | |
#endif /* !__xpv */ | |
#if defined(TRAPTRACE) | |
int ttrace_nrec = 10; /* number of records to dump out */ | |
int ttrace_dump_nregs = 0; /* dump out this many records with regs too */ | |
/* | |
* Dump out the last ttrace_nrec traptrace records on each CPU | |
*/ | |
static void | |
dump_ttrace(void) | |
{ | |
trap_trace_ctl_t *ttc; | |
trap_trace_rec_t *rec; | |
uintptr_t current; | |
int i, j, k; | |
int n = NCPU; | |
#if defined(__amd64) | |
const char banner[] = | |
"CPU ADDRESS TIMESTAMP TYPE VC HANDLER PC\n"; | |
/* Define format for the CPU, ADDRESS, and TIMESTAMP fields */ | |
const char fmt1[] = "%3d %016lx %12llx"; | |
char data1[34]; /* length of string formatted by fmt1 + 1 */ | |
#elif defined(__i386) | |
const char banner[] = | |
"CPU ADDRESS TIMESTAMP TYPE VC HANDLER PC\n"; | |
/* Define format for the CPU, ADDRESS, and TIMESTAMP fields */ | |
const char fmt1[] = "%3d %08lx %12llx"; | |
char data1[26]; /* length of string formatted by fmt1 + 1 */ | |
#endif | |
/* Define format for the TYPE and VC fields */ | |
const char fmt2[] = "%4s %3x"; | |
const char fmt2s[] = "%4s %3s"; | |
char data2[9]; /* length of string formatted by fmt2 + 1 */ | |
/* | |
* Define format for the HANDLER field. Width is arbitrary, but should | |
* be enough for common handler's names, and leave enough space for | |
* the PC field, especially when we are in kmdb. | |
*/ | |
const char fmt3h[] = "#%-15s"; | |
const char fmt3p[] = "%-16p"; | |
const char fmt3s[] = "%-16s"; | |
char data3[17]; /* length of string formatted by fmt3* + 1 */ | |
if (ttrace_nrec == 0) | |
return; | |
printf("\n"); | |
printf(banner); | |
for (i = 0; i < n; i++) { | |
ttc = &trap_trace_ctl[i]; | |
if (ttc->ttc_first == (uintptr_t)NULL) | |
continue; | |
current = ttc->ttc_next - sizeof (trap_trace_rec_t); | |
for (j = 0; j < ttrace_nrec; j++) { | |
struct sysent *sys; | |
struct autovec *vec; | |
extern struct av_head autovect[]; | |
int type; | |
ulong_t off; | |
char *sym, *stype; | |
if (current < ttc->ttc_first) | |
current = | |
ttc->ttc_limit - sizeof (trap_trace_rec_t); | |
if (current == (uintptr_t)NULL) | |
continue; | |
rec = (trap_trace_rec_t *)current; | |
if (rec->ttr_stamp == 0) | |
break; | |
(void) snprintf(data1, sizeof (data1), fmt1, i, | |
(uintptr_t)rec, rec->ttr_stamp); | |
switch (rec->ttr_marker) { | |
case TT_SYSCALL: | |
case TT_SYSENTER: | |
case TT_SYSC: | |
case TT_SYSC64: | |
sys = &sysent32[rec->ttr_sysnum]; | |
switch (rec->ttr_marker) { | |
case TT_SYSC64: | |
sys = &sysent[rec->ttr_sysnum]; | |
/* FALLTHROUGH */ | |
case TT_SYSC: | |
stype = "sysc"; /* syscall */ | |
break; | |
case TT_SYSCALL: | |
stype = "lcal"; /* lcall */ | |
break; | |
case TT_SYSENTER: | |
stype = "syse"; /* sysenter */ | |
break; | |
default: | |
break; | |
} | |
(void) snprintf(data2, sizeof (data2), fmt2, | |
stype, rec->ttr_sysnum); | |
if (sys != NULL) { | |
sym = kobj_getsymname( | |
(uintptr_t)sys->sy_callc, | |
&off); | |
if (sym != NULL) { | |
(void) snprintf(data3, | |
sizeof (data3), fmt3s, sym); | |
} else { | |
(void) snprintf(data3, | |
sizeof (data3), fmt3p, | |
sys->sy_callc); | |
} | |
} else { | |
(void) snprintf(data3, sizeof (data3), | |
fmt3s, "unknown"); | |
} | |
break; | |
case TT_INTERRUPT: | |
if (rec->ttr_regs.r_trapno == T_SOFTINT) { | |
(void) snprintf(data2, sizeof (data2), | |
fmt2s, "intr", "-"); | |
(void) snprintf(data3, sizeof (data3), | |
fmt3s, "(fakesoftint)"); | |
break; | |
} | |
(void) snprintf(data2, sizeof (data2), fmt2, | |
"intr", rec->ttr_vector); | |
if (get_intr_handler != NULL) | |
vec = (struct autovec *) | |
(*get_intr_handler) | |
(rec->ttr_cpuid, rec->ttr_vector); | |
else | |
vec = | |
autovect[rec->ttr_vector].avh_link; | |
if (vec != NULL) { | |
sym = kobj_getsymname( | |
(uintptr_t)vec->av_vector, &off); | |
if (sym != NULL) { | |
(void) snprintf(data3, | |
sizeof (data3), fmt3s, sym); | |
} else { | |
(void) snprintf(data3, | |
sizeof (data3), fmt3p, | |
vec->av_vector); | |
} | |
} else { | |
(void) snprintf(data3, sizeof (data3), | |
fmt3s, "unknown"); | |
} | |
break; | |
case TT_TRAP: | |
case TT_EVENT: | |
type = rec->ttr_regs.r_trapno; | |
(void) snprintf(data2, sizeof (data2), fmt2, | |
"trap", type); | |
if (type < TRAP_TYPES) { | |
(void) snprintf(data3, sizeof (data3), | |
fmt3h, trap_type_mnemonic[type]); | |
} else { | |
switch (type) { | |
case T_AST: | |
(void) snprintf(data3, | |
sizeof (data3), fmt3s, | |
"ast"); | |
break; | |
default: | |
(void) snprintf(data3, | |
sizeof (data3), fmt3s, ""); | |
break; | |
} | |
} | |
break; | |
default: | |
break; | |
} | |
sym = kobj_getsymname(rec->ttr_regs.r_pc, &off); | |
if (sym != NULL) { | |
printf("%s %s %s %s+%lx\n", data1, data2, data3, | |
sym, off); | |
} else { | |
printf("%s %s %s %lx\n", data1, data2, data3, | |
rec->ttr_regs.r_pc); | |
} | |
if (ttrace_dump_nregs-- > 0) { | |
int s; | |
if (rec->ttr_marker == TT_INTERRUPT) | |
printf( | |
"\t\tipl %x spl %x pri %x\n", | |
rec->ttr_ipl, | |
rec->ttr_spl, | |
rec->ttr_pri); | |
dumpregs(&rec->ttr_regs); | |
printf("\t%3s: %p\n\n", " ct", | |
(void *)rec->ttr_curthread); | |
/* | |
* print out the pc stack that we recorded | |
* at trap time (if any) | |
*/ | |
for (s = 0; s < rec->ttr_sdepth; s++) { | |
uintptr_t fullpc; | |
if (s >= TTR_STACK_DEPTH) { | |
printf("ttr_sdepth corrupt\n"); | |
break; | |
} | |
fullpc = (uintptr_t)rec->ttr_stack[s]; | |
sym = kobj_getsymname(fullpc, &off); | |
if (sym != NULL) | |
printf("-> %s+0x%lx()\n", | |
sym, off); | |
else | |
printf("-> 0x%lx()\n", fullpc); | |
} | |
printf("\n"); | |
} | |
current -= sizeof (trap_trace_rec_t); | |
} | |
} | |
} | |
#endif /* TRAPTRACE */ | |
void | |
panic_showtrap(struct panic_trap_info *tip) | |
{ | |
showregs(tip->trap_type, tip->trap_regs, tip->trap_addr); | |
#if defined(TRAPTRACE) | |
dump_ttrace(); | |
#endif | |
#if !defined(__xpv) | |
if (tip->trap_type == T_DBLFLT) | |
dump_tss(); | |
#endif | |
} | |
void | |
panic_savetrap(panic_data_t *pdp, struct panic_trap_info *tip) | |
{ | |
panic_saveregs(pdp, tip->trap_regs); | |
} |