Skip to content
Permalink
60f7064656
Switch branches/tags
Go to file
 
 
Cannot retrieve contributors at this time
2299 lines (2042 sloc) 62.3 KB
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/* Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */
/* Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T */
/* All Rights Reserved */
/* */
/* Copyright (c) 1987, 1988 Microsoft Corporation */
/* All Rights Reserved */
/* */
/*
* Copyright 2018 Joyent, Inc.
*/
#include <sys/types.h>
#include <sys/sysmacros.h>
#include <sys/param.h>
#include <sys/signal.h>
#include <sys/systm.h>
#include <sys/user.h>
#include <sys/proc.h>
#include <sys/disp.h>
#include <sys/class.h>
#include <sys/core.h>
#include <sys/syscall.h>
#include <sys/cpuvar.h>
#include <sys/vm.h>
#include <sys/sysinfo.h>
#include <sys/fault.h>
#include <sys/stack.h>
#include <sys/psw.h>
#include <sys/regset.h>
#include <sys/fp.h>
#include <sys/trap.h>
#include <sys/kmem.h>
#include <sys/vtrace.h>
#include <sys/cmn_err.h>
#include <sys/prsystm.h>
#include <sys/mutex_impl.h>
#include <sys/machsystm.h>
#include <sys/archsystm.h>
#include <sys/sdt.h>
#include <sys/avintr.h>
#include <sys/kobj.h>
#include <vm/hat.h>
#include <vm/seg_kmem.h>
#include <vm/as.h>
#include <vm/seg.h>
#include <vm/hat_pte.h>
#include <vm/hat_i86.h>
#include <sys/procfs.h>
#include <sys/reboot.h>
#include <sys/debug.h>
#include <sys/debugreg.h>
#include <sys/modctl.h>
#include <sys/aio_impl.h>
#include <sys/tnf.h>
#include <sys/tnf_probe.h>
#include <sys/cred.h>
#include <sys/mman.h>
#include <sys/x86_archext.h>
#include <sys/copyops.h>
#include <c2/audit.h>
#include <sys/ftrace.h>
#include <sys/panic.h>
#include <sys/traptrace.h>
#include <sys/ontrap.h>
#include <sys/cpc_impl.h>
#include <sys/bootconf.h>
#include <sys/bootinfo.h>
#include <sys/promif.h>
#include <sys/mach_mmu.h>
#if defined(__xpv)
#include <sys/hypervisor.h>
#endif
#include <sys/contract/process_impl.h>
#define USER 0x10000 /* user-mode flag added to trap type */
static const char *trap_type_mnemonic[] = {
"de", "db", "2", "bp",
"of", "br", "ud", "nm",
"df", "9", "ts", "np",
"ss", "gp", "pf", "15",
"mf", "ac", "mc", "xf"
};
static const char *trap_type[] = {
"Divide error", /* trap id 0 */
"Debug", /* trap id 1 */
"NMI interrupt", /* trap id 2 */
"Breakpoint", /* trap id 3 */
"Overflow", /* trap id 4 */
"BOUND range exceeded", /* trap id 5 */
"Invalid opcode", /* trap id 6 */
"Device not available", /* trap id 7 */
"Double fault", /* trap id 8 */
"Coprocessor segment overrun", /* trap id 9 */
"Invalid TSS", /* trap id 10 */
"Segment not present", /* trap id 11 */
"Stack segment fault", /* trap id 12 */
"General protection", /* trap id 13 */
"Page fault", /* trap id 14 */
"Reserved", /* trap id 15 */
"x87 floating point error", /* trap id 16 */
"Alignment check", /* trap id 17 */
"Machine check", /* trap id 18 */
"SIMD floating point exception", /* trap id 19 */
};
#define TRAP_TYPES (sizeof (trap_type) / sizeof (trap_type[0]))
#define SLOW_SCALL_SIZE 2
#define FAST_SCALL_SIZE 2
int tudebug = 0;
int tudebugbpt = 0;
int tudebugfpe = 0;
int tudebugsse = 0;
#if defined(TRAPDEBUG) || defined(lint)
int tdebug = 0;
int lodebug = 0;
int faultdebug = 0;
#else
#define tdebug 0
#define lodebug 0
#define faultdebug 0
#endif /* defined(TRAPDEBUG) || defined(lint) */
#if defined(TRAPTRACE)
/*
* trap trace record for cpu0 is allocated here.
* trap trace records for non-boot cpus are allocated in mp_startup_init().
*/
static trap_trace_rec_t trap_tr0[TRAPTR_NENT];
trap_trace_ctl_t trap_trace_ctl[NCPU] = {
{
(uintptr_t)trap_tr0, /* next record */
(uintptr_t)trap_tr0, /* first record */
(uintptr_t)(trap_tr0 + TRAPTR_NENT), /* limit */
(uintptr_t)0 /* current */
},
};
/*
* default trap buffer size
*/
size_t trap_trace_bufsize = TRAPTR_NENT * sizeof (trap_trace_rec_t);
int trap_trace_freeze = 0;
int trap_trace_off = 0;
/*
* A dummy TRAPTRACE entry to use after death.
*/
trap_trace_rec_t trap_trace_postmort;
static void dump_ttrace(void);
#endif /* TRAPTRACE */
static void dumpregs(struct regs *);
static void showregs(uint_t, struct regs *, caddr_t);
static int kern_gpfault(struct regs *);
/*ARGSUSED*/
static int
die(uint_t type, struct regs *rp, caddr_t addr, processorid_t cpuid)
{
struct panic_trap_info ti;
const char *trap_name, *trap_mnemonic;
if (type < TRAP_TYPES) {
trap_name = trap_type[type];
trap_mnemonic = trap_type_mnemonic[type];
} else {
trap_name = "trap";
trap_mnemonic = "-";
}
#ifdef TRAPTRACE
TRAPTRACE_FREEZE;
#endif
ti.trap_regs = rp;
ti.trap_type = type & ~USER;
ti.trap_addr = addr;
curthread->t_panic_trap = &ti;
if (type == T_PGFLT && addr < (caddr_t)kernelbase) {
panic("BAD TRAP: type=%x (#%s %s) rp=%p addr=%p "
"occurred in module \"%s\" due to %s",
type, trap_mnemonic, trap_name, (void *)rp, (void *)addr,
mod_containing_pc((caddr_t)rp->r_pc),
addr < (caddr_t)PAGESIZE ?
"a NULL pointer dereference" :
"an illegal access to a user address");
} else
panic("BAD TRAP: type=%x (#%s %s) rp=%p addr=%p",
type, trap_mnemonic, trap_name, (void *)rp, (void *)addr);
return (0);
}
/*
* Rewrite the instruction at pc to be an int $T_SYSCALLINT instruction.
*
* int <vector> is two bytes: 0xCD <vector>
*/
static int
rewrite_syscall(caddr_t pc)
{
uchar_t instr[SLOW_SCALL_SIZE] = { 0xCD, T_SYSCALLINT };
if (uwrite(curthread->t_procp, instr, SLOW_SCALL_SIZE,
(uintptr_t)pc) != 0)
return (1);
return (0);
}
/*
* Test to see if the instruction at pc is sysenter or syscall. The second
* argument should be the x86 feature flag corresponding to the expected
* instruction.
*
* sysenter is two bytes: 0x0F 0x34
* syscall is two bytes: 0x0F 0x05
* int $T_SYSCALLINT is two bytes: 0xCD 0x91
*/
static int
instr_is_other_syscall(caddr_t pc, int which)
{
uchar_t instr[FAST_SCALL_SIZE];
ASSERT(which == X86FSET_SEP || which == X86FSET_ASYSC || which == 0xCD);
if (copyin_nowatch(pc, (caddr_t)instr, FAST_SCALL_SIZE) != 0)
return (0);
switch (which) {
case X86FSET_SEP:
if (instr[0] == 0x0F && instr[1] == 0x34)
return (1);
break;
case X86FSET_ASYSC:
if (instr[0] == 0x0F && instr[1] == 0x05)
return (1);
break;
case 0xCD:
if (instr[0] == 0xCD && instr[1] == T_SYSCALLINT)
return (1);
break;
}
return (0);
}
static const char *
syscall_insn_string(int syscall_insn)
{
switch (syscall_insn) {
case X86FSET_SEP:
return ("sysenter");
case X86FSET_ASYSC:
return ("syscall");
case 0xCD:
return ("int");
default:
return ("Unknown");
}
}
static int
ldt_rewrite_syscall(struct regs *rp, proc_t *p, int syscall_insn)
{
caddr_t linearpc;
int return_code = 0;
mutex_enter(&p->p_ldtlock); /* Must be held across linear_pc() */
if (linear_pc(rp, p, &linearpc) == 0) {
/*
* If another thread beat us here, it already changed
* this site to the slower (int) syscall instruction.
*/
if (instr_is_other_syscall(linearpc, 0xCD)) {
return_code = 1;
} else if (instr_is_other_syscall(linearpc, syscall_insn)) {
if (rewrite_syscall(linearpc) == 0) {
return_code = 1;
}
#ifdef DEBUG
else
cmn_err(CE_WARN, "failed to rewrite %s "
"instruction in process %d",
syscall_insn_string(syscall_insn),
p->p_pid);
#endif /* DEBUG */
}
}
mutex_exit(&p->p_ldtlock); /* Must be held across linear_pc() */
return (return_code);
}
/*
* Test to see if the instruction at pc is a system call instruction.
*
* The bytes of an lcall instruction used for the syscall trap.
* static uchar_t lcall[7] = { 0x9a, 0, 0, 0, 0, 0x7, 0 };
* static uchar_t lcallalt[7] = { 0x9a, 0, 0, 0, 0, 0x27, 0 };
*/
#define LCALLSIZE 7
static int
instr_is_lcall_syscall(caddr_t pc)
{
uchar_t instr[LCALLSIZE];
if (copyin_nowatch(pc, (caddr_t)instr, LCALLSIZE) == 0 &&
instr[0] == 0x9a &&
instr[1] == 0 &&
instr[2] == 0 &&
instr[3] == 0 &&
instr[4] == 0 &&
(instr[5] == 0x7 || instr[5] == 0x27) &&
instr[6] == 0)
return (1);
return (0);
}
#ifdef __amd64
/*
* In the first revisions of amd64 CPUs produced by AMD, the LAHF and
* SAHF instructions were not implemented in 64-bit mode. Later revisions
* did implement these instructions. An extension to the cpuid instruction
* was added to check for the capability of executing these instructions
* in 64-bit mode.
*
* Intel originally did not implement these instructions in EM64T either,
* but added them in later revisions.
*
* So, there are different chip revisions by both vendors out there that
* may or may not implement these instructions. The easy solution is to
* just always emulate these instructions on demand.
*
* SAHF == store %ah in the lower 8 bits of %rflags (opcode 0x9e)
* LAHF == load the lower 8 bits of %rflags into %ah (opcode 0x9f)
*/
#define LSAHFSIZE 1
static int
instr_is_lsahf(caddr_t pc, uchar_t *instr)
{
if (copyin_nowatch(pc, (caddr_t)instr, LSAHFSIZE) == 0 &&
(*instr == 0x9e || *instr == 0x9f))
return (1);
return (0);
}
/*
* Emulate the LAHF and SAHF instructions. The reference manuals define
* these instructions to always load/store bit 1 as a 1, and bits 3 and 5
* as a 0. The other, defined, bits are copied (the PS_ICC bits and PS_P).
*
* Note that %ah is bits 8-15 of %rax.
*/
static void
emulate_lsahf(struct regs *rp, uchar_t instr)
{
if (instr == 0x9e) {
/* sahf. Copy bits from %ah to flags. */
rp->r_ps = (rp->r_ps & ~0xff) |
((rp->r_rax >> 8) & PSL_LSAHFMASK) | PS_MB1;
} else {
/* lahf. Copy bits from flags to %ah. */
rp->r_rax = (rp->r_rax & ~0xff00) |
(((rp->r_ps & PSL_LSAHFMASK) | PS_MB1) << 8);
}
rp->r_pc += LSAHFSIZE;
}
#endif /* __amd64 */
#ifdef OPTERON_ERRATUM_91
/*
* Test to see if the instruction at pc is a prefetch instruction.
*
* The first byte of prefetch instructions is always 0x0F.
* The second byte is 0x18 for regular prefetch or 0x0D for AMD 3dnow prefetch.
* The third byte (ModRM) contains the register field bits (bits 3-5).
* These bits must be between 0 and 3 inclusive for regular prefetch and
* 0 and 1 inclusive for AMD 3dnow prefetch.
*
* In 64-bit mode, there may be a one-byte REX prefex (0x40-0x4F).
*/
static int
cmp_to_prefetch(uchar_t *p)
{
#ifdef _LP64
if ((p[0] & 0xF0) == 0x40) /* 64-bit REX prefix */
p++;
#endif
return ((p[0] == 0x0F && p[1] == 0x18 && ((p[2] >> 3) & 7) <= 3) ||
(p[0] == 0x0F && p[1] == 0x0D && ((p[2] >> 3) & 7) <= 1));
}
static int
instr_is_prefetch(caddr_t pc)
{
uchar_t instr[4]; /* optional REX prefix plus 3-byte opcode */
return (copyin_nowatch(pc, instr, sizeof (instr)) == 0 &&
cmp_to_prefetch(instr));
}
#endif /* OPTERON_ERRATUM_91 */
/*
* Called from the trap handler when a processor trap occurs.
*
* Note: All user-level traps that might call stop() must exit
* trap() by 'goto out' or by falling through.
* Note Also: trap() is usually called with interrupts enabled, (PS_IE == 1)
* however, there are paths that arrive here with PS_IE == 0 so special care
* must be taken in those cases.
*/
void
trap(struct regs *rp, caddr_t addr, processorid_t cpuid)
{
kthread_t *ct = curthread;
enum seg_rw rw;
unsigned type;
proc_t *p = ttoproc(ct);
klwp_t *lwp = ttolwp(ct);
uintptr_t lofault;
label_t *onfault;
faultcode_t pagefault(), res, errcode;
enum fault_type fault_type;
k_siginfo_t siginfo;
uint_t fault = 0;
int mstate;
int sicode = 0;
int watchcode;
int watchpage;
caddr_t vaddr;
size_t sz;
int ta;
#ifdef __amd64
uchar_t instr;
#endif
ASSERT_STACK_ALIGNED();
errcode = 0;
mstate = 0;
rw = S_OTHER;
type = rp->r_trapno;
CPU_STATS_ADDQ(CPU, sys, trap, 1);
ASSERT(ct->t_schedflag & TS_DONT_SWAP);
if (type == T_PGFLT) {
errcode = rp->r_err;
if (errcode & PF_ERR_WRITE)
rw = S_WRITE;
else if ((caddr_t)rp->r_pc == addr ||
(mmu.pt_nx != 0 && (errcode & PF_ERR_EXEC)))
rw = S_EXEC;
else
rw = S_READ;
#if defined(__i386)
/*
* Pentium Pro work-around
*/
if ((errcode & PF_ERR_PROT) && pentiumpro_bug4046376) {
uint_t attr;
uint_t priv_violation;
uint_t access_violation;
if (hat_getattr(addr < (caddr_t)kernelbase ?
curproc->p_as->a_hat : kas.a_hat, addr, &attr)
== -1) {
errcode &= ~PF_ERR_PROT;
} else {
priv_violation = (errcode & PF_ERR_USER) &&
!(attr & PROT_USER);
access_violation = (errcode & PF_ERR_WRITE) &&
!(attr & PROT_WRITE);
if (!priv_violation && !access_violation)
goto cleanup;
}
}
#endif /* __i386 */
} else if (type == T_SGLSTP && lwp != NULL)
lwp->lwp_pcb.pcb_drstat = (uintptr_t)addr;
if (tdebug)
showregs(type, rp, addr);
if (USERMODE(rp->r_cs)) {
/*
* Set up the current cred to use during this trap. u_cred
* no longer exists. t_cred is used instead.
* The current process credential applies to the thread for
* the entire trap. If trapping from the kernel, this
* should already be set up.
*/
if (ct->t_cred != p->p_cred) {
cred_t *oldcred = ct->t_cred;
/*
* DTrace accesses t_cred in probe context. t_cred
* must always be either NULL, or point to a valid,
* allocated cred structure.
*/
ct->t_cred = crgetcred();
crfree(oldcred);
}
ASSERT(lwp != NULL);
type |= USER;
ASSERT(lwptoregs(lwp) == rp);
lwp->lwp_state = LWP_SYS;
switch (type) {
case T_PGFLT + USER:
if ((caddr_t)rp->r_pc == addr)
mstate = LMS_TFAULT;
else
mstate = LMS_DFAULT;
break;
default:
mstate = LMS_TRAP;
break;
}
/* Kernel probe */
TNF_PROBE_1(thread_state, "thread", /* CSTYLED */,
tnf_microstate, state, mstate);
mstate = new_mstate(ct, mstate);
bzero(&siginfo, sizeof (siginfo));
}
switch (type) {
case T_PGFLT + USER:
case T_SGLSTP:
case T_SGLSTP + USER:
case T_BPTFLT + USER:
break;
default:
FTRACE_2("trap(): type=0x%lx, regs=0x%lx",
(ulong_t)type, (ulong_t)rp);
break;
}
switch (type) {
case T_SIMDFPE:
/* Make sure we enable interrupts before die()ing */
sti(); /* The SIMD exception comes in via cmninttrap */
/*FALLTHROUGH*/
default:
if (type & USER) {
if (tudebug)
showregs(type, rp, (caddr_t)0);
printf("trap: Unknown trap type %d in user mode\n",
type & ~USER);
siginfo.si_signo = SIGILL;
siginfo.si_code = ILL_ILLTRP;
siginfo.si_addr = (caddr_t)rp->r_pc;
siginfo.si_trapno = type & ~USER;
fault = FLTILL;
} else {
(void) die(type, rp, addr, cpuid);
/*NOTREACHED*/
}
break;
case T_PGFLT: /* system page fault */
/*
* If we're under on_trap() protection (see <sys/ontrap.h>),
* set ot_trap and bounce back to the on_trap() call site
* via the installed trampoline.
*/
if ((ct->t_ontrap != NULL) &&
(ct->t_ontrap->ot_prot & OT_DATA_ACCESS)) {
ct->t_ontrap->ot_trap |= OT_DATA_ACCESS;
rp->r_pc = ct->t_ontrap->ot_trampoline;
goto cleanup;
}
/*
* If we have an Instruction fault in kernel mode, then that
* means we've tried to execute a user page (SMEP) or both of
* PAE and NXE are enabled. In either case, given that it's a
* kernel fault, we should panic immediately and not try to make
* any more forward progress. This indicates a bug in the
* kernel, which if execution continued, could be exploited to
* wreak havoc on the system.
*/
if (errcode & PF_ERR_EXEC) {
(void) die(type, rp, addr, cpuid);
}
/*
* We need to check if SMAP is in play. If SMAP is in play, then
* any access to a user page will show up as a protection
* violation. To see if SMAP is enabled we first check if it's a
* user address and whether we have the feature flag set. If we
* do and the interrupted registers do not allow for user
* accesses (PS_ACHK is not enabled), then we need to die
* immediately.
*/
if (addr < (caddr_t)kernelbase &&
is_x86_feature(x86_featureset, X86FSET_SMAP) == B_TRUE &&
(rp->r_ps & PS_ACHK) == 0) {
(void) die(type, rp, addr, cpuid);
}
/*
* See if we can handle as pagefault. Save lofault and onfault
* across this. Here we assume that an address less than
* KERNELBASE is a user fault. We can do this as copy.s
* routines verify that the starting address is less than
* KERNELBASE before starting and because we know that we
* always have KERNELBASE mapped as invalid to serve as a
* "barrier".
*/
lofault = ct->t_lofault;
onfault = ct->t_onfault;
ct->t_lofault = 0;
mstate = new_mstate(ct, LMS_KFAULT);
if (addr < (caddr_t)kernelbase) {
res = pagefault(addr,
(errcode & PF_ERR_PROT)? F_PROT: F_INVAL, rw, 0);
if (res == FC_NOMAP &&
addr < p->p_usrstack &&
grow(addr))
res = 0;
} else {
res = pagefault(addr,
(errcode & PF_ERR_PROT)? F_PROT: F_INVAL, rw, 1);
}
(void) new_mstate(ct, mstate);
/*
* Restore lofault and onfault. If we resolved the fault, exit.
* If we didn't and lofault wasn't set, die.
*/
ct->t_lofault = lofault;
ct->t_onfault = onfault;
if (res == 0)
goto cleanup;
#if defined(OPTERON_ERRATUM_93) && defined(_LP64)
if (lofault == 0 && opteron_erratum_93) {
/*
* Workaround for Opteron Erratum 93. On return from
* a System Managment Interrupt at a HLT instruction
* the %rip might be truncated to a 32 bit value.
* BIOS is supposed to fix this, but some don't.
* If this occurs we simply restore the high order bits.
* The HLT instruction is 1 byte of 0xf4.
*/
uintptr_t rip = rp->r_pc;
if ((rip & 0xfffffffful) == rip) {
rip |= 0xfffffffful << 32;
if (hat_getpfnum(kas.a_hat, (caddr_t)rip) !=
PFN_INVALID &&
(*(uchar_t *)rip == 0xf4 ||
*(uchar_t *)(rip - 1) == 0xf4)) {
rp->r_pc = rip;
goto cleanup;
}
}
}
#endif /* OPTERON_ERRATUM_93 && _LP64 */
#ifdef OPTERON_ERRATUM_91
if (lofault == 0 && opteron_erratum_91) {
/*
* Workaround for Opteron Erratum 91. Prefetches may
* generate a page fault (they're not supposed to do
* that!). If this occurs we simply return back to the
* instruction.
*/
caddr_t pc = (caddr_t)rp->r_pc;
/*
* If the faulting PC is not mapped, this is a
* legitimate kernel page fault that must result in a
* panic. If the faulting PC is mapped, it could contain
* a prefetch instruction. Check for that here.
*/
if (hat_getpfnum(kas.a_hat, pc) != PFN_INVALID) {
if (cmp_to_prefetch((uchar_t *)pc)) {
#ifdef DEBUG
cmn_err(CE_WARN, "Opteron erratum 91 "
"occurred: kernel prefetch"
" at %p generated a page fault!",
(void *)rp->r_pc);
#endif /* DEBUG */
goto cleanup;
}
}
(void) die(type, rp, addr, cpuid);
}
#endif /* OPTERON_ERRATUM_91 */
if (lofault == 0)
(void) die(type, rp, addr, cpuid);
/*
* Cannot resolve fault. Return to lofault.
*/
if (lodebug) {
showregs(type, rp, addr);
traceregs(rp);
}
if (FC_CODE(res) == FC_OBJERR)
res = FC_ERRNO(res);
else
res = EFAULT;
rp->r_r0 = res;
rp->r_pc = ct->t_lofault;
goto cleanup;
case T_PGFLT + USER: /* user page fault */
if (faultdebug) {
char *fault_str;
switch (rw) {
case S_READ:
fault_str = "read";
break;
case S_WRITE:
fault_str = "write";
break;
case S_EXEC:
fault_str = "exec";
break;
default:
fault_str = "";
break;
}
printf("user %s fault: addr=0x%lx errcode=0x%x\n",
fault_str, (uintptr_t)addr, errcode);
}
#if defined(OPTERON_ERRATUM_100) && defined(_LP64)
/*
* Workaround for AMD erratum 100
*
* A 32-bit process may receive a page fault on a non
* 32-bit address by mistake. The range of the faulting
* address will be
*
* 0xffffffff80000000 .. 0xffffffffffffffff or
* 0x0000000100000000 .. 0x000000017fffffff
*
* The fault is always due to an instruction fetch, however
* the value of r_pc should be correct (in 32 bit range),
* so we ignore the page fault on the bogus address.
*/
if (p->p_model == DATAMODEL_ILP32 &&
(0xffffffff80000000 <= (uintptr_t)addr ||
(0x100000000 <= (uintptr_t)addr &&
(uintptr_t)addr <= 0x17fffffff))) {
if (!opteron_erratum_100)
panic("unexpected erratum #100");
if (rp->r_pc <= 0xffffffff)
goto out;
}
#endif /* OPTERON_ERRATUM_100 && _LP64 */
ASSERT(!(curthread->t_flag & T_WATCHPT));
watchpage = (pr_watch_active(p) && pr_is_watchpage(addr, rw));
#ifdef __i386
/*
* In 32-bit mode, the lcall (system call) instruction fetches
* one word from the stack, at the stack pointer, because of the
* way the call gate is constructed. This is a bogus
* read and should not be counted as a read watchpoint.
* We work around the problem here by testing to see if
* this situation applies and, if so, simply jumping to
* the code in locore.s that fields the system call trap.
* The registers on the stack are already set up properly
* due to the match between the call gate sequence and the
* trap gate sequence. We just have to adjust the pc.
*/
if (watchpage && addr == (caddr_t)rp->r_sp &&
rw == S_READ && instr_is_lcall_syscall((caddr_t)rp->r_pc)) {
extern void watch_syscall(void);
rp->r_pc += LCALLSIZE;
watch_syscall(); /* never returns */
/* NOTREACHED */
}
#endif /* __i386 */
vaddr = addr;
if (!watchpage || (sz = instr_size(rp, &vaddr, rw)) <= 0)
fault_type = (errcode & PF_ERR_PROT)? F_PROT: F_INVAL;
else if ((watchcode = pr_is_watchpoint(&vaddr, &ta,
sz, NULL, rw)) != 0) {
if (ta) {
do_watch_step(vaddr, sz, rw,
watchcode, rp->r_pc);
fault_type = F_INVAL;
} else {
bzero(&siginfo, sizeof (siginfo));
siginfo.si_signo = SIGTRAP;
siginfo.si_code = watchcode;
siginfo.si_addr = vaddr;
siginfo.si_trapafter = 0;
siginfo.si_pc = (caddr_t)rp->r_pc;
fault = FLTWATCH;
break;
}
} else {
/* XXX pr_watch_emul() never succeeds (for now) */
if (rw != S_EXEC && pr_watch_emul(rp, vaddr, rw))
goto out;
do_watch_step(vaddr, sz, rw, 0, 0);
fault_type = F_INVAL;
}
res = pagefault(addr, fault_type, rw, 0);
/*
* If pagefault() succeeded, ok.
* Otherwise attempt to grow the stack.
*/
if (res == 0 ||
(res == FC_NOMAP &&
addr < p->p_usrstack &&
grow(addr))) {
lwp->lwp_lastfault = FLTPAGE;
lwp->lwp_lastfaddr = addr;
if (prismember(&p->p_fltmask, FLTPAGE)) {
bzero(&siginfo, sizeof (siginfo));
siginfo.si_addr = addr;
(void) stop_on_fault(FLTPAGE, &siginfo);
}
goto out;
} else if (res == FC_PROT && addr < p->p_usrstack &&
(mmu.pt_nx != 0 && (errcode & PF_ERR_EXEC))) {
report_stack_exec(p, addr);
}
#ifdef OPTERON_ERRATUM_91
/*
* Workaround for Opteron Erratum 91. Prefetches may generate a
* page fault (they're not supposed to do that!). If this
* occurs we simply return back to the instruction.
*
* We rely on copyin to properly fault in the page with r_pc.
*/
if (opteron_erratum_91 &&
addr != (caddr_t)rp->r_pc &&
instr_is_prefetch((caddr_t)rp->r_pc)) {
#ifdef DEBUG
cmn_err(CE_WARN, "Opteron erratum 91 occurred: "
"prefetch at %p in pid %d generated a trap!",
(void *)rp->r_pc, p->p_pid);
#endif /* DEBUG */
goto out;
}
#endif /* OPTERON_ERRATUM_91 */
if (tudebug)
showregs(type, rp, addr);
/*
* In the case where both pagefault and grow fail,
* set the code to the value provided by pagefault.
* We map all errors returned from pagefault() to SIGSEGV.
*/
bzero(&siginfo, sizeof (siginfo));
siginfo.si_addr = addr;
switch (FC_CODE(res)) {
case FC_HWERR:
case FC_NOSUPPORT:
siginfo.si_signo = SIGBUS;
siginfo.si_code = BUS_ADRERR;
fault = FLTACCESS;
break;
case FC_ALIGN:
siginfo.si_signo = SIGBUS;
siginfo.si_code = BUS_ADRALN;
fault = FLTACCESS;
break;
case FC_OBJERR:
if ((siginfo.si_errno = FC_ERRNO(res)) != EINTR) {
siginfo.si_signo = SIGBUS;
siginfo.si_code = BUS_OBJERR;
fault = FLTACCESS;
}
break;
default: /* FC_NOMAP or FC_PROT */
siginfo.si_signo = SIGSEGV;
siginfo.si_code =
(res == FC_NOMAP)? SEGV_MAPERR : SEGV_ACCERR;
fault = FLTBOUNDS;
break;
}
break;
case T_ILLINST + USER: /* invalid opcode fault */
/*
* If the syscall instruction is disabled due to LDT usage, a
* user program that attempts to execute it will trigger a #ud
* trap. Check for that case here. If this occurs on a CPU which
* doesn't even support syscall, the result of all of this will
* be to emulate that particular instruction.
*/
if (p->p_ldt != NULL &&
ldt_rewrite_syscall(rp, p, X86FSET_ASYSC))
goto out;
#ifdef __amd64
/*
* Emulate the LAHF and SAHF instructions if needed.
* See the instr_is_lsahf function for details.
*/
if (p->p_model == DATAMODEL_LP64 &&
instr_is_lsahf((caddr_t)rp->r_pc, &instr)) {
emulate_lsahf(rp, instr);
goto out;
}
#endif
/*FALLTHROUGH*/
if (tudebug)
showregs(type, rp, (caddr_t)0);
siginfo.si_signo = SIGILL;
siginfo.si_code = ILL_ILLOPC;
siginfo.si_addr = (caddr_t)rp->r_pc;
fault = FLTILL;
break;
case T_ZERODIV + USER: /* integer divide by zero */
if (tudebug && tudebugfpe)
showregs(type, rp, (caddr_t)0);
siginfo.si_signo = SIGFPE;
siginfo.si_code = FPE_INTDIV;
siginfo.si_addr = (caddr_t)rp->r_pc;
fault = FLTIZDIV;
break;
case T_OVFLW + USER: /* integer overflow */
if (tudebug && tudebugfpe)
showregs(type, rp, (caddr_t)0);
siginfo.si_signo = SIGFPE;
siginfo.si_code = FPE_INTOVF;
siginfo.si_addr = (caddr_t)rp->r_pc;
fault = FLTIOVF;
break;
/*
* When using an eager FPU on x86, the #NM trap is no longer meaningful.
* Userland should not be able to trigger it. Anything that does
* represents a fatal error in the kernel and likely in the register
* state of the system. User FPU state should always be valid.
*/
case T_NOEXTFLT + USER: /* math coprocessor not available */
case T_NOEXTFLT:
(void) die(type, rp, addr, cpuid);
break;
/*
* Kernel threads leveraging floating point need to mask the exceptions
* or ensure that they cannot happen. There is no recovery from this.
*/
case T_EXTERRFLT: /* x87 floating point exception pending */
sti(); /* T_EXTERRFLT comes in via cmninttrap */
(void) die(type, rp, addr, cpuid);
break;
case T_EXTERRFLT + USER: /* x87 floating point exception pending */
if (tudebug && tudebugfpe)
showregs(type, rp, addr);
if (sicode = fpexterrflt(rp)) {
siginfo.si_signo = SIGFPE;
siginfo.si_code = sicode;
siginfo.si_addr = (caddr_t)rp->r_pc;
fault = FLTFPE;
}
break;
case T_SIMDFPE + USER: /* SSE and SSE2 exceptions */
if (tudebug && tudebugsse)
showregs(type, rp, addr);
if (!is_x86_feature(x86_featureset, X86FSET_SSE) &&
!is_x86_feature(x86_featureset, X86FSET_SSE2)) {
/*
* There are rumours that some user instructions
* on older CPUs can cause this trap to occur; in
* which case send a SIGILL instead of a SIGFPE.
*/
siginfo.si_signo = SIGILL;
siginfo.si_code = ILL_ILLTRP;
siginfo.si_addr = (caddr_t)rp->r_pc;
siginfo.si_trapno = type & ~USER;
fault = FLTILL;
} else if ((sicode = fpsimderrflt(rp)) != 0) {
siginfo.si_signo = SIGFPE;
siginfo.si_code = sicode;
siginfo.si_addr = (caddr_t)rp->r_pc;
fault = FLTFPE;
}
sti(); /* The SIMD exception comes in via cmninttrap */
break;
case T_BPTFLT: /* breakpoint trap */
/*
* Kernel breakpoint traps should only happen when kmdb is
* active, and even then, it'll have interposed on the IDT, so
* control won't get here. If it does, we've hit a breakpoint
* without the debugger, which is very strange, and very
* fatal.
*/
if (tudebug && tudebugbpt)
showregs(type, rp, (caddr_t)0);
(void) die(type, rp, addr, cpuid);
break;
case T_SGLSTP: /* single step/hw breakpoint exception */
#if !defined(__xpv)
/*
* We'd never normally get here, as kmdb handles its own single
* step traps. There is one nasty exception though, as
* described in more detail in sys_sysenter(). Note that
* checking for all four locations covers both the KPTI and the
* non-KPTI cases correctly: the former will never be found at
* (brand_)sys_sysenter, and vice versa.
*/
if (lwp != NULL && (lwp->lwp_pcb.pcb_drstat & DR_SINGLESTEP)) {
if (rp->r_pc == (greg_t)brand_sys_sysenter ||
rp->r_pc == (greg_t)sys_sysenter ||
rp->r_pc == (greg_t)tr_brand_sys_sysenter ||
rp->r_pc == (greg_t)tr_sys_sysenter) {
rp->r_pc += 0x3; /* sizeof (swapgs) */
rp->r_ps &= ~PS_T; /* turn off trace */
lwp->lwp_pcb.pcb_flags |= DEBUG_PENDING;
ct->t_post_sys = 1;
aston(curthread);
goto cleanup;
} else {
if (tudebug && tudebugbpt)
showregs(type, rp, (caddr_t)0);
}
}
#endif /* !__xpv */
if (boothowto & RB_DEBUG)
debug_enter((char *)NULL);
else
(void) die(type, rp, addr, cpuid);
break;
case T_NMIFLT: /* NMI interrupt */
printf("Unexpected NMI in system mode\n");
goto cleanup;
case T_NMIFLT + USER: /* NMI interrupt */
printf("Unexpected NMI in user mode\n");
break;
case T_GPFLT: /* general protection violation */
/*
* Any #GP that occurs during an on_trap .. no_trap bracket
* with OT_DATA_ACCESS or OT_SEGMENT_ACCESS protection,
* or in a on_fault .. no_fault bracket, is forgiven
* and we trampoline. This protection is given regardless
* of whether we are 32/64 bit etc - if a distinction is
* required then define new on_trap protection types.
*
* On amd64, we can get a #gp from referencing addresses
* in the virtual address hole e.g. from a copyin or in
* update_sregs while updating user segment registers.
*
* On the 32-bit hypervisor we could also generate one in
* mfn_to_pfn by reaching around or into where the hypervisor
* lives which is protected by segmentation.
*/
/*
* If we're under on_trap() protection (see <sys/ontrap.h>),
* set ot_trap and trampoline back to the on_trap() call site
* for OT_DATA_ACCESS or OT_SEGMENT_ACCESS.
*/
if (ct->t_ontrap != NULL) {
int ttype = ct->t_ontrap->ot_prot &
(OT_DATA_ACCESS | OT_SEGMENT_ACCESS);
if (ttype != 0) {
ct->t_ontrap->ot_trap |= ttype;
if (tudebug)
showregs(type, rp, (caddr_t)0);
rp->r_pc = ct->t_ontrap->ot_trampoline;
goto cleanup;
}
}
/*
* If we're under lofault protection (copyin etc.),
* longjmp back to lofault with an EFAULT.
*/
if (ct->t_lofault) {
/*
* Fault is not resolvable, so just return to lofault
*/
if (lodebug) {
showregs(type, rp, addr);
traceregs(rp);
}
rp->r_r0 = EFAULT;
rp->r_pc = ct->t_lofault;
goto cleanup;
}
/*
* We fall through to the next case, which repeats
* the OT_SEGMENT_ACCESS check which we've already
* done, so we'll always fall through to the
* T_STKFLT case.
*/
/*FALLTHROUGH*/
case T_SEGFLT: /* segment not present fault */
/*
* One example of this is #NP in update_sregs while
* attempting to update a user segment register
* that points to a descriptor that is marked not
* present.
*/
if (ct->t_ontrap != NULL &&
ct->t_ontrap->ot_prot & OT_SEGMENT_ACCESS) {
ct->t_ontrap->ot_trap |= OT_SEGMENT_ACCESS;
if (tudebug)
showregs(type, rp, (caddr_t)0);
rp->r_pc = ct->t_ontrap->ot_trampoline;
goto cleanup;
}
/*FALLTHROUGH*/
case T_STKFLT: /* stack fault */
case T_TSSFLT: /* invalid TSS fault */
if (tudebug)
showregs(type, rp, (caddr_t)0);
if (kern_gpfault(rp))
(void) die(type, rp, addr, cpuid);
goto cleanup;
/*
* ONLY 32-bit PROCESSES can USE a PRIVATE LDT! 64-bit apps
* should have no need for them, so we put a stop to it here.
*
* So: not-present fault is ONLY valid for 32-bit processes with
* a private LDT trying to do a system call. Emulate it.
*
* #gp fault is ONLY valid for 32-bit processes also, which DO NOT
* have a private LDT, and are trying to do a system call. Emulate it.
*/
case T_SEGFLT + USER: /* segment not present fault */
case T_GPFLT + USER: /* general protection violation */
#ifdef _SYSCALL32_IMPL
if (p->p_model != DATAMODEL_NATIVE) {
#endif /* _SYSCALL32_IMPL */
if (instr_is_lcall_syscall((caddr_t)rp->r_pc)) {
if (type == T_SEGFLT + USER)
ASSERT(p->p_ldt != NULL);
if ((p->p_ldt == NULL && type == T_GPFLT + USER) ||
type == T_SEGFLT + USER) {
/*
* The user attempted a system call via the obsolete
* call gate mechanism. Because the process doesn't have
* an LDT (i.e. the ldtr contains 0), a #gp results.
* Emulate the syscall here, just as we do above for a
* #np trap.
*/
/*
* Since this is a not-present trap, rp->r_pc points to
* the trapping lcall instruction. We need to bump it
* to the next insn so the app can continue on.
*/
rp->r_pc += LCALLSIZE;
lwp->lwp_regs = rp;
/*
* Normally the microstate of the LWP is forced back to
* LMS_USER by the syscall handlers. Emulate that
* behavior here.
*/
mstate = LMS_USER;
dosyscall();
goto out;
}
}
#ifdef _SYSCALL32_IMPL
}
#endif /* _SYSCALL32_IMPL */
/*
* If the current process is using a private LDT and the
* trapping instruction is sysenter, the sysenter instruction
* has been disabled on the CPU because it destroys segment
* registers. If this is the case, rewrite the instruction to
* be a safe system call and retry it. If this occurs on a CPU
* which doesn't even support sysenter, the result of all of
* this will be to emulate that particular instruction.
*/
if (p->p_ldt != NULL &&
ldt_rewrite_syscall(rp, p, X86FSET_SEP))
goto out;
/*FALLTHROUGH*/
case T_BOUNDFLT + USER: /* bound fault */
case T_STKFLT + USER: /* stack fault */
case T_TSSFLT + USER: /* invalid TSS fault */
if (tudebug)
showregs(type, rp, (caddr_t)0);
siginfo.si_signo = SIGSEGV;
siginfo.si_code = SEGV_MAPERR;
siginfo.si_addr = (caddr_t)rp->r_pc;
fault = FLTBOUNDS;
break;
case T_ALIGNMENT + USER: /* user alignment error (486) */
if (tudebug)
showregs(type, rp, (caddr_t)0);
bzero(&siginfo, sizeof (siginfo));
siginfo.si_signo = SIGBUS;
siginfo.si_code = BUS_ADRALN;
siginfo.si_addr = (caddr_t)rp->r_pc;
fault = FLTACCESS;
break;
case T_SGLSTP + USER: /* single step/hw breakpoint exception */
if (tudebug && tudebugbpt)
showregs(type, rp, (caddr_t)0);
/* Was it single-stepping? */
if (lwp->lwp_pcb.pcb_drstat & DR_SINGLESTEP) {
pcb_t *pcb = &lwp->lwp_pcb;
rp->r_ps &= ~PS_T;
/*
* If both NORMAL_STEP and WATCH_STEP are in effect,
* give precedence to WATCH_STEP. If neither is set,
* user must have set the PS_T bit in %efl; treat this
* as NORMAL_STEP.
*/
if ((fault = undo_watch_step(&siginfo)) == 0 &&
((pcb->pcb_flags & NORMAL_STEP) ||
!(pcb->pcb_flags & WATCH_STEP))) {
siginfo.si_signo = SIGTRAP;
siginfo.si_code = TRAP_TRACE;
siginfo.si_addr = (caddr_t)rp->r_pc;
fault = FLTTRACE;
}
pcb->pcb_flags &= ~(NORMAL_STEP|WATCH_STEP);
}
break;
case T_BPTFLT + USER: /* breakpoint trap */
if (tudebug && tudebugbpt)
showregs(type, rp, (caddr_t)0);
/*
* int 3 (the breakpoint instruction) leaves the pc referring
* to the address one byte after the breakpointed address.
* If the P_PR_BPTADJ flag has been set via /proc, We adjust
* it back so it refers to the breakpointed address.
*/
if (p->p_proc_flag & P_PR_BPTADJ)
rp->r_pc--;
siginfo.si_signo = SIGTRAP;
siginfo.si_code = TRAP_BRKPT;
siginfo.si_addr = (caddr_t)rp->r_pc;
fault = FLTBPT;
break;
case T_AST:
/*
* This occurs only after the cs register has been made to
* look like a kernel selector, either through debugging or
* possibly by functions like setcontext(). The thread is
* about to cause a general protection fault at common_iret()
* in locore. We let that happen immediately instead of
* doing the T_AST processing.
*/
goto cleanup;
case T_AST + USER: /* profiling, resched, h/w error pseudo trap */
if (lwp->lwp_pcb.pcb_flags & ASYNC_HWERR) {
proc_t *p = ttoproc(curthread);
extern void print_msg_hwerr(ctid_t ct_id, proc_t *p);
lwp->lwp_pcb.pcb_flags &= ~ASYNC_HWERR;
print_msg_hwerr(p->p_ct_process->conp_contract.ct_id,
p);
contract_process_hwerr(p->p_ct_process, p);
siginfo.si_signo = SIGKILL;
siginfo.si_code = SI_NOINFO;
} else if (lwp->lwp_pcb.pcb_flags & CPC_OVERFLOW) {
lwp->lwp_pcb.pcb_flags &= ~CPC_OVERFLOW;
if (kcpc_overflow_ast()) {
/*
* Signal performance counter overflow
*/
if (tudebug)
showregs(type, rp, (caddr_t)0);
bzero(&siginfo, sizeof (siginfo));
siginfo.si_signo = SIGEMT;
siginfo.si_code = EMT_CPCOVF;
siginfo.si_addr = (caddr_t)rp->r_pc;
fault = FLTCPCOVF;
}
}
break;
}
/*
* We can't get here from a system trap
*/
ASSERT(type & USER);
if (fault) {
/* We took a fault so abort single step. */
lwp->lwp_pcb.pcb_flags &= ~(NORMAL_STEP|WATCH_STEP);
/*
* Remember the fault and fault adddress
* for real-time (SIGPROF) profiling.
*/
lwp->lwp_lastfault = fault;
lwp->lwp_lastfaddr = siginfo.si_addr;
DTRACE_PROC2(fault, int, fault, ksiginfo_t *, &siginfo);
/*
* If a debugger has declared this fault to be an
* event of interest, stop the lwp. Otherwise just
* deliver the associated signal.
*/
if (siginfo.si_signo != SIGKILL &&
prismember(&p->p_fltmask, fault) &&
stop_on_fault(fault, &siginfo) == 0)
siginfo.si_signo = 0;
}
if (siginfo.si_signo)
trapsig(&siginfo, (fault != FLTFPE && fault != FLTCPCOVF));
if (lwp->lwp_oweupc)
profil_tick(rp->r_pc);
if (ct->t_astflag | ct->t_sig_check) {
/*
* Turn off the AST flag before checking all the conditions that
* may have caused an AST. This flag is on whenever a signal or
* unusual condition should be handled after the next trap or
* syscall.
*/
astoff(ct);
/*
* If a single-step trap occurred on a syscall (see above)
* recognize it now. Do this before checking for signals
* because deferred_singlestep_trap() may generate a SIGTRAP to
* the LWP or may otherwise mark the LWP to call issig(FORREAL).
*/
if (lwp->lwp_pcb.pcb_flags & DEBUG_PENDING)
deferred_singlestep_trap((caddr_t)rp->r_pc);
ct->t_sig_check = 0;
/*
* As in other code paths that check against TP_CHANGEBIND,
* we perform the check first without p_lock held -- only
* acquiring p_lock in the unlikely event that it is indeed
* set. This is safe because we are doing this after the
* astoff(); if we are racing another thread setting
* TP_CHANGEBIND on us, we will pick it up on a subsequent
* lap through.
*/
if (curthread->t_proc_flag & TP_CHANGEBIND) {
mutex_enter(&p->p_lock);
if (curthread->t_proc_flag & TP_CHANGEBIND) {
timer_lwpbind();
curthread->t_proc_flag &= ~TP_CHANGEBIND;
}
mutex_exit(&p->p_lock);
}
/*
* for kaio requests that are on the per-process poll queue,
* aiop->aio_pollq, they're AIO_POLL bit is set, the kernel
* should copyout their result_t to user memory. by copying
* out the result_t, the user can poll on memory waiting
* for the kaio request to complete.
*/
if (p->p_aio)
aio_cleanup(0);
/*
* If this LWP was asked to hold, call holdlwp(), which will
* stop. holdlwps() sets this up and calls pokelwps() which
* sets the AST flag.
*
* Also check TP_EXITLWP, since this is used by fresh new LWPs
* through lwp_rtt(). That flag is set if the lwp_create(2)
* syscall failed after creating the LWP.
*/
if (ISHOLD(p))
holdlwp();
/*
* All code that sets signals and makes ISSIG evaluate true must
* set t_astflag afterwards.
*/
if (ISSIG_PENDING(ct, lwp, p)) {
if (issig(FORREAL))
psig();
ct->t_sig_check = 1;
}
if (ct->t_rprof != NULL) {
realsigprof(0, 0, 0);
ct->t_sig_check = 1;
}
/*
* /proc can't enable/disable the trace bit itself
* because that could race with the call gate used by
* system calls via "lcall". If that happened, an
* invalid EFLAGS would result. prstep()/prnostep()
* therefore schedule an AST for the purpose.
*/
if (lwp->lwp_pcb.pcb_flags & REQUEST_STEP) {
lwp->lwp_pcb.pcb_flags &= ~REQUEST_STEP;
rp->r_ps |= PS_T;
}
if (lwp->lwp_pcb.pcb_flags & REQUEST_NOSTEP) {
lwp->lwp_pcb.pcb_flags &= ~REQUEST_NOSTEP;
rp->r_ps &= ~PS_T;
}
}
out: /* We can't get here from a system trap */
ASSERT(type & USER);
if (ISHOLD(p))
holdlwp();
/*
* Set state to LWP_USER here so preempt won't give us a kernel
* priority if it occurs after this point. Call CL_TRAPRET() to
* restore the user-level priority.
*
* It is important that no locks (other than spinlocks) be entered
* after this point before returning to user mode (unless lwp_state
* is set back to LWP_SYS).
*/
lwp->lwp_state = LWP_USER;
if (ct->t_trapret) {
ct->t_trapret = 0;
thread_lock(ct);
CL_TRAPRET(ct);
thread_unlock(ct);
}
if (CPU->cpu_runrun || curthread->t_schedflag & TS_ANYWAITQ)
preempt();
prunstop();
(void) new_mstate(ct, mstate);
/* Kernel probe */
TNF_PROBE_1(thread_state, "thread", /* CSTYLED */,
tnf_microstate, state, LMS_USER);
return;
cleanup: /* system traps end up here */
ASSERT(!(type & USER));
}
/*
* Patch non-zero to disable preemption of threads in the kernel.
*/
int IGNORE_KERNEL_PREEMPTION = 0; /* XXX - delete this someday */
struct kpreempt_cnts { /* kernel preemption statistics */
int kpc_idle; /* executing idle thread */
int kpc_intr; /* executing interrupt thread */
int kpc_clock; /* executing clock thread */
int kpc_blocked; /* thread has blocked preemption (t_preempt) */
int kpc_notonproc; /* thread is surrendering processor */
int kpc_inswtch; /* thread has ratified scheduling decision */
int kpc_prilevel; /* processor interrupt level is too high */
int kpc_apreempt; /* asynchronous preemption */
int kpc_spreempt; /* synchronous preemption */
} kpreempt_cnts;
/*
* kernel preemption: forced rescheduling, preempt the running kernel thread.
* the argument is old PIL for an interrupt,
* or the distingished value KPREEMPT_SYNC.
*/
void
kpreempt(int asyncspl)
{
kthread_t *ct = curthread;
if (IGNORE_KERNEL_PREEMPTION) {
aston(CPU->cpu_dispthread);
return;
}
/*
* Check that conditions are right for kernel preemption
*/
do {
if (ct->t_preempt) {
/*
* either a privileged thread (idle, panic, interrupt)
* or will check when t_preempt is lowered
* We need to specifically handle the case where
* the thread is in the middle of swtch (resume has
* been called) and has its t_preempt set
* [idle thread and a thread which is in kpreempt
* already] and then a high priority thread is
* available in the local dispatch queue.
* In this case the resumed thread needs to take a
* trap so that it can call kpreempt. We achieve
* this by using siron().
* How do we detect this condition:
* idle thread is running and is in the midst of
* resume: curthread->t_pri == -1 && CPU->dispthread
* != CPU->thread
* Need to ensure that this happens only at high pil
* resume is called at high pil
* Only in resume_from_idle is the pil changed.
*/
if (ct->t_pri < 0) {
kpreempt_cnts.kpc_idle++;
if (CPU->cpu_dispthread != CPU->cpu_thread)
siron();
} else if (ct->t_flag & T_INTR_THREAD) {
kpreempt_cnts.kpc_intr++;
if (ct->t_pil == CLOCK_LEVEL)
kpreempt_cnts.kpc_clock++;
} else {
kpreempt_cnts.kpc_blocked++;
if (CPU->cpu_dispthread != CPU->cpu_thread)
siron();
}
aston(CPU->cpu_dispthread);
return;
}
if (ct->t_state != TS_ONPROC ||
ct->t_disp_queue != CPU->cpu_disp) {
/* this thread will be calling swtch() shortly */
kpreempt_cnts.kpc_notonproc++;
if (CPU->cpu_thread != CPU->cpu_dispthread) {
/* already in swtch(), force another */
kpreempt_cnts.kpc_inswtch++;
siron();
}
return;
}
if (getpil() >= DISP_LEVEL) {
/*
* We can't preempt this thread if it is at
* a PIL >= DISP_LEVEL since it may be holding
* a spin lock (like sched_lock).
*/
siron(); /* check back later */
kpreempt_cnts.kpc_prilevel++;
return;
}
if (!interrupts_enabled()) {
/*
* Can't preempt while running with ints disabled
*/
kpreempt_cnts.kpc_prilevel++;
return;
}
if (asyncspl != KPREEMPT_SYNC)
kpreempt_cnts.kpc_apreempt++;
else
kpreempt_cnts.kpc_spreempt++;
ct->t_preempt++;
preempt();
ct->t_preempt--;
} while (CPU->cpu_kprunrun);
}
/*
* Print out debugging info.
*/
static void
showregs(uint_t type, struct regs *rp, caddr_t addr)
{
int s;
s = spl7();
type &= ~USER;
if (PTOU(curproc)->u_comm[0])
printf("%s: ", PTOU(curproc)->u_comm);
if (type < TRAP_TYPES)
printf("#%s %s\n", trap_type_mnemonic[type], trap_type[type]);
else
switch (type) {
case T_SYSCALL:
printf("Syscall Trap:\n");
break;
case T_AST:
printf("AST\n");
break;
default:
printf("Bad Trap = %d\n", type);
break;
}
if (type == T_PGFLT) {
printf("Bad %s fault at addr=0x%lx\n",
USERMODE(rp->r_cs) ? "user": "kernel", (uintptr_t)addr);
} else if (addr) {
printf("addr=0x%lx\n", (uintptr_t)addr);
}
printf("pid=%d, pc=0x%lx, sp=0x%lx, eflags=0x%lx\n",
(ttoproc(curthread) && ttoproc(curthread)->p_pidp) ?
ttoproc(curthread)->p_pid : 0, rp->r_pc, rp->r_sp, rp->r_ps);
#if defined(__lint)
/*
* this clause can be deleted when lint bug 4870403 is fixed
* (lint thinks that bit 32 is illegal in a %b format string)
*/
printf("cr0: %x cr4: %b\n",
(uint_t)getcr0(), (uint_t)getcr4(), FMT_CR4);
#else
printf("cr0: %b cr4: %b\n",
(uint_t)getcr0(), FMT_CR0, (uint_t)getcr4(), FMT_CR4);
#endif /* __lint */
printf("cr2: %lx ", getcr2());
#if !defined(__xpv)
printf("cr3: %lx ", getcr3());
#if defined(__amd64)
printf("cr8: %lx\n", getcr8());
#endif
#endif
printf("\n");
dumpregs(rp);
splx(s);
}
static void
dumpregs(struct regs *rp)
{
#if defined(__amd64)
const char fmt[] = "\t%3s: %16lx %3s: %16lx %3s: %16lx\n";
printf(fmt, "rdi", rp->r_rdi, "rsi", rp->r_rsi, "rdx", rp->r_rdx);
printf(fmt, "rcx", rp->r_rcx, " r8", rp->r_r8, " r9", rp->r_r9);
printf(fmt, "rax", rp->r_rax, "rbx", rp->r_rbx, "rbp", rp->r_rbp);
printf(fmt, "r10", rp->r_r10, "r11", rp->r_r11, "r12", rp->r_r12);
printf(fmt, "r13", rp->r_r13, "r14", rp->r_r14, "r15", rp->r_r15);
printf(fmt, "fsb", rdmsr(MSR_AMD_FSBASE), "gsb", rdmsr(MSR_AMD_GSBASE),
" ds", rp->r_ds);
printf(fmt, " es", rp->r_es, " fs", rp->r_fs, " gs", rp->r_gs);
printf(fmt, "trp", rp->r_trapno, "err", rp->r_err, "rip", rp->r_rip);
printf(fmt, " cs", rp->r_cs, "rfl", rp->r_rfl, "rsp", rp->r_rsp);
printf("\t%3s: %16lx\n", " ss", rp->r_ss);
#elif defined(__i386)
const char fmt[] = "\t%3s: %8lx %3s: %8lx %3s: %8lx %3s: %8lx\n";
printf(fmt, " gs", rp->r_gs, " fs", rp->r_fs,
" es", rp->r_es, " ds", rp->r_ds);
printf(fmt, "edi", rp->r_edi, "esi", rp->r_esi,
"ebp", rp->r_ebp, "esp", rp->r_esp);
printf(fmt, "ebx", rp->r_ebx, "edx", rp->r_edx,
"ecx", rp->r_ecx, "eax", rp->r_eax);
printf(fmt, "trp", rp->r_trapno, "err", rp->r_err,
"eip", rp->r_eip, " cs", rp->r_cs);
printf("\t%3s: %8lx %3s: %8lx %3s: %8lx\n",
"efl", rp->r_efl, "usp", rp->r_uesp, " ss", rp->r_ss);
#endif /* __i386 */
}
/*
* Test to see if the instruction is iret on i386 or iretq on amd64.
*
* On the hypervisor we can only test for nopop_sys_rtt_syscall. If true
* then we are in the context of hypervisor's failsafe handler because it
* tried to iret and failed due to a bad selector. See xen_failsafe_callback.
*/
static int
instr_is_iret(caddr_t pc)
{
#if defined(__xpv)
extern void nopop_sys_rtt_syscall(void);
return ((pc == (caddr_t)nopop_sys_rtt_syscall) ? 1 : 0);
#else
#if defined(__amd64)
static const uint8_t iret_insn[2] = { 0x48, 0xcf }; /* iretq */
#elif defined(__i386)
static const uint8_t iret_insn[1] = { 0xcf }; /* iret */
#endif /* __i386 */
return (bcmp(pc, iret_insn, sizeof (iret_insn)) == 0);
#endif /* __xpv */
}
#if defined(__i386)
/*
* Test to see if the instruction is part of __SEGREGS_POP
*
* Note carefully the appallingly awful dependency between
* the instruction sequence used in __SEGREGS_POP and these
* instructions encoded here.
*/
static int
instr_is_segregs_pop(caddr_t pc)
{
static const uint8_t movw_0_esp_gs[4] = { 0x8e, 0x6c, 0x24, 0x0 };
static const uint8_t movw_4_esp_fs[4] = { 0x8e, 0x64, 0x24, 0x4 };
static const uint8_t movw_8_esp_es[4] = { 0x8e, 0x44, 0x24, 0x8 };
static const uint8_t movw_c_esp_ds[4] = { 0x8e, 0x5c, 0x24, 0xc };
if (bcmp(pc, movw_0_esp_gs, sizeof (movw_0_esp_gs)) == 0 ||
bcmp(pc, movw_4_esp_fs, sizeof (movw_4_esp_fs)) == 0 ||
bcmp(pc, movw_8_esp_es, sizeof (movw_8_esp_es)) == 0 ||
bcmp(pc, movw_c_esp_ds, sizeof (movw_c_esp_ds)) == 0)
return (1);
return (0);
}
#endif /* __i386 */
/*
* Test to see if the instruction is part of _sys_rtt (or the KPTI trampolines
* which are used by _sys_rtt).
*
* Again on the hypervisor if we try to IRET to user land with a bad code
* or stack selector we will get vectored through xen_failsafe_callback.
* In which case we assume we got here via _sys_rtt since we only allow
* IRET to user land to take place in _sys_rtt.
*/
static int
instr_is_sys_rtt(caddr_t pc)
{
extern void _sys_rtt(), _sys_rtt_end();
#if !defined(__xpv)
extern void tr_sysc_ret_start(), tr_sysc_ret_end();
extern void tr_intr_ret_start(), tr_intr_ret_end();
if ((uintptr_t)pc >= (uintptr_t)tr_sysc_ret_start &&
(uintptr_t)pc <= (uintptr_t)tr_sysc_ret_end)
return (1);
if ((uintptr_t)pc >= (uintptr_t)tr_intr_ret_start &&
(uintptr_t)pc <= (uintptr_t)tr_intr_ret_end)
return (1);
#endif
if ((uintptr_t)pc < (uintptr_t)_sys_rtt ||
(uintptr_t)pc > (uintptr_t)_sys_rtt_end)
return (0);
return (1);
}
/*
* Handle #gp faults in kernel mode.
*
* One legitimate way this can happen is if we attempt to update segment
* registers to naughty values on the way out of the kernel.
*
* This can happen in a couple of ways: someone - either accidentally or
* on purpose - creates (setcontext(2), lwp_create(2)) or modifies
* (signal(2)) a ucontext that contains silly segment register values.
* Or someone - either accidentally or on purpose - modifies the prgregset_t
* of a subject process via /proc to contain silly segment register values.
*
* (The unfortunate part is that we can end up discovering the bad segment
* register value in the middle of an 'iret' after we've popped most of the
* stack. So it becomes quite difficult to associate an accurate ucontext
* with the lwp, because the act of taking the #gp trap overwrites most of
* what we were going to send the lwp.)
*
* OTOH if it turns out that's -not- the problem, and we're -not- an lwp
* trying to return to user mode and we get a #gp fault, then we need
* to die() -- which will happen if we return non-zero from this routine.
*/
static int
kern_gpfault(struct regs *rp)
{
kthread_t *t = curthread;
proc_t *p = ttoproc(t);
klwp_t *lwp = ttolwp(t);
struct regs tmpregs, *trp = NULL;
caddr_t pc = (caddr_t)rp->r_pc;
int v;
uint32_t auditing = AU_AUDITING();
/*
* if we're not an lwp, or in the case of running native the
* pc range is outside _sys_rtt, then we should immediately
* be die()ing horribly.
*/
if (lwp == NULL || !instr_is_sys_rtt(pc))
return (1);
/*
* So at least we're in the right part of the kernel.
*
* Disassemble the instruction at the faulting pc.
* Once we know what it is, we carefully reconstruct the stack
* based on the order in which the stack is deconstructed in
* _sys_rtt. Ew.
*/
if (instr_is_iret(pc)) {
/*
* We took the #gp while trying to perform the IRET.
* This means that either %cs or %ss are bad.
* All we know for sure is that most of the general
* registers have been restored, including the
* segment registers, and all we have left on the
* topmost part of the lwp's stack are the
* registers that the iretq was unable to consume.
*
* All the rest of the state was crushed by the #gp
* which pushed -its- registers atop our old save area
* (because we had to decrement the stack pointer, sigh) so
* all that we can try and do is to reconstruct the
* crushed frame from the #gp trap frame itself.
*/
trp = &tmpregs;
trp->r_ss = lwptoregs(lwp)->r_ss;
trp->r_sp = lwptoregs(lwp)->r_sp;
trp->r_ps = lwptoregs(lwp)->r_ps;
trp->r_cs = lwptoregs(lwp)->r_cs;
trp->r_pc = lwptoregs(lwp)->r_pc;
bcopy(rp, trp, offsetof(struct regs, r_pc));
/*
* Validate simple math
*/
ASSERT(trp->r_pc == lwptoregs(lwp)->r_pc);
ASSERT(trp->r_err == rp->r_err);
}
#if defined(__amd64)
if (trp == NULL && PCB_NEED_UPDATE_SEGS(&lwp->lwp_pcb)) {
/*
* This is the common case -- we're trying to load
* a bad segment register value in the only section
* of kernel code that ever loads segment registers.
*
* We don't need to do anything at this point because
* the pcb contains all the pending segment register
* state, and the regs are still intact because we
* didn't adjust the stack pointer yet. Given the fidelity
* of all this, we could conceivably send a signal
* to the lwp, rather than core-ing.
*/
trp = lwptoregs(lwp);
ASSERT((caddr_t)trp == (caddr_t)rp->r_sp);
}
#elif defined(__i386)
if (trp == NULL && instr_is_segregs_pop(pc))
trp = lwptoregs(lwp);
#endif /* __i386 */
if (trp == NULL)
return (1);
/*
* If we get to here, we're reasonably confident that we've
* correctly decoded what happened on the way out of the kernel.
* Rewrite the lwp's registers so that we can create a core dump
* the (at least vaguely) represents the mcontext we were
* being asked to restore when things went so terribly wrong.
*/
/*
* Make sure that we have a meaningful %trapno and %err.
*/
trp->r_trapno = rp->r_trapno;
trp->r_err = rp->r_err;
if ((caddr_t)trp != (caddr_t)lwptoregs(lwp))
bcopy(trp, lwptoregs(lwp), sizeof (*trp));
mutex_enter(&p->p_lock);
lwp->lwp_cursig = SIGSEGV;
mutex_exit(&p->p_lock);
/*
* Terminate all LWPs but don't discard them. If another lwp beat
* us to the punch by calling exit(), evaporate now.
*/
proc_is_exiting(p);
if (exitlwps(1) != 0) {
mutex_enter(&p->p_lock);
lwp_exit();
}
if (auditing) /* audit core dump */
audit_core_start(SIGSEGV);
v = core(SIGSEGV, B_FALSE);
if (auditing) /* audit core dump */
audit_core_finish(v ? CLD_KILLED : CLD_DUMPED);
exit(v ? CLD_KILLED : CLD_DUMPED, SIGSEGV);
return (0);
}
/*
* dump_tss() - Display the TSS structure
*/
#if !defined(__xpv)
#if defined(__amd64)
static void
dump_tss(void)
{
const char tss_fmt[] = "tss.%s:\t0x%p\n"; /* Format string */
tss_t *tss = CPU->cpu_tss;
printf(tss_fmt, "tss_rsp0", (void *)tss->tss_rsp0);
printf(tss_fmt, "tss_rsp1", (void *)tss->tss_rsp1);
printf(tss_fmt, "tss_rsp2", (void *)tss->tss_rsp2);
printf(tss_fmt, "tss_ist1", (void *)tss->tss_ist1);
printf(tss_fmt, "tss_ist2", (void *)tss->tss_ist2);
printf(tss_fmt, "tss_ist3", (void *)tss->tss_ist3);
printf(tss_fmt, "tss_ist4", (void *)tss->tss_ist4);
printf(tss_fmt, "tss_ist5", (void *)tss->tss_ist5);
printf(tss_fmt, "tss_ist6", (void *)tss->tss_ist6);
printf(tss_fmt, "tss_ist7", (void *)tss->tss_ist7);
}
#elif defined(__i386)
static void
dump_tss(void)
{
const char tss_fmt[] = "tss.%s:\t0x%p\n"; /* Format string */
tss_t *tss = CPU->cpu_tss;
printf(tss_fmt, "tss_link", (void *)(uintptr_t)tss->tss_link);
printf(tss_fmt, "tss_esp0", (void *)(uintptr_t)tss->tss_esp0);
printf(tss_fmt, "tss_ss0", (void *)(uintptr_t)tss->tss_ss0);
printf(tss_fmt, "tss_esp1", (void *)(uintptr_t)tss->tss_esp1);
printf(tss_fmt, "tss_ss1", (void *)(uintptr_t)tss->tss_ss1);
printf(tss_fmt, "tss_esp2", (void *)(uintptr_t)tss->tss_esp2);
printf(tss_fmt, "tss_ss2", (void *)(uintptr_t)tss->tss_ss2);
printf(tss_fmt, "tss_cr3", (void *)(uintptr_t)tss->tss_cr3);
printf(tss_fmt, "tss_eip", (void *)(uintptr_t)tss->tss_eip);
printf(tss_fmt, "tss_eflags", (void *)(uintptr_t)tss->tss_eflags);
printf(tss_fmt, "tss_eax", (void *)(uintptr_t)tss->tss_eax);
printf(tss_fmt, "tss_ebx", (void *)(uintptr_t)tss->tss_ebx);
printf(tss_fmt, "tss_ecx", (void *)(uintptr_t)tss->tss_ecx);
printf(tss_fmt, "tss_edx", (void *)(uintptr_t)tss->tss_edx);
printf(tss_fmt, "tss_esp", (void *)(uintptr_t)tss->tss_esp);
}
#endif /* __amd64 */
#endif /* !__xpv */
#if defined(TRAPTRACE)
int ttrace_nrec = 10; /* number of records to dump out */
int ttrace_dump_nregs = 0; /* dump out this many records with regs too */
/*
* Dump out the last ttrace_nrec traptrace records on each CPU
*/
static void
dump_ttrace(void)
{
trap_trace_ctl_t *ttc;
trap_trace_rec_t *rec;
uintptr_t current;
int i, j, k;
int n = NCPU;
#if defined(__amd64)
const char banner[] =
"CPU ADDRESS TIMESTAMP TYPE VC HANDLER PC\n";
/* Define format for the CPU, ADDRESS, and TIMESTAMP fields */
const char fmt1[] = "%3d %016lx %12llx";
char data1[34]; /* length of string formatted by fmt1 + 1 */
#elif defined(__i386)
const char banner[] =
"CPU ADDRESS TIMESTAMP TYPE VC HANDLER PC\n";
/* Define format for the CPU, ADDRESS, and TIMESTAMP fields */
const char fmt1[] = "%3d %08lx %12llx";
char data1[26]; /* length of string formatted by fmt1 + 1 */
#endif
/* Define format for the TYPE and VC fields */
const char fmt2[] = "%4s %3x";
const char fmt2s[] = "%4s %3s";
char data2[9]; /* length of string formatted by fmt2 + 1 */
/*
* Define format for the HANDLER field. Width is arbitrary, but should
* be enough for common handler's names, and leave enough space for
* the PC field, especially when we are in kmdb.
*/
const char fmt3h[] = "#%-15s";
const char fmt3p[] = "%-16p";
const char fmt3s[] = "%-16s";
char data3[17]; /* length of string formatted by fmt3* + 1 */
if (ttrace_nrec == 0)
return;
printf("\n");
printf(banner);
for (i = 0; i < n; i++) {
ttc = &trap_trace_ctl[i];
if (ttc->ttc_first == (uintptr_t)NULL)
continue;
current = ttc->ttc_next - sizeof (trap_trace_rec_t);
for (j = 0; j < ttrace_nrec; j++) {
struct sysent *sys;
struct autovec *vec;
extern struct av_head autovect[];
int type;
ulong_t off;
char *sym, *stype;
if (current < ttc->ttc_first)
current =
ttc->ttc_limit - sizeof (trap_trace_rec_t);
if (current == (uintptr_t)NULL)
continue;
rec = (trap_trace_rec_t *)current;
if (rec->ttr_stamp == 0)
break;
(void) snprintf(data1, sizeof (data1), fmt1, i,
(uintptr_t)rec, rec->ttr_stamp);
switch (rec->ttr_marker) {
case TT_SYSCALL:
case TT_SYSENTER:
case TT_SYSC:
case TT_SYSC64:
sys = &sysent32[rec->ttr_sysnum];
switch (rec->ttr_marker) {
case TT_SYSC64:
sys = &sysent[rec->ttr_sysnum];
/* FALLTHROUGH */
case TT_SYSC:
stype = "sysc"; /* syscall */
break;
case TT_SYSCALL:
stype = "lcal"; /* lcall */
break;
case TT_SYSENTER:
stype = "syse"; /* sysenter */
break;
default:
break;
}
(void) snprintf(data2, sizeof (data2), fmt2,
stype, rec->ttr_sysnum);
if (sys != NULL) {
sym = kobj_getsymname(
(uintptr_t)sys->sy_callc,
&off);
if (sym != NULL) {
(void) snprintf(data3,
sizeof (data3), fmt3s, sym);
} else {
(void) snprintf(data3,
sizeof (data3), fmt3p,
sys->sy_callc);
}
} else {
(void) snprintf(data3, sizeof (data3),
fmt3s, "unknown");
}
break;
case TT_INTERRUPT:
if (rec->ttr_regs.r_trapno == T_SOFTINT) {
(void) snprintf(data2, sizeof (data2),
fmt2s, "intr", "-");
(void) snprintf(data3, sizeof (data3),
fmt3s, "(fakesoftint)");
break;
}
(void) snprintf(data2, sizeof (data2), fmt2,
"intr", rec->ttr_vector);
if (get_intr_handler != NULL)
vec = (struct autovec *)
(*get_intr_handler)
(rec->ttr_cpuid, rec->ttr_vector);
else
vec =
autovect[rec->ttr_vector].avh_link;
if (vec != NULL) {
sym = kobj_getsymname(
(uintptr_t)vec->av_vector, &off);
if (sym != NULL) {
(void) snprintf(data3,
sizeof (data3), fmt3s, sym);
} else {
(void) snprintf(data3,
sizeof (data3), fmt3p,
vec->av_vector);
}
} else {
(void) snprintf(data3, sizeof (data3),
fmt3s, "unknown");
}
break;
case TT_TRAP:
case TT_EVENT:
type = rec->ttr_regs.r_trapno;
(void) snprintf(data2, sizeof (data2), fmt2,
"trap", type);
if (type < TRAP_TYPES) {
(void) snprintf(data3, sizeof (data3),
fmt3h, trap_type_mnemonic[type]);
} else {
switch (type) {
case T_AST:
(void) snprintf(data3,
sizeof (data3), fmt3s,
"ast");
break;
default:
(void) snprintf(data3,
sizeof (data3), fmt3s, "");
break;
}
}
break;
default:
break;
}
sym = kobj_getsymname(rec->ttr_regs.r_pc, &off);
if (sym != NULL) {
printf("%s %s %s %s+%lx\n", data1, data2, data3,
sym, off);
} else {
printf("%s %s %s %lx\n", data1, data2, data3,
rec->ttr_regs.r_pc);
}
if (ttrace_dump_nregs-- > 0) {
int s;
if (rec->ttr_marker == TT_INTERRUPT)
printf(
"\t\tipl %x spl %x pri %x\n",
rec->ttr_ipl,
rec->ttr_spl,
rec->ttr_pri);
dumpregs(&rec->ttr_regs);
printf("\t%3s: %p\n\n", " ct",
(void *)rec->ttr_curthread);
/*
* print out the pc stack that we recorded
* at trap time (if any)
*/
for (s = 0; s < rec->ttr_sdepth; s++) {
uintptr_t fullpc;
if (s >= TTR_STACK_DEPTH) {
printf("ttr_sdepth corrupt\n");
break;
}
fullpc = (uintptr_t)rec->ttr_stack[s];
sym = kobj_getsymname(fullpc, &off);
if (sym != NULL)
printf("-> %s+0x%lx()\n",
sym, off);
else
printf("-> 0x%lx()\n", fullpc);
}
printf("\n");
}
current -= sizeof (trap_trace_rec_t);
}
}
}
#endif /* TRAPTRACE */
void
panic_showtrap(struct panic_trap_info *tip)
{
showregs(tip->trap_type, tip->trap_regs, tip->trap_addr);
#if defined(TRAPTRACE)
dump_ttrace();
#endif
#if !defined(__xpv)
if (tip->trap_type == T_DBLFLT)
dump_tss();
#endif
}
void
panic_savetrap(panic_data_t *pdp, struct panic_trap_info *tip)
{
panic_saveregs(pdp, tip->trap_regs);
}