Permalink
Cannot retrieve contributors at this time
Fetching contributors…
| /* | |
| * CDDL HEADER START | |
| * | |
| * The contents of this file are subject to the terms of the | |
| * Common Development and Distribution License (the "License"). | |
| * You may not use this file except in compliance with the License. | |
| * | |
| * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE | |
| * or http://www.opensolaris.org/os/licensing. | |
| * See the License for the specific language governing permissions | |
| * and limitations under the License. | |
| * | |
| * When distributing Covered Code, include this CDDL HEADER in each | |
| * file and include the License file at usr/src/OPENSOLARIS.LICENSE. | |
| * If applicable, add the following below this CDDL HEADER, with the | |
| * fields enclosed by brackets "[]" replaced with your own identifying | |
| * information: Portions Copyright [yyyy] [name of copyright owner] | |
| * | |
| * CDDL HEADER END | |
| */ | |
| /* | |
| * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. | |
| * Copyright (c) 2011, 2015 by Delphix. All rights reserved. | |
| * Copyright 2015 Nexenta Systems, Inc. All rights reserved. | |
| * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. | |
| * Copyright 2013 Saso Kiselkov. All rights reserved. | |
| * Copyright (c) 2014 Integros [integros.com] | |
| */ | |
| #include <sys/zfs_context.h> | |
| #include <sys/spa_impl.h> | |
| #include <sys/spa_boot.h> | |
| #include <sys/zio.h> | |
| #include <sys/zio_checksum.h> | |
| #include <sys/zio_compress.h> | |
| #include <sys/dmu.h> | |
| #include <sys/dmu_tx.h> | |
| #include <sys/zap.h> | |
| #include <sys/zil.h> | |
| #include <sys/vdev_impl.h> | |
| #include <sys/metaslab.h> | |
| #include <sys/uberblock_impl.h> | |
| #include <sys/txg.h> | |
| #include <sys/avl.h> | |
| #include <sys/unique.h> | |
| #include <sys/dsl_pool.h> | |
| #include <sys/dsl_dir.h> | |
| #include <sys/dsl_prop.h> | |
| #include <sys/dsl_scan.h> | |
| #include <sys/fs/zfs.h> | |
| #include <sys/metaslab_impl.h> | |
| #include <sys/arc.h> | |
| #include <sys/ddt.h> | |
| #include "zfs_prop.h" | |
| #include <sys/zfeature.h> | |
| /* | |
| * SPA locking | |
| * | |
| * There are four basic locks for managing spa_t structures: | |
| * | |
| * spa_namespace_lock (global mutex) | |
| * | |
| * This lock must be acquired to do any of the following: | |
| * | |
| * - Lookup a spa_t by name | |
| * - Add or remove a spa_t from the namespace | |
| * - Increase spa_refcount from non-zero | |
| * - Check if spa_refcount is zero | |
| * - Rename a spa_t | |
| * - add/remove/attach/detach devices | |
| * - Held for the duration of create/destroy/import/export | |
| * | |
| * It does not need to handle recursion. A create or destroy may | |
| * reference objects (files or zvols) in other pools, but by | |
| * definition they must have an existing reference, and will never need | |
| * to lookup a spa_t by name. | |
| * | |
| * spa_refcount (per-spa refcount_t protected by mutex) | |
| * | |
| * This reference count keep track of any active users of the spa_t. The | |
| * spa_t cannot be destroyed or freed while this is non-zero. Internally, | |
| * the refcount is never really 'zero' - opening a pool implicitly keeps | |
| * some references in the DMU. Internally we check against spa_minref, but | |
| * present the image of a zero/non-zero value to consumers. | |
| * | |
| * spa_config_lock[] (per-spa array of rwlocks) | |
| * | |
| * This protects the spa_t from config changes, and must be held in | |
| * the following circumstances: | |
| * | |
| * - RW_READER to perform I/O to the spa | |
| * - RW_WRITER to change the vdev config | |
| * | |
| * The locking order is fairly straightforward: | |
| * | |
| * spa_namespace_lock -> spa_refcount | |
| * | |
| * The namespace lock must be acquired to increase the refcount from 0 | |
| * or to check if it is zero. | |
| * | |
| * spa_refcount -> spa_config_lock[] | |
| * | |
| * There must be at least one valid reference on the spa_t to acquire | |
| * the config lock. | |
| * | |
| * spa_namespace_lock -> spa_config_lock[] | |
| * | |
| * The namespace lock must always be taken before the config lock. | |
| * | |
| * | |
| * The spa_namespace_lock can be acquired directly and is globally visible. | |
| * | |
| * The namespace is manipulated using the following functions, all of which | |
| * require the spa_namespace_lock to be held. | |
| * | |
| * spa_lookup() Lookup a spa_t by name. | |
| * | |
| * spa_add() Create a new spa_t in the namespace. | |
| * | |
| * spa_remove() Remove a spa_t from the namespace. This also | |
| * frees up any memory associated with the spa_t. | |
| * | |
| * spa_next() Returns the next spa_t in the system, or the | |
| * first if NULL is passed. | |
| * | |
| * spa_evict_all() Shutdown and remove all spa_t structures in | |
| * the system. | |
| * | |
| * spa_guid_exists() Determine whether a pool/device guid exists. | |
| * | |
| * The spa_refcount is manipulated using the following functions: | |
| * | |
| * spa_open_ref() Adds a reference to the given spa_t. Must be | |
| * called with spa_namespace_lock held if the | |
| * refcount is currently zero. | |
| * | |
| * spa_close() Remove a reference from the spa_t. This will | |
| * not free the spa_t or remove it from the | |
| * namespace. No locking is required. | |
| * | |
| * spa_refcount_zero() Returns true if the refcount is currently | |
| * zero. Must be called with spa_namespace_lock | |
| * held. | |
| * | |
| * The spa_config_lock[] is an array of rwlocks, ordered as follows: | |
| * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. | |
| * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). | |
| * | |
| * To read the configuration, it suffices to hold one of these locks as reader. | |
| * To modify the configuration, you must hold all locks as writer. To modify | |
| * vdev state without altering the vdev tree's topology (e.g. online/offline), | |
| * you must hold SCL_STATE and SCL_ZIO as writer. | |
| * | |
| * We use these distinct config locks to avoid recursive lock entry. | |
| * For example, spa_sync() (which holds SCL_CONFIG as reader) induces | |
| * block allocations (SCL_ALLOC), which may require reading space maps | |
| * from disk (dmu_read() -> zio_read() -> SCL_ZIO). | |
| * | |
| * The spa config locks cannot be normal rwlocks because we need the | |
| * ability to hand off ownership. For example, SCL_ZIO is acquired | |
| * by the issuing thread and later released by an interrupt thread. | |
| * They do, however, obey the usual write-wanted semantics to prevent | |
| * writer (i.e. system administrator) starvation. | |
| * | |
| * The lock acquisition rules are as follows: | |
| * | |
| * SCL_CONFIG | |
| * Protects changes to the vdev tree topology, such as vdev | |
| * add/remove/attach/detach. Protects the dirty config list | |
| * (spa_config_dirty_list) and the set of spares and l2arc devices. | |
| * | |
| * SCL_STATE | |
| * Protects changes to pool state and vdev state, such as vdev | |
| * online/offline/fault/degrade/clear. Protects the dirty state list | |
| * (spa_state_dirty_list) and global pool state (spa_state). | |
| * | |
| * SCL_ALLOC | |
| * Protects changes to metaslab groups and classes. | |
| * Held as reader by metaslab_alloc() and metaslab_claim(). | |
| * | |
| * SCL_ZIO | |
| * Held by bp-level zios (those which have no io_vd upon entry) | |
| * to prevent changes to the vdev tree. The bp-level zio implicitly | |
| * protects all of its vdev child zios, which do not hold SCL_ZIO. | |
| * | |
| * SCL_FREE | |
| * Protects changes to metaslab groups and classes. | |
| * Held as reader by metaslab_free(). SCL_FREE is distinct from | |
| * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free | |
| * blocks in zio_done() while another i/o that holds either | |
| * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. | |
| * | |
| * SCL_VDEV | |
| * Held as reader to prevent changes to the vdev tree during trivial | |
| * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the | |
| * other locks, and lower than all of them, to ensure that it's safe | |
| * to acquire regardless of caller context. | |
| * | |
| * In addition, the following rules apply: | |
| * | |
| * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. | |
| * The lock ordering is SCL_CONFIG > spa_props_lock. | |
| * | |
| * (b) I/O operations on leaf vdevs. For any zio operation that takes | |
| * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), | |
| * or zio_write_phys() -- the caller must ensure that the config cannot | |
| * cannot change in the interim, and that the vdev cannot be reopened. | |
| * SCL_STATE as reader suffices for both. | |
| * | |
| * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). | |
| * | |
| * spa_vdev_enter() Acquire the namespace lock and the config lock | |
| * for writing. | |
| * | |
| * spa_vdev_exit() Release the config lock, wait for all I/O | |
| * to complete, sync the updated configs to the | |
| * cache, and release the namespace lock. | |
| * | |
| * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). | |
| * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual | |
| * locking is, always, based on spa_namespace_lock and spa_config_lock[]. | |
| * | |
| * spa_rename() is also implemented within this file since it requires | |
| * manipulation of the namespace. | |
| */ | |
| static avl_tree_t spa_namespace_avl; | |
| kmutex_t spa_namespace_lock; | |
| static kcondvar_t spa_namespace_cv; | |
| static int spa_active_count; | |
| int spa_max_replication_override = SPA_DVAS_PER_BP; | |
| static kmutex_t spa_spare_lock; | |
| static avl_tree_t spa_spare_avl; | |
| static kmutex_t spa_l2cache_lock; | |
| static avl_tree_t spa_l2cache_avl; | |
| kmem_cache_t *spa_buffer_pool; | |
| int spa_mode_global; | |
| #ifdef ZFS_DEBUG | |
| /* Everything except dprintf and spa is on by default in debug builds */ | |
| int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA); | |
| #else | |
| int zfs_flags = 0; | |
| #endif | |
| /* | |
| * zfs_recover can be set to nonzero to attempt to recover from | |
| * otherwise-fatal errors, typically caused by on-disk corruption. When | |
| * set, calls to zfs_panic_recover() will turn into warning messages. | |
| * This should only be used as a last resort, as it typically results | |
| * in leaked space, or worse. | |
| */ | |
| boolean_t zfs_recover = B_FALSE; | |
| /* | |
| * If destroy encounters an EIO while reading metadata (e.g. indirect | |
| * blocks), space referenced by the missing metadata can not be freed. | |
| * Normally this causes the background destroy to become "stalled", as | |
| * it is unable to make forward progress. While in this stalled state, | |
| * all remaining space to free from the error-encountering filesystem is | |
| * "temporarily leaked". Set this flag to cause it to ignore the EIO, | |
| * permanently leak the space from indirect blocks that can not be read, | |
| * and continue to free everything else that it can. | |
| * | |
| * The default, "stalling" behavior is useful if the storage partially | |
| * fails (i.e. some but not all i/os fail), and then later recovers. In | |
| * this case, we will be able to continue pool operations while it is | |
| * partially failed, and when it recovers, we can continue to free the | |
| * space, with no leaks. However, note that this case is actually | |
| * fairly rare. | |
| * | |
| * Typically pools either (a) fail completely (but perhaps temporarily, | |
| * e.g. a top-level vdev going offline), or (b) have localized, | |
| * permanent errors (e.g. disk returns the wrong data due to bit flip or | |
| * firmware bug). In case (a), this setting does not matter because the | |
| * pool will be suspended and the sync thread will not be able to make | |
| * forward progress regardless. In case (b), because the error is | |
| * permanent, the best we can do is leak the minimum amount of space, | |
| * which is what setting this flag will do. Therefore, it is reasonable | |
| * for this flag to normally be set, but we chose the more conservative | |
| * approach of not setting it, so that there is no possibility of | |
| * leaking space in the "partial temporary" failure case. | |
| */ | |
| boolean_t zfs_free_leak_on_eio = B_FALSE; | |
| /* | |
| * Expiration time in milliseconds. This value has two meanings. First it is | |
| * used to determine when the spa_deadman() logic should fire. By default the | |
| * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds. | |
| * Secondly, the value determines if an I/O is considered "hung". Any I/O that | |
| * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting | |
| * in a system panic. | |
| */ | |
| uint64_t zfs_deadman_synctime_ms = 1000000ULL; | |
| /* | |
| * Check time in milliseconds. This defines the frequency at which we check | |
| * for hung I/O. | |
| */ | |
| uint64_t zfs_deadman_checktime_ms = 5000ULL; | |
| /* | |
| * Override the zfs deadman behavior via /etc/system. By default the | |
| * deadman is enabled except on VMware and sparc deployments. | |
| */ | |
| int zfs_deadman_enabled = -1; | |
| /* | |
| * The worst case is single-sector max-parity RAID-Z blocks, in which | |
| * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) | |
| * times the size; so just assume that. Add to this the fact that | |
| * we can have up to 3 DVAs per bp, and one more factor of 2 because | |
| * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together, | |
| * the worst case is: | |
| * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24 | |
| */ | |
| int spa_asize_inflation = 24; | |
| /* | |
| * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in | |
| * the pool to be consumed. This ensures that we don't run the pool | |
| * completely out of space, due to unaccounted changes (e.g. to the MOS). | |
| * It also limits the worst-case time to allocate space. If we have | |
| * less than this amount of free space, most ZPL operations (e.g. write, | |
| * create) will return ENOSPC. | |
| * | |
| * Certain operations (e.g. file removal, most administrative actions) can | |
| * use half the slop space. They will only return ENOSPC if less than half | |
| * the slop space is free. Typically, once the pool has less than the slop | |
| * space free, the user will use these operations to free up space in the pool. | |
| * These are the operations that call dsl_pool_adjustedsize() with the netfree | |
| * argument set to TRUE. | |
| * | |
| * A very restricted set of operations are always permitted, regardless of | |
| * the amount of free space. These are the operations that call | |
| * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy". If these | |
| * operations result in a net increase in the amount of space used, | |
| * it is possible to run the pool completely out of space, causing it to | |
| * be permanently read-only. | |
| * | |
| * Note that on very small pools, the slop space will be larger than | |
| * 3.2%, in an effort to have it be at least spa_min_slop (128MB), | |
| * but we never allow it to be more than half the pool size. | |
| * | |
| * See also the comments in zfs_space_check_t. | |
| */ | |
| int spa_slop_shift = 5; | |
| uint64_t spa_min_slop = 128 * 1024 * 1024; | |
| /* | |
| * ========================================================================== | |
| * SPA config locking | |
| * ========================================================================== | |
| */ | |
| static void | |
| spa_config_lock_init(spa_t *spa) | |
| { | |
| for (int i = 0; i < SCL_LOCKS; i++) { | |
| spa_config_lock_t *scl = &spa->spa_config_lock[i]; | |
| mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); | |
| cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); | |
| refcount_create_untracked(&scl->scl_count); | |
| scl->scl_writer = NULL; | |
| scl->scl_write_wanted = 0; | |
| } | |
| } | |
| static void | |
| spa_config_lock_destroy(spa_t *spa) | |
| { | |
| for (int i = 0; i < SCL_LOCKS; i++) { | |
| spa_config_lock_t *scl = &spa->spa_config_lock[i]; | |
| mutex_destroy(&scl->scl_lock); | |
| cv_destroy(&scl->scl_cv); | |
| refcount_destroy(&scl->scl_count); | |
| ASSERT(scl->scl_writer == NULL); | |
| ASSERT(scl->scl_write_wanted == 0); | |
| } | |
| } | |
| int | |
| spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw) | |
| { | |
| for (int i = 0; i < SCL_LOCKS; i++) { | |
| spa_config_lock_t *scl = &spa->spa_config_lock[i]; | |
| if (!(locks & (1 << i))) | |
| continue; | |
| mutex_enter(&scl->scl_lock); | |
| if (rw == RW_READER) { | |
| if (scl->scl_writer || scl->scl_write_wanted) { | |
| mutex_exit(&scl->scl_lock); | |
| spa_config_exit(spa, locks & ((1 << i) - 1), | |
| tag); | |
| return (0); | |
| } | |
| } else { | |
| ASSERT(scl->scl_writer != curthread); | |
| if (!refcount_is_zero(&scl->scl_count)) { | |
| mutex_exit(&scl->scl_lock); | |
| spa_config_exit(spa, locks & ((1 << i) - 1), | |
| tag); | |
| return (0); | |
| } | |
| scl->scl_writer = curthread; | |
| } | |
| (void) refcount_add(&scl->scl_count, tag); | |
| mutex_exit(&scl->scl_lock); | |
| } | |
| return (1); | |
| } | |
| void | |
| spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw) | |
| { | |
| int wlocks_held = 0; | |
| ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); | |
| for (int i = 0; i < SCL_LOCKS; i++) { | |
| spa_config_lock_t *scl = &spa->spa_config_lock[i]; | |
| if (scl->scl_writer == curthread) | |
| wlocks_held |= (1 << i); | |
| if (!(locks & (1 << i))) | |
| continue; | |
| mutex_enter(&scl->scl_lock); | |
| if (rw == RW_READER) { | |
| while (scl->scl_writer || scl->scl_write_wanted) { | |
| cv_wait(&scl->scl_cv, &scl->scl_lock); | |
| } | |
| } else { | |
| ASSERT(scl->scl_writer != curthread); | |
| while (!refcount_is_zero(&scl->scl_count)) { | |
| scl->scl_write_wanted++; | |
| cv_wait(&scl->scl_cv, &scl->scl_lock); | |
| scl->scl_write_wanted--; | |
| } | |
| scl->scl_writer = curthread; | |
| } | |
| (void) refcount_add(&scl->scl_count, tag); | |
| mutex_exit(&scl->scl_lock); | |
| } | |
| ASSERT(wlocks_held <= locks); | |
| } | |
| void | |
| spa_config_exit(spa_t *spa, int locks, void *tag) | |
| { | |
| for (int i = SCL_LOCKS - 1; i >= 0; i--) { | |
| spa_config_lock_t *scl = &spa->spa_config_lock[i]; | |
| if (!(locks & (1 << i))) | |
| continue; | |
| mutex_enter(&scl->scl_lock); | |
| ASSERT(!refcount_is_zero(&scl->scl_count)); | |
| if (refcount_remove(&scl->scl_count, tag) == 0) { | |
| ASSERT(scl->scl_writer == NULL || | |
| scl->scl_writer == curthread); | |
| scl->scl_writer = NULL; /* OK in either case */ | |
| cv_broadcast(&scl->scl_cv); | |
| } | |
| mutex_exit(&scl->scl_lock); | |
| } | |
| } | |
| int | |
| spa_config_held(spa_t *spa, int locks, krw_t rw) | |
| { | |
| int locks_held = 0; | |
| for (int i = 0; i < SCL_LOCKS; i++) { | |
| spa_config_lock_t *scl = &spa->spa_config_lock[i]; | |
| if (!(locks & (1 << i))) | |
| continue; | |
| if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) || | |
| (rw == RW_WRITER && scl->scl_writer == curthread)) | |
| locks_held |= 1 << i; | |
| } | |
| return (locks_held); | |
| } | |
| /* | |
| * ========================================================================== | |
| * SPA namespace functions | |
| * ========================================================================== | |
| */ | |
| /* | |
| * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. | |
| * Returns NULL if no matching spa_t is found. | |
| */ | |
| spa_t * | |
| spa_lookup(const char *name) | |
| { | |
| static spa_t search; /* spa_t is large; don't allocate on stack */ | |
| spa_t *spa; | |
| avl_index_t where; | |
| char *cp; | |
| ASSERT(MUTEX_HELD(&spa_namespace_lock)); | |
| (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); | |
| /* | |
| * If it's a full dataset name, figure out the pool name and | |
| * just use that. | |
| */ | |
| cp = strpbrk(search.spa_name, "/@#"); | |
| if (cp != NULL) | |
| *cp = '\0'; | |
| spa = avl_find(&spa_namespace_avl, &search, &where); | |
| return (spa); | |
| } | |
| /* | |
| * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. | |
| * If the zfs_deadman_enabled flag is set then it inspects all vdev queues | |
| * looking for potentially hung I/Os. | |
| */ | |
| void | |
| spa_deadman(void *arg) | |
| { | |
| spa_t *spa = arg; | |
| /* | |
| * Disable the deadman timer if the pool is suspended. | |
| */ | |
| if (spa_suspended(spa)) { | |
| VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); | |
| return; | |
| } | |
| zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", | |
| (gethrtime() - spa->spa_sync_starttime) / NANOSEC, | |
| ++spa->spa_deadman_calls); | |
| if (zfs_deadman_enabled) | |
| vdev_deadman(spa->spa_root_vdev); | |
| } | |
| /* | |
| * Create an uninitialized spa_t with the given name. Requires | |
| * spa_namespace_lock. The caller must ensure that the spa_t doesn't already | |
| * exist by calling spa_lookup() first. | |
| */ | |
| spa_t * | |
| spa_add(const char *name, nvlist_t *config, const char *altroot) | |
| { | |
| spa_t *spa; | |
| spa_config_dirent_t *dp; | |
| cyc_handler_t hdlr; | |
| cyc_time_t when; | |
| ASSERT(MUTEX_HELD(&spa_namespace_lock)); | |
| spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); | |
| mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); | |
| mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); | |
| mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); | |
| mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL); | |
| mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); | |
| mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); | |
| mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); | |
| mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL); | |
| mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); | |
| mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); | |
| mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); | |
| mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL); | |
| mutex_init(&spa->spa_alloc_lock, NULL, MUTEX_DEFAULT, NULL); | |
| cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); | |
| cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL); | |
| cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); | |
| cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); | |
| cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); | |
| for (int t = 0; t < TXG_SIZE; t++) | |
| bplist_create(&spa->spa_free_bplist[t]); | |
| (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); | |
| spa->spa_state = POOL_STATE_UNINITIALIZED; | |
| spa->spa_freeze_txg = UINT64_MAX; | |
| spa->spa_final_txg = UINT64_MAX; | |
| spa->spa_load_max_txg = UINT64_MAX; | |
| spa->spa_proc = &p0; | |
| spa->spa_proc_state = SPA_PROC_NONE; | |
| hdlr.cyh_func = spa_deadman; | |
| hdlr.cyh_arg = spa; | |
| hdlr.cyh_level = CY_LOW_LEVEL; | |
| spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); | |
| /* | |
| * This determines how often we need to check for hung I/Os after | |
| * the cyclic has already fired. Since checking for hung I/Os is | |
| * an expensive operation we don't want to check too frequently. | |
| * Instead wait for 5 seconds before checking again. | |
| */ | |
| when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms); | |
| when.cyt_when = CY_INFINITY; | |
| mutex_enter(&cpu_lock); | |
| spa->spa_deadman_cycid = cyclic_add(&hdlr, &when); | |
| mutex_exit(&cpu_lock); | |
| refcount_create(&spa->spa_refcount); | |
| spa_config_lock_init(spa); | |
| avl_add(&spa_namespace_avl, spa); | |
| /* | |
| * Set the alternate root, if there is one. | |
| */ | |
| if (altroot) { | |
| spa->spa_root = spa_strdup(altroot); | |
| spa_active_count++; | |
| } | |
| avl_create(&spa->spa_alloc_tree, zio_timestamp_compare, | |
| sizeof (zio_t), offsetof(zio_t, io_alloc_node)); | |
| /* | |
| * Every pool starts with the default cachefile | |
| */ | |
| list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), | |
| offsetof(spa_config_dirent_t, scd_link)); | |
| dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); | |
| dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); | |
| list_insert_head(&spa->spa_config_list, dp); | |
| VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, | |
| KM_SLEEP) == 0); | |
| if (config != NULL) { | |
| nvlist_t *features; | |
| if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, | |
| &features) == 0) { | |
| VERIFY(nvlist_dup(features, &spa->spa_label_features, | |
| 0) == 0); | |
| } | |
| VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); | |
| } | |
| if (spa->spa_label_features == NULL) { | |
| VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, | |
| KM_SLEEP) == 0); | |
| } | |
| spa->spa_iokstat = kstat_create("zfs", 0, name, | |
| "disk", KSTAT_TYPE_IO, 1, 0); | |
| if (spa->spa_iokstat) { | |
| spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock; | |
| kstat_install(spa->spa_iokstat); | |
| } | |
| spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0); | |
| spa->spa_min_ashift = INT_MAX; | |
| spa->spa_max_ashift = 0; | |
| /* | |
| * As a pool is being created, treat all features as disabled by | |
| * setting SPA_FEATURE_DISABLED for all entries in the feature | |
| * refcount cache. | |
| */ | |
| for (int i = 0; i < SPA_FEATURES; i++) { | |
| spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; | |
| } | |
| return (spa); | |
| } | |
| /* | |
| * Removes a spa_t from the namespace, freeing up any memory used. Requires | |
| * spa_namespace_lock. This is called only after the spa_t has been closed and | |
| * deactivated. | |
| */ | |
| void | |
| spa_remove(spa_t *spa) | |
| { | |
| spa_config_dirent_t *dp; | |
| ASSERT(MUTEX_HELD(&spa_namespace_lock)); | |
| ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); | |
| ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0); | |
| nvlist_free(spa->spa_config_splitting); | |
| avl_remove(&spa_namespace_avl, spa); | |
| cv_broadcast(&spa_namespace_cv); | |
| if (spa->spa_root) { | |
| spa_strfree(spa->spa_root); | |
| spa_active_count--; | |
| } | |
| while ((dp = list_head(&spa->spa_config_list)) != NULL) { | |
| list_remove(&spa->spa_config_list, dp); | |
| if (dp->scd_path != NULL) | |
| spa_strfree(dp->scd_path); | |
| kmem_free(dp, sizeof (spa_config_dirent_t)); | |
| } | |
| avl_destroy(&spa->spa_alloc_tree); | |
| list_destroy(&spa->spa_config_list); | |
| nvlist_free(spa->spa_label_features); | |
| nvlist_free(spa->spa_load_info); | |
| spa_config_set(spa, NULL); | |
| mutex_enter(&cpu_lock); | |
| if (spa->spa_deadman_cycid != CYCLIC_NONE) | |
| cyclic_remove(spa->spa_deadman_cycid); | |
| mutex_exit(&cpu_lock); | |
| spa->spa_deadman_cycid = CYCLIC_NONE; | |
| refcount_destroy(&spa->spa_refcount); | |
| spa_config_lock_destroy(spa); | |
| kstat_delete(spa->spa_iokstat); | |
| spa->spa_iokstat = NULL; | |
| for (int t = 0; t < TXG_SIZE; t++) | |
| bplist_destroy(&spa->spa_free_bplist[t]); | |
| zio_checksum_templates_free(spa); | |
| cv_destroy(&spa->spa_async_cv); | |
| cv_destroy(&spa->spa_evicting_os_cv); | |
| cv_destroy(&spa->spa_proc_cv); | |
| cv_destroy(&spa->spa_scrub_io_cv); | |
| cv_destroy(&spa->spa_suspend_cv); | |
| mutex_destroy(&spa->spa_alloc_lock); | |
| mutex_destroy(&spa->spa_async_lock); | |
| mutex_destroy(&spa->spa_errlist_lock); | |
| mutex_destroy(&spa->spa_errlog_lock); | |
| mutex_destroy(&spa->spa_evicting_os_lock); | |
| mutex_destroy(&spa->spa_history_lock); | |
| mutex_destroy(&spa->spa_proc_lock); | |
| mutex_destroy(&spa->spa_props_lock); | |
| mutex_destroy(&spa->spa_cksum_tmpls_lock); | |
| mutex_destroy(&spa->spa_scrub_lock); | |
| mutex_destroy(&spa->spa_suspend_lock); | |
| mutex_destroy(&spa->spa_vdev_top_lock); | |
| mutex_destroy(&spa->spa_iokstat_lock); | |
| kmem_free(spa, sizeof (spa_t)); | |
| } | |
| /* | |
| * Given a pool, return the next pool in the namespace, or NULL if there is | |
| * none. If 'prev' is NULL, return the first pool. | |
| */ | |
| spa_t * | |
| spa_next(spa_t *prev) | |
| { | |
| ASSERT(MUTEX_HELD(&spa_namespace_lock)); | |
| if (prev) | |
| return (AVL_NEXT(&spa_namespace_avl, prev)); | |
| else | |
| return (avl_first(&spa_namespace_avl)); | |
| } | |
| /* | |
| * ========================================================================== | |
| * SPA refcount functions | |
| * ========================================================================== | |
| */ | |
| /* | |
| * Add a reference to the given spa_t. Must have at least one reference, or | |
| * have the namespace lock held. | |
| */ | |
| void | |
| spa_open_ref(spa_t *spa, void *tag) | |
| { | |
| ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref || | |
| MUTEX_HELD(&spa_namespace_lock)); | |
| (void) refcount_add(&spa->spa_refcount, tag); | |
| } | |
| /* | |
| * Remove a reference to the given spa_t. Must have at least one reference, or | |
| * have the namespace lock held. | |
| */ | |
| void | |
| spa_close(spa_t *spa, void *tag) | |
| { | |
| ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref || | |
| MUTEX_HELD(&spa_namespace_lock)); | |
| (void) refcount_remove(&spa->spa_refcount, tag); | |
| } | |
| /* | |
| * Remove a reference to the given spa_t held by a dsl dir that is | |
| * being asynchronously released. Async releases occur from a taskq | |
| * performing eviction of dsl datasets and dirs. The namespace lock | |
| * isn't held and the hold by the object being evicted may contribute to | |
| * spa_minref (e.g. dataset or directory released during pool export), | |
| * so the asserts in spa_close() do not apply. | |
| */ | |
| void | |
| spa_async_close(spa_t *spa, void *tag) | |
| { | |
| (void) refcount_remove(&spa->spa_refcount, tag); | |
| } | |
| /* | |
| * Check to see if the spa refcount is zero. Must be called with | |
| * spa_namespace_lock held. We really compare against spa_minref, which is the | |
| * number of references acquired when opening a pool | |
| */ | |
| boolean_t | |
| spa_refcount_zero(spa_t *spa) | |
| { | |
| ASSERT(MUTEX_HELD(&spa_namespace_lock)); | |
| return (refcount_count(&spa->spa_refcount) == spa->spa_minref); | |
| } | |
| /* | |
| * ========================================================================== | |
| * SPA spare and l2cache tracking | |
| * ========================================================================== | |
| */ | |
| /* | |
| * Hot spares and cache devices are tracked using the same code below, | |
| * for 'auxiliary' devices. | |
| */ | |
| typedef struct spa_aux { | |
| uint64_t aux_guid; | |
| uint64_t aux_pool; | |
| avl_node_t aux_avl; | |
| int aux_count; | |
| } spa_aux_t; | |
| static int | |
| spa_aux_compare(const void *a, const void *b) | |
| { | |
| const spa_aux_t *sa = a; | |
| const spa_aux_t *sb = b; | |
| if (sa->aux_guid < sb->aux_guid) | |
| return (-1); | |
| else if (sa->aux_guid > sb->aux_guid) | |
| return (1); | |
| else | |
| return (0); | |
| } | |
| void | |
| spa_aux_add(vdev_t *vd, avl_tree_t *avl) | |
| { | |
| avl_index_t where; | |
| spa_aux_t search; | |
| spa_aux_t *aux; | |
| search.aux_guid = vd->vdev_guid; | |
| if ((aux = avl_find(avl, &search, &where)) != NULL) { | |
| aux->aux_count++; | |
| } else { | |
| aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); | |
| aux->aux_guid = vd->vdev_guid; | |
| aux->aux_count = 1; | |
| avl_insert(avl, aux, where); | |
| } | |
| } | |
| void | |
| spa_aux_remove(vdev_t *vd, avl_tree_t *avl) | |
| { | |
| spa_aux_t search; | |
| spa_aux_t *aux; | |
| avl_index_t where; | |
| search.aux_guid = vd->vdev_guid; | |
| aux = avl_find(avl, &search, &where); | |
| ASSERT(aux != NULL); | |
| if (--aux->aux_count == 0) { | |
| avl_remove(avl, aux); | |
| kmem_free(aux, sizeof (spa_aux_t)); | |
| } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { | |
| aux->aux_pool = 0ULL; | |
| } | |
| } | |
| boolean_t | |
| spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) | |
| { | |
| spa_aux_t search, *found; | |
| search.aux_guid = guid; | |
| found = avl_find(avl, &search, NULL); | |
| if (pool) { | |
| if (found) | |
| *pool = found->aux_pool; | |
| else | |
| *pool = 0ULL; | |
| } | |
| if (refcnt) { | |
| if (found) | |
| *refcnt = found->aux_count; | |
| else | |
| *refcnt = 0; | |
| } | |
| return (found != NULL); | |
| } | |
| void | |
| spa_aux_activate(vdev_t *vd, avl_tree_t *avl) | |
| { | |
| spa_aux_t search, *found; | |
| avl_index_t where; | |
| search.aux_guid = vd->vdev_guid; | |
| found = avl_find(avl, &search, &where); | |
| ASSERT(found != NULL); | |
| ASSERT(found->aux_pool == 0ULL); | |
| found->aux_pool = spa_guid(vd->vdev_spa); | |
| } | |
| /* | |
| * Spares are tracked globally due to the following constraints: | |
| * | |
| * - A spare may be part of multiple pools. | |
| * - A spare may be added to a pool even if it's actively in use within | |
| * another pool. | |
| * - A spare in use in any pool can only be the source of a replacement if | |
| * the target is a spare in the same pool. | |
| * | |
| * We keep track of all spares on the system through the use of a reference | |
| * counted AVL tree. When a vdev is added as a spare, or used as a replacement | |
| * spare, then we bump the reference count in the AVL tree. In addition, we set | |
| * the 'vdev_isspare' member to indicate that the device is a spare (active or | |
| * inactive). When a spare is made active (used to replace a device in the | |
| * pool), we also keep track of which pool its been made a part of. | |
| * | |
| * The 'spa_spare_lock' protects the AVL tree. These functions are normally | |
| * called under the spa_namespace lock as part of vdev reconfiguration. The | |
| * separate spare lock exists for the status query path, which does not need to | |
| * be completely consistent with respect to other vdev configuration changes. | |
| */ | |
| static int | |
| spa_spare_compare(const void *a, const void *b) | |
| { | |
| return (spa_aux_compare(a, b)); | |
| } | |
| void | |
| spa_spare_add(vdev_t *vd) | |
| { | |
| mutex_enter(&spa_spare_lock); | |
| ASSERT(!vd->vdev_isspare); | |
| spa_aux_add(vd, &spa_spare_avl); | |
| vd->vdev_isspare = B_TRUE; | |
| mutex_exit(&spa_spare_lock); | |
| } | |
| void | |
| spa_spare_remove(vdev_t *vd) | |
| { | |
| mutex_enter(&spa_spare_lock); | |
| ASSERT(vd->vdev_isspare); | |
| spa_aux_remove(vd, &spa_spare_avl); | |
| vd->vdev_isspare = B_FALSE; | |
| mutex_exit(&spa_spare_lock); | |
| } | |
| boolean_t | |
| spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) | |
| { | |
| boolean_t found; | |
| mutex_enter(&spa_spare_lock); | |
| found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); | |
| mutex_exit(&spa_spare_lock); | |
| return (found); | |
| } | |
| void | |
| spa_spare_activate(vdev_t *vd) | |
| { | |
| mutex_enter(&spa_spare_lock); | |
| ASSERT(vd->vdev_isspare); | |
| spa_aux_activate(vd, &spa_spare_avl); | |
| mutex_exit(&spa_spare_lock); | |
| } | |
| /* | |
| * Level 2 ARC devices are tracked globally for the same reasons as spares. | |
| * Cache devices currently only support one pool per cache device, and so | |
| * for these devices the aux reference count is currently unused beyond 1. | |
| */ | |
| static int | |
| spa_l2cache_compare(const void *a, const void *b) | |
| { | |
| return (spa_aux_compare(a, b)); | |
| } | |
| void | |
| spa_l2cache_add(vdev_t *vd) | |
| { | |
| mutex_enter(&spa_l2cache_lock); | |
| ASSERT(!vd->vdev_isl2cache); | |
| spa_aux_add(vd, &spa_l2cache_avl); | |
| vd->vdev_isl2cache = B_TRUE; | |
| mutex_exit(&spa_l2cache_lock); | |
| } | |
| void | |
| spa_l2cache_remove(vdev_t *vd) | |
| { | |
| mutex_enter(&spa_l2cache_lock); | |
| ASSERT(vd->vdev_isl2cache); | |
| spa_aux_remove(vd, &spa_l2cache_avl); | |
| vd->vdev_isl2cache = B_FALSE; | |
| mutex_exit(&spa_l2cache_lock); | |
| } | |
| boolean_t | |
| spa_l2cache_exists(uint64_t guid, uint64_t *pool) | |
| { | |
| boolean_t found; | |
| mutex_enter(&spa_l2cache_lock); | |
| found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); | |
| mutex_exit(&spa_l2cache_lock); | |
| return (found); | |
| } | |
| void | |
| spa_l2cache_activate(vdev_t *vd) | |
| { | |
| mutex_enter(&spa_l2cache_lock); | |
| ASSERT(vd->vdev_isl2cache); | |
| spa_aux_activate(vd, &spa_l2cache_avl); | |
| mutex_exit(&spa_l2cache_lock); | |
| } | |
| /* | |
| * ========================================================================== | |
| * SPA vdev locking | |
| * ========================================================================== | |
| */ | |
| /* | |
| * Lock the given spa_t for the purpose of adding or removing a vdev. | |
| * Grabs the global spa_namespace_lock plus the spa config lock for writing. | |
| * It returns the next transaction group for the spa_t. | |
| */ | |
| uint64_t | |
| spa_vdev_enter(spa_t *spa) | |
| { | |
| mutex_enter(&spa->spa_vdev_top_lock); | |
| mutex_enter(&spa_namespace_lock); | |
| return (spa_vdev_config_enter(spa)); | |
| } | |
| /* | |
| * Internal implementation for spa_vdev_enter(). Used when a vdev | |
| * operation requires multiple syncs (i.e. removing a device) while | |
| * keeping the spa_namespace_lock held. | |
| */ | |
| uint64_t | |
| spa_vdev_config_enter(spa_t *spa) | |
| { | |
| ASSERT(MUTEX_HELD(&spa_namespace_lock)); | |
| spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); | |
| return (spa_last_synced_txg(spa) + 1); | |
| } | |
| /* | |
| * Used in combination with spa_vdev_config_enter() to allow the syncing | |
| * of multiple transactions without releasing the spa_namespace_lock. | |
| */ | |
| void | |
| spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag) | |
| { | |
| ASSERT(MUTEX_HELD(&spa_namespace_lock)); | |
| int config_changed = B_FALSE; | |
| ASSERT(txg > spa_last_synced_txg(spa)); | |
| spa->spa_pending_vdev = NULL; | |
| /* | |
| * Reassess the DTLs. | |
| */ | |
| vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE); | |
| if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { | |
| config_changed = B_TRUE; | |
| spa->spa_config_generation++; | |
| } | |
| /* | |
| * Verify the metaslab classes. | |
| */ | |
| ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); | |
| ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); | |
| spa_config_exit(spa, SCL_ALL, spa); | |
| /* | |
| * Panic the system if the specified tag requires it. This | |
| * is useful for ensuring that configurations are updated | |
| * transactionally. | |
| */ | |
| if (zio_injection_enabled) | |
| zio_handle_panic_injection(spa, tag, 0); | |
| /* | |
| * Note: this txg_wait_synced() is important because it ensures | |
| * that there won't be more than one config change per txg. | |
| * This allows us to use the txg as the generation number. | |
| */ | |
| if (error == 0) | |
| txg_wait_synced(spa->spa_dsl_pool, txg); | |
| if (vd != NULL) { | |
| ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL); | |
| spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); | |
| vdev_free(vd); | |
| spa_config_exit(spa, SCL_ALL, spa); | |
| } | |
| /* | |
| * If the config changed, update the config cache. | |
| */ | |
| if (config_changed) | |
| spa_config_sync(spa, B_FALSE, B_TRUE); | |
| } | |
| /* | |
| * Unlock the spa_t after adding or removing a vdev. Besides undoing the | |
| * locking of spa_vdev_enter(), we also want make sure the transactions have | |
| * synced to disk, and then update the global configuration cache with the new | |
| * information. | |
| */ | |
| int | |
| spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) | |
| { | |
| spa_vdev_config_exit(spa, vd, txg, error, FTAG); | |
| mutex_exit(&spa_namespace_lock); | |
| mutex_exit(&spa->spa_vdev_top_lock); | |
| return (error); | |
| } | |
| /* | |
| * Lock the given spa_t for the purpose of changing vdev state. | |
| */ | |
| void | |
| spa_vdev_state_enter(spa_t *spa, int oplocks) | |
| { | |
| int locks = SCL_STATE_ALL | oplocks; | |
| /* | |
| * Root pools may need to read of the underlying devfs filesystem | |
| * when opening up a vdev. Unfortunately if we're holding the | |
| * SCL_ZIO lock it will result in a deadlock when we try to issue | |
| * the read from the root filesystem. Instead we "prefetch" | |
| * the associated vnodes that we need prior to opening the | |
| * underlying devices and cache them so that we can prevent | |
| * any I/O when we are doing the actual open. | |
| */ | |
| if (spa_is_root(spa)) { | |
| int low = locks & ~(SCL_ZIO - 1); | |
| int high = locks & ~low; | |
| spa_config_enter(spa, high, spa, RW_WRITER); | |
| vdev_hold(spa->spa_root_vdev); | |
| spa_config_enter(spa, low, spa, RW_WRITER); | |
| } else { | |
| spa_config_enter(spa, locks, spa, RW_WRITER); | |
| } | |
| spa->spa_vdev_locks = locks; | |
| } | |
| int | |
| spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) | |
| { | |
| boolean_t config_changed = B_FALSE; | |
| if (vd != NULL || error == 0) | |
| vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev, | |
| 0, 0, B_FALSE); | |
| if (vd != NULL) { | |
| vdev_state_dirty(vd->vdev_top); | |
| config_changed = B_TRUE; | |
| spa->spa_config_generation++; | |
| } | |
| if (spa_is_root(spa)) | |
| vdev_rele(spa->spa_root_vdev); | |
| ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); | |
| spa_config_exit(spa, spa->spa_vdev_locks, spa); | |
| /* | |
| * If anything changed, wait for it to sync. This ensures that, | |
| * from the system administrator's perspective, zpool(1M) commands | |
| * are synchronous. This is important for things like zpool offline: | |
| * when the command completes, you expect no further I/O from ZFS. | |
| */ | |
| if (vd != NULL) | |
| txg_wait_synced(spa->spa_dsl_pool, 0); | |
| /* | |
| * If the config changed, update the config cache. | |
| */ | |
| if (config_changed) { | |
| mutex_enter(&spa_namespace_lock); | |
| spa_config_sync(spa, B_FALSE, B_TRUE); | |
| mutex_exit(&spa_namespace_lock); | |
| } | |
| return (error); | |
| } | |
| /* | |
| * ========================================================================== | |
| * Miscellaneous functions | |
| * ========================================================================== | |
| */ | |
| void | |
| spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx) | |
| { | |
| if (!nvlist_exists(spa->spa_label_features, feature)) { | |
| fnvlist_add_boolean(spa->spa_label_features, feature); | |
| /* | |
| * When we are creating the pool (tx_txg==TXG_INITIAL), we can't | |
| * dirty the vdev config because lock SCL_CONFIG is not held. | |
| * Thankfully, in this case we don't need to dirty the config | |
| * because it will be written out anyway when we finish | |
| * creating the pool. | |
| */ | |
| if (tx->tx_txg != TXG_INITIAL) | |
| vdev_config_dirty(spa->spa_root_vdev); | |
| } | |
| } | |
| void | |
| spa_deactivate_mos_feature(spa_t *spa, const char *feature) | |
| { | |
| if (nvlist_remove_all(spa->spa_label_features, feature) == 0) | |
| vdev_config_dirty(spa->spa_root_vdev); | |
| } | |
| /* | |
| * Rename a spa_t. | |
| */ | |
| int | |
| spa_rename(const char *name, const char *newname) | |
| { | |
| spa_t *spa; | |
| int err; | |
| /* | |
| * Lookup the spa_t and grab the config lock for writing. We need to | |
| * actually open the pool so that we can sync out the necessary labels. | |
| * It's OK to call spa_open() with the namespace lock held because we | |
| * allow recursive calls for other reasons. | |
| */ | |
| mutex_enter(&spa_namespace_lock); | |
| if ((err = spa_open(name, &spa, FTAG)) != 0) { | |
| mutex_exit(&spa_namespace_lock); | |
| return (err); | |
| } | |
| spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); | |
| avl_remove(&spa_namespace_avl, spa); | |
| (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name)); | |
| avl_add(&spa_namespace_avl, spa); | |
| /* | |
| * Sync all labels to disk with the new names by marking the root vdev | |
| * dirty and waiting for it to sync. It will pick up the new pool name | |
| * during the sync. | |
| */ | |
| vdev_config_dirty(spa->spa_root_vdev); | |
| spa_config_exit(spa, SCL_ALL, FTAG); | |
| txg_wait_synced(spa->spa_dsl_pool, 0); | |
| /* | |
| * Sync the updated config cache. | |
| */ | |
| spa_config_sync(spa, B_FALSE, B_TRUE); | |
| spa_close(spa, FTAG); | |
| mutex_exit(&spa_namespace_lock); | |
| return (0); | |
| } | |
| /* | |
| * Return the spa_t associated with given pool_guid, if it exists. If | |
| * device_guid is non-zero, determine whether the pool exists *and* contains | |
| * a device with the specified device_guid. | |
| */ | |
| spa_t * | |
| spa_by_guid(uint64_t pool_guid, uint64_t device_guid) | |
| { | |
| spa_t *spa; | |
| avl_tree_t *t = &spa_namespace_avl; | |
| ASSERT(MUTEX_HELD(&spa_namespace_lock)); | |
| for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { | |
| if (spa->spa_state == POOL_STATE_UNINITIALIZED) | |
| continue; | |
| if (spa->spa_root_vdev == NULL) | |
| continue; | |
| if (spa_guid(spa) == pool_guid) { | |
| if (device_guid == 0) | |
| break; | |
| if (vdev_lookup_by_guid(spa->spa_root_vdev, | |
| device_guid) != NULL) | |
| break; | |
| /* | |
| * Check any devices we may be in the process of adding. | |
| */ | |
| if (spa->spa_pending_vdev) { | |
| if (vdev_lookup_by_guid(spa->spa_pending_vdev, | |
| device_guid) != NULL) | |
| break; | |
| } | |
| } | |
| } | |
| return (spa); | |
| } | |
| /* | |
| * Determine whether a pool with the given pool_guid exists. | |
| */ | |
| boolean_t | |
| spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) | |
| { | |
| return (spa_by_guid(pool_guid, device_guid) != NULL); | |
| } | |
| char * | |
| spa_strdup(const char *s) | |
| { | |
| size_t len; | |
| char *new; | |
| len = strlen(s); | |
| new = kmem_alloc(len + 1, KM_SLEEP); | |
| bcopy(s, new, len); | |
| new[len] = '\0'; | |
| return (new); | |
| } | |
| void | |
| spa_strfree(char *s) | |
| { | |
| kmem_free(s, strlen(s) + 1); | |
| } | |
| uint64_t | |
| spa_get_random(uint64_t range) | |
| { | |
| uint64_t r; | |
| ASSERT(range != 0); | |
| (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); | |
| return (r % range); | |
| } | |
| uint64_t | |
| spa_generate_guid(spa_t *spa) | |
| { | |
| uint64_t guid = spa_get_random(-1ULL); | |
| if (spa != NULL) { | |
| while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)) | |
| guid = spa_get_random(-1ULL); | |
| } else { | |
| while (guid == 0 || spa_guid_exists(guid, 0)) | |
| guid = spa_get_random(-1ULL); | |
| } | |
| return (guid); | |
| } | |
| void | |
| snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp) | |
| { | |
| char type[256]; | |
| char *checksum = NULL; | |
| char *compress = NULL; | |
| if (bp != NULL) { | |
| if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { | |
| dmu_object_byteswap_t bswap = | |
| DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); | |
| (void) snprintf(type, sizeof (type), "bswap %s %s", | |
| DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? | |
| "metadata" : "data", | |
| dmu_ot_byteswap[bswap].ob_name); | |
| } else { | |
| (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, | |
| sizeof (type)); | |
| } | |
| if (!BP_IS_EMBEDDED(bp)) { | |
| checksum = | |
| zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; | |
| } | |
| compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; | |
| } | |
| SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum, | |
| compress); | |
| } | |
| void | |
| spa_freeze(spa_t *spa) | |
| { | |
| uint64_t freeze_txg = 0; | |
| spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); | |
| if (spa->spa_freeze_txg == UINT64_MAX) { | |
| freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; | |
| spa->spa_freeze_txg = freeze_txg; | |
| } | |
| spa_config_exit(spa, SCL_ALL, FTAG); | |
| if (freeze_txg != 0) | |
| txg_wait_synced(spa_get_dsl(spa), freeze_txg); | |
| } | |
| void | |
| zfs_panic_recover(const char *fmt, ...) | |
| { | |
| va_list adx; | |
| va_start(adx, fmt); | |
| vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); | |
| va_end(adx); | |
| } | |
| /* | |
| * This is a stripped-down version of strtoull, suitable only for converting | |
| * lowercase hexadecimal numbers that don't overflow. | |
| */ | |
| uint64_t | |
| strtonum(const char *str, char **nptr) | |
| { | |
| uint64_t val = 0; | |
| char c; | |
| int digit; | |
| while ((c = *str) != '\0') { | |
| if (c >= '0' && c <= '9') | |
| digit = c - '0'; | |
| else if (c >= 'a' && c <= 'f') | |
| digit = 10 + c - 'a'; | |
| else | |
| break; | |
| val *= 16; | |
| val += digit; | |
| str++; | |
| } | |
| if (nptr) | |
| *nptr = (char *)str; | |
| return (val); | |
| } | |
| /* | |
| * ========================================================================== | |
| * Accessor functions | |
| * ========================================================================== | |
| */ | |
| boolean_t | |
| spa_shutting_down(spa_t *spa) | |
| { | |
| return (spa->spa_async_suspended); | |
| } | |
| dsl_pool_t * | |
| spa_get_dsl(spa_t *spa) | |
| { | |
| return (spa->spa_dsl_pool); | |
| } | |
| boolean_t | |
| spa_is_initializing(spa_t *spa) | |
| { | |
| return (spa->spa_is_initializing); | |
| } | |
| blkptr_t * | |
| spa_get_rootblkptr(spa_t *spa) | |
| { | |
| return (&spa->spa_ubsync.ub_rootbp); | |
| } | |
| void | |
| spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) | |
| { | |
| spa->spa_uberblock.ub_rootbp = *bp; | |
| } | |
| void | |
| spa_altroot(spa_t *spa, char *buf, size_t buflen) | |
| { | |
| if (spa->spa_root == NULL) | |
| buf[0] = '\0'; | |
| else | |
| (void) strncpy(buf, spa->spa_root, buflen); | |
| } | |
| int | |
| spa_sync_pass(spa_t *spa) | |
| { | |
| return (spa->spa_sync_pass); | |
| } | |
| char * | |
| spa_name(spa_t *spa) | |
| { | |
| return (spa->spa_name); | |
| } | |
| uint64_t | |
| spa_guid(spa_t *spa) | |
| { | |
| dsl_pool_t *dp = spa_get_dsl(spa); | |
| uint64_t guid; | |
| /* | |
| * If we fail to parse the config during spa_load(), we can go through | |
| * the error path (which posts an ereport) and end up here with no root | |
| * vdev. We stash the original pool guid in 'spa_config_guid' to handle | |
| * this case. | |
| */ | |
| if (spa->spa_root_vdev == NULL) | |
| return (spa->spa_config_guid); | |
| guid = spa->spa_last_synced_guid != 0 ? | |
| spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; | |
| /* | |
| * Return the most recently synced out guid unless we're | |
| * in syncing context. | |
| */ | |
| if (dp && dsl_pool_sync_context(dp)) | |
| return (spa->spa_root_vdev->vdev_guid); | |
| else | |
| return (guid); | |
| } | |
| uint64_t | |
| spa_load_guid(spa_t *spa) | |
| { | |
| /* | |
| * This is a GUID that exists solely as a reference for the | |
| * purposes of the arc. It is generated at load time, and | |
| * is never written to persistent storage. | |
| */ | |
| return (spa->spa_load_guid); | |
| } | |
| uint64_t | |
| spa_last_synced_txg(spa_t *spa) | |
| { | |
| return (spa->spa_ubsync.ub_txg); | |
| } | |
| uint64_t | |
| spa_first_txg(spa_t *spa) | |
| { | |
| return (spa->spa_first_txg); | |
| } | |
| uint64_t | |
| spa_syncing_txg(spa_t *spa) | |
| { | |
| return (spa->spa_syncing_txg); | |
| } | |
| pool_state_t | |
| spa_state(spa_t *spa) | |
| { | |
| return (spa->spa_state); | |
| } | |
| spa_load_state_t | |
| spa_load_state(spa_t *spa) | |
| { | |
| return (spa->spa_load_state); | |
| } | |
| uint64_t | |
| spa_freeze_txg(spa_t *spa) | |
| { | |
| return (spa->spa_freeze_txg); | |
| } | |
| /* ARGSUSED */ | |
| uint64_t | |
| spa_get_asize(spa_t *spa, uint64_t lsize) | |
| { | |
| return (lsize * spa_asize_inflation); | |
| } | |
| /* | |
| * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%), | |
| * or at least 128MB, unless that would cause it to be more than half the | |
| * pool size. | |
| * | |
| * See the comment above spa_slop_shift for details. | |
| */ | |
| uint64_t | |
| spa_get_slop_space(spa_t *spa) | |
| { | |
| uint64_t space = spa_get_dspace(spa); | |
| return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop))); | |
| } | |
| uint64_t | |
| spa_get_dspace(spa_t *spa) | |
| { | |
| return (spa->spa_dspace); | |
| } | |
| void | |
| spa_update_dspace(spa_t *spa) | |
| { | |
| spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + | |
| ddt_get_dedup_dspace(spa); | |
| } | |
| /* | |
| * Return the failure mode that has been set to this pool. The default | |
| * behavior will be to block all I/Os when a complete failure occurs. | |
| */ | |
| uint8_t | |
| spa_get_failmode(spa_t *spa) | |
| { | |
| return (spa->spa_failmode); | |
| } | |
| boolean_t | |
| spa_suspended(spa_t *spa) | |
| { | |
| return (spa->spa_suspended); | |
| } | |
| uint64_t | |
| spa_version(spa_t *spa) | |
| { | |
| return (spa->spa_ubsync.ub_version); | |
| } | |
| boolean_t | |
| spa_deflate(spa_t *spa) | |
| { | |
| return (spa->spa_deflate); | |
| } | |
| metaslab_class_t * | |
| spa_normal_class(spa_t *spa) | |
| { | |
| return (spa->spa_normal_class); | |
| } | |
| metaslab_class_t * | |
| spa_log_class(spa_t *spa) | |
| { | |
| return (spa->spa_log_class); | |
| } | |
| void | |
| spa_evicting_os_register(spa_t *spa, objset_t *os) | |
| { | |
| mutex_enter(&spa->spa_evicting_os_lock); | |
| list_insert_head(&spa->spa_evicting_os_list, os); | |
| mutex_exit(&spa->spa_evicting_os_lock); | |
| } | |
| void | |
| spa_evicting_os_deregister(spa_t *spa, objset_t *os) | |
| { | |
| mutex_enter(&spa->spa_evicting_os_lock); | |
| list_remove(&spa->spa_evicting_os_list, os); | |
| cv_broadcast(&spa->spa_evicting_os_cv); | |
| mutex_exit(&spa->spa_evicting_os_lock); | |
| } | |
| void | |
| spa_evicting_os_wait(spa_t *spa) | |
| { | |
| mutex_enter(&spa->spa_evicting_os_lock); | |
| while (!list_is_empty(&spa->spa_evicting_os_list)) | |
| cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock); | |
| mutex_exit(&spa->spa_evicting_os_lock); | |
| dmu_buf_user_evict_wait(); | |
| } | |
| int | |
| spa_max_replication(spa_t *spa) | |
| { | |
| /* | |
| * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to | |
| * handle BPs with more than one DVA allocated. Set our max | |
| * replication level accordingly. | |
| */ | |
| if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) | |
| return (1); | |
| return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); | |
| } | |
| int | |
| spa_prev_software_version(spa_t *spa) | |
| { | |
| return (spa->spa_prev_software_version); | |
| } | |
| uint64_t | |
| spa_deadman_synctime(spa_t *spa) | |
| { | |
| return (spa->spa_deadman_synctime); | |
| } | |
| uint64_t | |
| dva_get_dsize_sync(spa_t *spa, const dva_t *dva) | |
| { | |
| uint64_t asize = DVA_GET_ASIZE(dva); | |
| uint64_t dsize = asize; | |
| ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); | |
| if (asize != 0 && spa->spa_deflate) { | |
| vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); | |
| dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; | |
| } | |
| return (dsize); | |
| } | |
| uint64_t | |
| bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) | |
| { | |
| uint64_t dsize = 0; | |
| for (int d = 0; d < BP_GET_NDVAS(bp); d++) | |
| dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); | |
| return (dsize); | |
| } | |
| uint64_t | |
| bp_get_dsize(spa_t *spa, const blkptr_t *bp) | |
| { | |
| uint64_t dsize = 0; | |
| spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); | |
| for (int d = 0; d < BP_GET_NDVAS(bp); d++) | |
| dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); | |
| spa_config_exit(spa, SCL_VDEV, FTAG); | |
| return (dsize); | |
| } | |
| /* | |
| * ========================================================================== | |
| * Initialization and Termination | |
| * ========================================================================== | |
| */ | |
| static int | |
| spa_name_compare(const void *a1, const void *a2) | |
| { | |
| const spa_t *s1 = a1; | |
| const spa_t *s2 = a2; | |
| int s; | |
| s = strcmp(s1->spa_name, s2->spa_name); | |
| if (s > 0) | |
| return (1); | |
| if (s < 0) | |
| return (-1); | |
| return (0); | |
| } | |
| int | |
| spa_busy(void) | |
| { | |
| return (spa_active_count); | |
| } | |
| void | |
| spa_boot_init() | |
| { | |
| spa_config_load(); | |
| } | |
| void | |
| spa_init(int mode) | |
| { | |
| mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); | |
| mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); | |
| mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); | |
| cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); | |
| avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), | |
| offsetof(spa_t, spa_avl)); | |
| avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), | |
| offsetof(spa_aux_t, aux_avl)); | |
| avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), | |
| offsetof(spa_aux_t, aux_avl)); | |
| spa_mode_global = mode; | |
| #ifdef _KERNEL | |
| spa_arch_init(); | |
| #else | |
| if (spa_mode_global != FREAD && dprintf_find_string("watch")) { | |
| arc_procfd = open("/proc/self/ctl", O_WRONLY); | |
| if (arc_procfd == -1) { | |
| perror("could not enable watchpoints: " | |
| "opening /proc/self/ctl failed: "); | |
| } else { | |
| arc_watch = B_TRUE; | |
| } | |
| } | |
| #endif | |
| refcount_init(); | |
| unique_init(); | |
| range_tree_init(); | |
| zio_init(); | |
| dmu_init(); | |
| zil_init(); | |
| vdev_cache_stat_init(); | |
| zfs_prop_init(); | |
| zpool_prop_init(); | |
| zpool_feature_init(); | |
| spa_config_load(); | |
| l2arc_start(); | |
| } | |
| void | |
| spa_fini(void) | |
| { | |
| l2arc_stop(); | |
| spa_evict_all(); | |
| vdev_cache_stat_fini(); | |
| zil_fini(); | |
| dmu_fini(); | |
| zio_fini(); | |
| range_tree_fini(); | |
| unique_fini(); | |
| refcount_fini(); | |
| avl_destroy(&spa_namespace_avl); | |
| avl_destroy(&spa_spare_avl); | |
| avl_destroy(&spa_l2cache_avl); | |
| cv_destroy(&spa_namespace_cv); | |
| mutex_destroy(&spa_namespace_lock); | |
| mutex_destroy(&spa_spare_lock); | |
| mutex_destroy(&spa_l2cache_lock); | |
| } | |
| /* | |
| * Return whether this pool has slogs. No locking needed. | |
| * It's not a problem if the wrong answer is returned as it's only for | |
| * performance and not correctness | |
| */ | |
| boolean_t | |
| spa_has_slogs(spa_t *spa) | |
| { | |
| return (spa->spa_log_class->mc_rotor != NULL); | |
| } | |
| spa_log_state_t | |
| spa_get_log_state(spa_t *spa) | |
| { | |
| return (spa->spa_log_state); | |
| } | |
| void | |
| spa_set_log_state(spa_t *spa, spa_log_state_t state) | |
| { | |
| spa->spa_log_state = state; | |
| } | |
| boolean_t | |
| spa_is_root(spa_t *spa) | |
| { | |
| return (spa->spa_is_root); | |
| } | |
| boolean_t | |
| spa_writeable(spa_t *spa) | |
| { | |
| return (!!(spa->spa_mode & FWRITE)); | |
| } | |
| /* | |
| * Returns true if there is a pending sync task in any of the current | |
| * syncing txg, the current quiescing txg, or the current open txg. | |
| */ | |
| boolean_t | |
| spa_has_pending_synctask(spa_t *spa) | |
| { | |
| return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks)); | |
| } | |
| int | |
| spa_mode(spa_t *spa) | |
| { | |
| return (spa->spa_mode); | |
| } | |
| uint64_t | |
| spa_bootfs(spa_t *spa) | |
| { | |
| return (spa->spa_bootfs); | |
| } | |
| uint64_t | |
| spa_delegation(spa_t *spa) | |
| { | |
| return (spa->spa_delegation); | |
| } | |
| objset_t * | |
| spa_meta_objset(spa_t *spa) | |
| { | |
| return (spa->spa_meta_objset); | |
| } | |
| enum zio_checksum | |
| spa_dedup_checksum(spa_t *spa) | |
| { | |
| return (spa->spa_dedup_checksum); | |
| } | |
| /* | |
| * Reset pool scan stat per scan pass (or reboot). | |
| */ | |
| void | |
| spa_scan_stat_init(spa_t *spa) | |
| { | |
| /* data not stored on disk */ | |
| spa->spa_scan_pass_start = gethrestime_sec(); | |
| spa->spa_scan_pass_exam = 0; | |
| vdev_scan_stat_init(spa->spa_root_vdev); | |
| } | |
| /* | |
| * Get scan stats for zpool status reports | |
| */ | |
| int | |
| spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) | |
| { | |
| dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; | |
| if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE) | |
| return (SET_ERROR(ENOENT)); | |
| bzero(ps, sizeof (pool_scan_stat_t)); | |
| /* data stored on disk */ | |
| ps->pss_func = scn->scn_phys.scn_func; | |
| ps->pss_start_time = scn->scn_phys.scn_start_time; | |
| ps->pss_end_time = scn->scn_phys.scn_end_time; | |
| ps->pss_to_examine = scn->scn_phys.scn_to_examine; | |
| ps->pss_examined = scn->scn_phys.scn_examined; | |
| ps->pss_to_process = scn->scn_phys.scn_to_process; | |
| ps->pss_processed = scn->scn_phys.scn_processed; | |
| ps->pss_errors = scn->scn_phys.scn_errors; | |
| ps->pss_state = scn->scn_phys.scn_state; | |
| /* data not stored on disk */ | |
| ps->pss_pass_start = spa->spa_scan_pass_start; | |
| ps->pss_pass_exam = spa->spa_scan_pass_exam; | |
| return (0); | |
| } | |
| boolean_t | |
| spa_debug_enabled(spa_t *spa) | |
| { | |
| return (spa->spa_debug); | |
| } | |
| int | |
| spa_maxblocksize(spa_t *spa) | |
| { | |
| if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) | |
| return (SPA_MAXBLOCKSIZE); | |
| else | |
| return (SPA_OLD_MAXBLOCKSIZE); | |
| } |