Permalink
Cannot retrieve contributors at this time
Fetching contributors…
| /* | |
| * CDDL HEADER START | |
| * | |
| * The contents of this file are subject to the terms of the | |
| * Common Development and Distribution License (the "License"). | |
| * You may not use this file except in compliance with the License. | |
| * | |
| * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE | |
| * or http://www.opensolaris.org/os/licensing. | |
| * See the License for the specific language governing permissions | |
| * and limitations under the License. | |
| * | |
| * When distributing Covered Code, include this CDDL HEADER in each | |
| * file and include the License file at usr/src/OPENSOLARIS.LICENSE. | |
| * If applicable, add the following below this CDDL HEADER, with the | |
| * fields enclosed by brackets "[]" replaced with your own identifying | |
| * information: Portions Copyright [yyyy] [name of copyright owner] | |
| * | |
| * CDDL HEADER END | |
| */ | |
| /* | |
| * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. | |
| * Copyright (c) 2011, 2015 by Delphix. All rights reserved. | |
| * Copyright (c) 2011, 2014 by Delphix. All rights reserved. | |
| * Copyright (c) 2014 Integros [integros.com] | |
| */ | |
| /* Portions Copyright 2010 Robert Milkowski */ | |
| #include <sys/zfs_context.h> | |
| #include <sys/spa.h> | |
| #include <sys/dmu.h> | |
| #include <sys/zap.h> | |
| #include <sys/arc.h> | |
| #include <sys/stat.h> | |
| #include <sys/resource.h> | |
| #include <sys/zil.h> | |
| #include <sys/zil_impl.h> | |
| #include <sys/dsl_dataset.h> | |
| #include <sys/vdev_impl.h> | |
| #include <sys/dmu_tx.h> | |
| #include <sys/dsl_pool.h> | |
| /* | |
| * The zfs intent log (ZIL) saves transaction records of system calls | |
| * that change the file system in memory with enough information | |
| * to be able to replay them. These are stored in memory until | |
| * either the DMU transaction group (txg) commits them to the stable pool | |
| * and they can be discarded, or they are flushed to the stable log | |
| * (also in the pool) due to a fsync, O_DSYNC or other synchronous | |
| * requirement. In the event of a panic or power fail then those log | |
| * records (transactions) are replayed. | |
| * | |
| * There is one ZIL per file system. Its on-disk (pool) format consists | |
| * of 3 parts: | |
| * | |
| * - ZIL header | |
| * - ZIL blocks | |
| * - ZIL records | |
| * | |
| * A log record holds a system call transaction. Log blocks can | |
| * hold many log records and the blocks are chained together. | |
| * Each ZIL block contains a block pointer (blkptr_t) to the next | |
| * ZIL block in the chain. The ZIL header points to the first | |
| * block in the chain. Note there is not a fixed place in the pool | |
| * to hold blocks. They are dynamically allocated and freed as | |
| * needed from the blocks available. Figure X shows the ZIL structure: | |
| */ | |
| /* | |
| * Disable intent logging replay. This global ZIL switch affects all pools. | |
| */ | |
| int zil_replay_disable = 0; | |
| /* | |
| * Tunable parameter for debugging or performance analysis. Setting | |
| * zfs_nocacheflush will cause corruption on power loss if a volatile | |
| * out-of-order write cache is enabled. | |
| */ | |
| boolean_t zfs_nocacheflush = B_FALSE; | |
| static kmem_cache_t *zil_lwb_cache; | |
| static void zil_async_to_sync(zilog_t *zilog, uint64_t foid); | |
| #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \ | |
| sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused)) | |
| /* | |
| * ziltest is by and large an ugly hack, but very useful in | |
| * checking replay without tedious work. | |
| * When running ziltest we want to keep all itx's and so maintain | |
| * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG | |
| * We subtract TXG_CONCURRENT_STATES to allow for common code. | |
| */ | |
| #define ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES) | |
| static int | |
| zil_bp_compare(const void *x1, const void *x2) | |
| { | |
| const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; | |
| const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; | |
| if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2)) | |
| return (-1); | |
| if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2)) | |
| return (1); | |
| if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2)) | |
| return (-1); | |
| if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2)) | |
| return (1); | |
| return (0); | |
| } | |
| static void | |
| zil_bp_tree_init(zilog_t *zilog) | |
| { | |
| avl_create(&zilog->zl_bp_tree, zil_bp_compare, | |
| sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); | |
| } | |
| static void | |
| zil_bp_tree_fini(zilog_t *zilog) | |
| { | |
| avl_tree_t *t = &zilog->zl_bp_tree; | |
| zil_bp_node_t *zn; | |
| void *cookie = NULL; | |
| while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) | |
| kmem_free(zn, sizeof (zil_bp_node_t)); | |
| avl_destroy(t); | |
| } | |
| int | |
| zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) | |
| { | |
| avl_tree_t *t = &zilog->zl_bp_tree; | |
| const dva_t *dva; | |
| zil_bp_node_t *zn; | |
| avl_index_t where; | |
| if (BP_IS_EMBEDDED(bp)) | |
| return (0); | |
| dva = BP_IDENTITY(bp); | |
| if (avl_find(t, dva, &where) != NULL) | |
| return (SET_ERROR(EEXIST)); | |
| zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); | |
| zn->zn_dva = *dva; | |
| avl_insert(t, zn, where); | |
| return (0); | |
| } | |
| static zil_header_t * | |
| zil_header_in_syncing_context(zilog_t *zilog) | |
| { | |
| return ((zil_header_t *)zilog->zl_header); | |
| } | |
| static void | |
| zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) | |
| { | |
| zio_cksum_t *zc = &bp->blk_cksum; | |
| zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); | |
| zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); | |
| zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); | |
| zc->zc_word[ZIL_ZC_SEQ] = 1ULL; | |
| } | |
| /* | |
| * Read a log block and make sure it's valid. | |
| */ | |
| static int | |
| zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst, | |
| char **end) | |
| { | |
| enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; | |
| arc_flags_t aflags = ARC_FLAG_WAIT; | |
| arc_buf_t *abuf = NULL; | |
| zbookmark_phys_t zb; | |
| int error; | |
| if (zilog->zl_header->zh_claim_txg == 0) | |
| zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; | |
| if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) | |
| zio_flags |= ZIO_FLAG_SPECULATIVE; | |
| SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], | |
| ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); | |
| error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, | |
| ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); | |
| if (error == 0) { | |
| zio_cksum_t cksum = bp->blk_cksum; | |
| /* | |
| * Validate the checksummed log block. | |
| * | |
| * Sequence numbers should be... sequential. The checksum | |
| * verifier for the next block should be bp's checksum plus 1. | |
| * | |
| * Also check the log chain linkage and size used. | |
| */ | |
| cksum.zc_word[ZIL_ZC_SEQ]++; | |
| if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { | |
| zil_chain_t *zilc = abuf->b_data; | |
| char *lr = (char *)(zilc + 1); | |
| uint64_t len = zilc->zc_nused - sizeof (zil_chain_t); | |
| if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, | |
| sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) { | |
| error = SET_ERROR(ECKSUM); | |
| } else { | |
| ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE); | |
| bcopy(lr, dst, len); | |
| *end = (char *)dst + len; | |
| *nbp = zilc->zc_next_blk; | |
| } | |
| } else { | |
| char *lr = abuf->b_data; | |
| uint64_t size = BP_GET_LSIZE(bp); | |
| zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; | |
| if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, | |
| sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || | |
| (zilc->zc_nused > (size - sizeof (*zilc)))) { | |
| error = SET_ERROR(ECKSUM); | |
| } else { | |
| ASSERT3U(zilc->zc_nused, <=, | |
| SPA_OLD_MAXBLOCKSIZE); | |
| bcopy(lr, dst, zilc->zc_nused); | |
| *end = (char *)dst + zilc->zc_nused; | |
| *nbp = zilc->zc_next_blk; | |
| } | |
| } | |
| arc_buf_destroy(abuf, &abuf); | |
| } | |
| return (error); | |
| } | |
| /* | |
| * Read a TX_WRITE log data block. | |
| */ | |
| static int | |
| zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) | |
| { | |
| enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; | |
| const blkptr_t *bp = &lr->lr_blkptr; | |
| arc_flags_t aflags = ARC_FLAG_WAIT; | |
| arc_buf_t *abuf = NULL; | |
| zbookmark_phys_t zb; | |
| int error; | |
| if (BP_IS_HOLE(bp)) { | |
| if (wbuf != NULL) | |
| bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length)); | |
| return (0); | |
| } | |
| if (zilog->zl_header->zh_claim_txg == 0) | |
| zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; | |
| SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, | |
| ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); | |
| error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, | |
| ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); | |
| if (error == 0) { | |
| if (wbuf != NULL) | |
| bcopy(abuf->b_data, wbuf, arc_buf_size(abuf)); | |
| arc_buf_destroy(abuf, &abuf); | |
| } | |
| return (error); | |
| } | |
| /* | |
| * Parse the intent log, and call parse_func for each valid record within. | |
| */ | |
| int | |
| zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, | |
| zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) | |
| { | |
| const zil_header_t *zh = zilog->zl_header; | |
| boolean_t claimed = !!zh->zh_claim_txg; | |
| uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; | |
| uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; | |
| uint64_t max_blk_seq = 0; | |
| uint64_t max_lr_seq = 0; | |
| uint64_t blk_count = 0; | |
| uint64_t lr_count = 0; | |
| blkptr_t blk, next_blk; | |
| char *lrbuf, *lrp; | |
| int error = 0; | |
| /* | |
| * Old logs didn't record the maximum zh_claim_lr_seq. | |
| */ | |
| if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) | |
| claim_lr_seq = UINT64_MAX; | |
| /* | |
| * Starting at the block pointed to by zh_log we read the log chain. | |
| * For each block in the chain we strongly check that block to | |
| * ensure its validity. We stop when an invalid block is found. | |
| * For each block pointer in the chain we call parse_blk_func(). | |
| * For each record in each valid block we call parse_lr_func(). | |
| * If the log has been claimed, stop if we encounter a sequence | |
| * number greater than the highest claimed sequence number. | |
| */ | |
| lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE); | |
| zil_bp_tree_init(zilog); | |
| for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { | |
| uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; | |
| int reclen; | |
| char *end; | |
| if (blk_seq > claim_blk_seq) | |
| break; | |
| if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0) | |
| break; | |
| ASSERT3U(max_blk_seq, <, blk_seq); | |
| max_blk_seq = blk_seq; | |
| blk_count++; | |
| if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) | |
| break; | |
| error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end); | |
| if (error != 0) | |
| break; | |
| for (lrp = lrbuf; lrp < end; lrp += reclen) { | |
| lr_t *lr = (lr_t *)lrp; | |
| reclen = lr->lrc_reclen; | |
| ASSERT3U(reclen, >=, sizeof (lr_t)); | |
| if (lr->lrc_seq > claim_lr_seq) | |
| goto done; | |
| if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0) | |
| goto done; | |
| ASSERT3U(max_lr_seq, <, lr->lrc_seq); | |
| max_lr_seq = lr->lrc_seq; | |
| lr_count++; | |
| } | |
| } | |
| done: | |
| zilog->zl_parse_error = error; | |
| zilog->zl_parse_blk_seq = max_blk_seq; | |
| zilog->zl_parse_lr_seq = max_lr_seq; | |
| zilog->zl_parse_blk_count = blk_count; | |
| zilog->zl_parse_lr_count = lr_count; | |
| ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) || | |
| (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq)); | |
| zil_bp_tree_fini(zilog); | |
| zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE); | |
| return (error); | |
| } | |
| static int | |
| zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) | |
| { | |
| /* | |
| * Claim log block if not already committed and not already claimed. | |
| * If tx == NULL, just verify that the block is claimable. | |
| */ | |
| if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg || | |
| zil_bp_tree_add(zilog, bp) != 0) | |
| return (0); | |
| return (zio_wait(zio_claim(NULL, zilog->zl_spa, | |
| tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, | |
| ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); | |
| } | |
| static int | |
| zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) | |
| { | |
| lr_write_t *lr = (lr_write_t *)lrc; | |
| int error; | |
| if (lrc->lrc_txtype != TX_WRITE) | |
| return (0); | |
| /* | |
| * If the block is not readable, don't claim it. This can happen | |
| * in normal operation when a log block is written to disk before | |
| * some of the dmu_sync() blocks it points to. In this case, the | |
| * transaction cannot have been committed to anyone (we would have | |
| * waited for all writes to be stable first), so it is semantically | |
| * correct to declare this the end of the log. | |
| */ | |
| if (lr->lr_blkptr.blk_birth >= first_txg && | |
| (error = zil_read_log_data(zilog, lr, NULL)) != 0) | |
| return (error); | |
| return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); | |
| } | |
| /* ARGSUSED */ | |
| static int | |
| zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) | |
| { | |
| zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp); | |
| return (0); | |
| } | |
| static int | |
| zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) | |
| { | |
| lr_write_t *lr = (lr_write_t *)lrc; | |
| blkptr_t *bp = &lr->lr_blkptr; | |
| /* | |
| * If we previously claimed it, we need to free it. | |
| */ | |
| if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE && | |
| bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 && | |
| !BP_IS_HOLE(bp)) | |
| zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); | |
| return (0); | |
| } | |
| static lwb_t * | |
| zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg) | |
| { | |
| lwb_t *lwb; | |
| lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); | |
| lwb->lwb_zilog = zilog; | |
| lwb->lwb_blk = *bp; | |
| lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp)); | |
| lwb->lwb_max_txg = txg; | |
| lwb->lwb_zio = NULL; | |
| lwb->lwb_tx = NULL; | |
| if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { | |
| lwb->lwb_nused = sizeof (zil_chain_t); | |
| lwb->lwb_sz = BP_GET_LSIZE(bp); | |
| } else { | |
| lwb->lwb_nused = 0; | |
| lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t); | |
| } | |
| mutex_enter(&zilog->zl_lock); | |
| list_insert_tail(&zilog->zl_lwb_list, lwb); | |
| mutex_exit(&zilog->zl_lock); | |
| return (lwb); | |
| } | |
| /* | |
| * Called when we create in-memory log transactions so that we know | |
| * to cleanup the itxs at the end of spa_sync(). | |
| */ | |
| void | |
| zilog_dirty(zilog_t *zilog, uint64_t txg) | |
| { | |
| dsl_pool_t *dp = zilog->zl_dmu_pool; | |
| dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); | |
| if (ds->ds_is_snapshot) | |
| panic("dirtying snapshot!"); | |
| if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) { | |
| /* up the hold count until we can be written out */ | |
| dmu_buf_add_ref(ds->ds_dbuf, zilog); | |
| } | |
| } | |
| boolean_t | |
| zilog_is_dirty(zilog_t *zilog) | |
| { | |
| dsl_pool_t *dp = zilog->zl_dmu_pool; | |
| for (int t = 0; t < TXG_SIZE; t++) { | |
| if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t)) | |
| return (B_TRUE); | |
| } | |
| return (B_FALSE); | |
| } | |
| /* | |
| * Create an on-disk intent log. | |
| */ | |
| static lwb_t * | |
| zil_create(zilog_t *zilog) | |
| { | |
| const zil_header_t *zh = zilog->zl_header; | |
| lwb_t *lwb = NULL; | |
| uint64_t txg = 0; | |
| dmu_tx_t *tx = NULL; | |
| blkptr_t blk; | |
| int error = 0; | |
| /* | |
| * Wait for any previous destroy to complete. | |
| */ | |
| txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); | |
| ASSERT(zh->zh_claim_txg == 0); | |
| ASSERT(zh->zh_replay_seq == 0); | |
| blk = zh->zh_log; | |
| /* | |
| * Allocate an initial log block if: | |
| * - there isn't one already | |
| * - the existing block is the wrong endianess | |
| */ | |
| if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { | |
| tx = dmu_tx_create(zilog->zl_os); | |
| VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); | |
| dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); | |
| txg = dmu_tx_get_txg(tx); | |
| if (!BP_IS_HOLE(&blk)) { | |
| zio_free_zil(zilog->zl_spa, txg, &blk); | |
| BP_ZERO(&blk); | |
| } | |
| error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL, | |
| ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY); | |
| if (error == 0) | |
| zil_init_log_chain(zilog, &blk); | |
| } | |
| /* | |
| * Allocate a log write buffer (lwb) for the first log block. | |
| */ | |
| if (error == 0) | |
| lwb = zil_alloc_lwb(zilog, &blk, txg); | |
| /* | |
| * If we just allocated the first log block, commit our transaction | |
| * and wait for zil_sync() to stuff the block poiner into zh_log. | |
| * (zh is part of the MOS, so we cannot modify it in open context.) | |
| */ | |
| if (tx != NULL) { | |
| dmu_tx_commit(tx); | |
| txg_wait_synced(zilog->zl_dmu_pool, txg); | |
| } | |
| ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); | |
| return (lwb); | |
| } | |
| /* | |
| * In one tx, free all log blocks and clear the log header. | |
| * If keep_first is set, then we're replaying a log with no content. | |
| * We want to keep the first block, however, so that the first | |
| * synchronous transaction doesn't require a txg_wait_synced() | |
| * in zil_create(). We don't need to txg_wait_synced() here either | |
| * when keep_first is set, because both zil_create() and zil_destroy() | |
| * will wait for any in-progress destroys to complete. | |
| */ | |
| void | |
| zil_destroy(zilog_t *zilog, boolean_t keep_first) | |
| { | |
| const zil_header_t *zh = zilog->zl_header; | |
| lwb_t *lwb; | |
| dmu_tx_t *tx; | |
| uint64_t txg; | |
| /* | |
| * Wait for any previous destroy to complete. | |
| */ | |
| txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); | |
| zilog->zl_old_header = *zh; /* debugging aid */ | |
| if (BP_IS_HOLE(&zh->zh_log)) | |
| return; | |
| tx = dmu_tx_create(zilog->zl_os); | |
| VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); | |
| dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); | |
| txg = dmu_tx_get_txg(tx); | |
| mutex_enter(&zilog->zl_lock); | |
| ASSERT3U(zilog->zl_destroy_txg, <, txg); | |
| zilog->zl_destroy_txg = txg; | |
| zilog->zl_keep_first = keep_first; | |
| if (!list_is_empty(&zilog->zl_lwb_list)) { | |
| ASSERT(zh->zh_claim_txg == 0); | |
| VERIFY(!keep_first); | |
| while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { | |
| list_remove(&zilog->zl_lwb_list, lwb); | |
| if (lwb->lwb_buf != NULL) | |
| zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); | |
| zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk); | |
| kmem_cache_free(zil_lwb_cache, lwb); | |
| } | |
| } else if (!keep_first) { | |
| zil_destroy_sync(zilog, tx); | |
| } | |
| mutex_exit(&zilog->zl_lock); | |
| dmu_tx_commit(tx); | |
| } | |
| void | |
| zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx) | |
| { | |
| ASSERT(list_is_empty(&zilog->zl_lwb_list)); | |
| (void) zil_parse(zilog, zil_free_log_block, | |
| zil_free_log_record, tx, zilog->zl_header->zh_claim_txg); | |
| } | |
| int | |
| zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg) | |
| { | |
| dmu_tx_t *tx = txarg; | |
| uint64_t first_txg = dmu_tx_get_txg(tx); | |
| zilog_t *zilog; | |
| zil_header_t *zh; | |
| objset_t *os; | |
| int error; | |
| error = dmu_objset_own_obj(dp, ds->ds_object, | |
| DMU_OST_ANY, B_FALSE, FTAG, &os); | |
| if (error != 0) { | |
| /* | |
| * EBUSY indicates that the objset is inconsistent, in which | |
| * case it can not have a ZIL. | |
| */ | |
| if (error != EBUSY) { | |
| cmn_err(CE_WARN, "can't open objset for %llu, error %u", | |
| (unsigned long long)ds->ds_object, error); | |
| } | |
| return (0); | |
| } | |
| zilog = dmu_objset_zil(os); | |
| zh = zil_header_in_syncing_context(zilog); | |
| if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) { | |
| if (!BP_IS_HOLE(&zh->zh_log)) | |
| zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log); | |
| BP_ZERO(&zh->zh_log); | |
| dsl_dataset_dirty(dmu_objset_ds(os), tx); | |
| dmu_objset_disown(os, FTAG); | |
| return (0); | |
| } | |
| /* | |
| * Claim all log blocks if we haven't already done so, and remember | |
| * the highest claimed sequence number. This ensures that if we can | |
| * read only part of the log now (e.g. due to a missing device), | |
| * but we can read the entire log later, we will not try to replay | |
| * or destroy beyond the last block we successfully claimed. | |
| */ | |
| ASSERT3U(zh->zh_claim_txg, <=, first_txg); | |
| if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { | |
| (void) zil_parse(zilog, zil_claim_log_block, | |
| zil_claim_log_record, tx, first_txg); | |
| zh->zh_claim_txg = first_txg; | |
| zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; | |
| zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; | |
| if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) | |
| zh->zh_flags |= ZIL_REPLAY_NEEDED; | |
| zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; | |
| dsl_dataset_dirty(dmu_objset_ds(os), tx); | |
| } | |
| ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); | |
| dmu_objset_disown(os, FTAG); | |
| return (0); | |
| } | |
| /* | |
| * Check the log by walking the log chain. | |
| * Checksum errors are ok as they indicate the end of the chain. | |
| * Any other error (no device or read failure) returns an error. | |
| */ | |
| /* ARGSUSED */ | |
| int | |
| zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx) | |
| { | |
| zilog_t *zilog; | |
| objset_t *os; | |
| blkptr_t *bp; | |
| int error; | |
| ASSERT(tx == NULL); | |
| error = dmu_objset_from_ds(ds, &os); | |
| if (error != 0) { | |
| cmn_err(CE_WARN, "can't open objset %llu, error %d", | |
| (unsigned long long)ds->ds_object, error); | |
| return (0); | |
| } | |
| zilog = dmu_objset_zil(os); | |
| bp = (blkptr_t *)&zilog->zl_header->zh_log; | |
| /* | |
| * Check the first block and determine if it's on a log device | |
| * which may have been removed or faulted prior to loading this | |
| * pool. If so, there's no point in checking the rest of the log | |
| * as its content should have already been synced to the pool. | |
| */ | |
| if (!BP_IS_HOLE(bp)) { | |
| vdev_t *vd; | |
| boolean_t valid = B_TRUE; | |
| spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); | |
| vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); | |
| if (vd->vdev_islog && vdev_is_dead(vd)) | |
| valid = vdev_log_state_valid(vd); | |
| spa_config_exit(os->os_spa, SCL_STATE, FTAG); | |
| if (!valid) | |
| return (0); | |
| } | |
| /* | |
| * Because tx == NULL, zil_claim_log_block() will not actually claim | |
| * any blocks, but just determine whether it is possible to do so. | |
| * In addition to checking the log chain, zil_claim_log_block() | |
| * will invoke zio_claim() with a done func of spa_claim_notify(), | |
| * which will update spa_max_claim_txg. See spa_load() for details. | |
| */ | |
| error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, | |
| zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa)); | |
| return ((error == ECKSUM || error == ENOENT) ? 0 : error); | |
| } | |
| static int | |
| zil_vdev_compare(const void *x1, const void *x2) | |
| { | |
| const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; | |
| const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; | |
| if (v1 < v2) | |
| return (-1); | |
| if (v1 > v2) | |
| return (1); | |
| return (0); | |
| } | |
| void | |
| zil_add_block(zilog_t *zilog, const blkptr_t *bp) | |
| { | |
| avl_tree_t *t = &zilog->zl_vdev_tree; | |
| avl_index_t where; | |
| zil_vdev_node_t *zv, zvsearch; | |
| int ndvas = BP_GET_NDVAS(bp); | |
| int i; | |
| if (zfs_nocacheflush) | |
| return; | |
| ASSERT(zilog->zl_writer); | |
| /* | |
| * Even though we're zl_writer, we still need a lock because the | |
| * zl_get_data() callbacks may have dmu_sync() done callbacks | |
| * that will run concurrently. | |
| */ | |
| mutex_enter(&zilog->zl_vdev_lock); | |
| for (i = 0; i < ndvas; i++) { | |
| zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); | |
| if (avl_find(t, &zvsearch, &where) == NULL) { | |
| zv = kmem_alloc(sizeof (*zv), KM_SLEEP); | |
| zv->zv_vdev = zvsearch.zv_vdev; | |
| avl_insert(t, zv, where); | |
| } | |
| } | |
| mutex_exit(&zilog->zl_vdev_lock); | |
| } | |
| static void | |
| zil_flush_vdevs(zilog_t *zilog) | |
| { | |
| spa_t *spa = zilog->zl_spa; | |
| avl_tree_t *t = &zilog->zl_vdev_tree; | |
| void *cookie = NULL; | |
| zil_vdev_node_t *zv; | |
| zio_t *zio; | |
| ASSERT(zilog->zl_writer); | |
| /* | |
| * We don't need zl_vdev_lock here because we're the zl_writer, | |
| * and all zl_get_data() callbacks are done. | |
| */ | |
| if (avl_numnodes(t) == 0) | |
| return; | |
| spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); | |
| zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); | |
| while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { | |
| vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); | |
| if (vd != NULL) | |
| zio_flush(zio, vd); | |
| kmem_free(zv, sizeof (*zv)); | |
| } | |
| /* | |
| * Wait for all the flushes to complete. Not all devices actually | |
| * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails. | |
| */ | |
| (void) zio_wait(zio); | |
| spa_config_exit(spa, SCL_STATE, FTAG); | |
| } | |
| /* | |
| * Function called when a log block write completes | |
| */ | |
| static void | |
| zil_lwb_write_done(zio_t *zio) | |
| { | |
| lwb_t *lwb = zio->io_private; | |
| zilog_t *zilog = lwb->lwb_zilog; | |
| dmu_tx_t *tx = lwb->lwb_tx; | |
| ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); | |
| ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); | |
| ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); | |
| ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); | |
| ASSERT(!BP_IS_GANG(zio->io_bp)); | |
| ASSERT(!BP_IS_HOLE(zio->io_bp)); | |
| ASSERT(BP_GET_FILL(zio->io_bp) == 0); | |
| /* | |
| * Ensure the lwb buffer pointer is cleared before releasing | |
| * the txg. If we have had an allocation failure and | |
| * the txg is waiting to sync then we want want zil_sync() | |
| * to remove the lwb so that it's not picked up as the next new | |
| * one in zil_commit_writer(). zil_sync() will only remove | |
| * the lwb if lwb_buf is null. | |
| */ | |
| zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); | |
| mutex_enter(&zilog->zl_lock); | |
| lwb->lwb_buf = NULL; | |
| lwb->lwb_tx = NULL; | |
| mutex_exit(&zilog->zl_lock); | |
| /* | |
| * Now that we've written this log block, we have a stable pointer | |
| * to the next block in the chain, so it's OK to let the txg in | |
| * which we allocated the next block sync. | |
| */ | |
| dmu_tx_commit(tx); | |
| } | |
| /* | |
| * Initialize the io for a log block. | |
| */ | |
| static void | |
| zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb) | |
| { | |
| zbookmark_phys_t zb; | |
| SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], | |
| ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, | |
| lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); | |
| if (zilog->zl_root_zio == NULL) { | |
| zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL, | |
| ZIO_FLAG_CANFAIL); | |
| } | |
| if (lwb->lwb_zio == NULL) { | |
| lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa, | |
| 0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk), | |
| zil_lwb_write_done, lwb, ZIO_PRIORITY_SYNC_WRITE, | |
| ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb); | |
| } | |
| } | |
| /* | |
| * Define a limited set of intent log block sizes. | |
| * | |
| * These must be a multiple of 4KB. Note only the amount used (again | |
| * aligned to 4KB) actually gets written. However, we can't always just | |
| * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted. | |
| */ | |
| uint64_t zil_block_buckets[] = { | |
| 4096, /* non TX_WRITE */ | |
| 8192+4096, /* data base */ | |
| 32*1024 + 4096, /* NFS writes */ | |
| UINT64_MAX | |
| }; | |
| /* | |
| * Use the slog as long as the logbias is 'latency' and the current commit size | |
| * is less than the limit or the total list size is less than 2X the limit. | |
| * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX. | |
| */ | |
| uint64_t zil_slog_limit = 1024 * 1024; | |
| #define USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \ | |
| (((zilog)->zl_cur_used < zil_slog_limit) || \ | |
| ((zilog)->zl_itx_list_sz < (zil_slog_limit << 1)))) | |
| /* | |
| * Start a log block write and advance to the next log block. | |
| * Calls are serialized. | |
| */ | |
| static lwb_t * | |
| zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb) | |
| { | |
| lwb_t *nlwb = NULL; | |
| zil_chain_t *zilc; | |
| spa_t *spa = zilog->zl_spa; | |
| blkptr_t *bp; | |
| dmu_tx_t *tx; | |
| uint64_t txg; | |
| uint64_t zil_blksz, wsz; | |
| int i, error; | |
| if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { | |
| zilc = (zil_chain_t *)lwb->lwb_buf; | |
| bp = &zilc->zc_next_blk; | |
| } else { | |
| zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); | |
| bp = &zilc->zc_next_blk; | |
| } | |
| ASSERT(lwb->lwb_nused <= lwb->lwb_sz); | |
| /* | |
| * Allocate the next block and save its address in this block | |
| * before writing it in order to establish the log chain. | |
| * Note that if the allocation of nlwb synced before we wrote | |
| * the block that points at it (lwb), we'd leak it if we crashed. | |
| * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done(). | |
| * We dirty the dataset to ensure that zil_sync() will be called | |
| * to clean up in the event of allocation failure or I/O failure. | |
| */ | |
| tx = dmu_tx_create(zilog->zl_os); | |
| VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); | |
| dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); | |
| txg = dmu_tx_get_txg(tx); | |
| lwb->lwb_tx = tx; | |
| /* | |
| * Log blocks are pre-allocated. Here we select the size of the next | |
| * block, based on size used in the last block. | |
| * - first find the smallest bucket that will fit the block from a | |
| * limited set of block sizes. This is because it's faster to write | |
| * blocks allocated from the same metaslab as they are adjacent or | |
| * close. | |
| * - next find the maximum from the new suggested size and an array of | |
| * previous sizes. This lessens a picket fence effect of wrongly | |
| * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k | |
| * requests. | |
| * | |
| * Note we only write what is used, but we can't just allocate | |
| * the maximum block size because we can exhaust the available | |
| * pool log space. | |
| */ | |
| zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); | |
| for (i = 0; zil_blksz > zil_block_buckets[i]; i++) | |
| continue; | |
| zil_blksz = zil_block_buckets[i]; | |
| if (zil_blksz == UINT64_MAX) | |
| zil_blksz = SPA_OLD_MAXBLOCKSIZE; | |
| zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; | |
| for (i = 0; i < ZIL_PREV_BLKS; i++) | |
| zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); | |
| zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); | |
| BP_ZERO(bp); | |
| /* pass the old blkptr in order to spread log blocks across devs */ | |
| error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz, | |
| USE_SLOG(zilog)); | |
| if (error == 0) { | |
| ASSERT3U(bp->blk_birth, ==, txg); | |
| bp->blk_cksum = lwb->lwb_blk.blk_cksum; | |
| bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; | |
| /* | |
| * Allocate a new log write buffer (lwb). | |
| */ | |
| nlwb = zil_alloc_lwb(zilog, bp, txg); | |
| /* Record the block for later vdev flushing */ | |
| zil_add_block(zilog, &lwb->lwb_blk); | |
| } | |
| if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { | |
| /* For Slim ZIL only write what is used. */ | |
| wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t); | |
| ASSERT3U(wsz, <=, lwb->lwb_sz); | |
| zio_shrink(lwb->lwb_zio, wsz); | |
| } else { | |
| wsz = lwb->lwb_sz; | |
| } | |
| zilc->zc_pad = 0; | |
| zilc->zc_nused = lwb->lwb_nused; | |
| zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; | |
| /* | |
| * clear unused data for security | |
| */ | |
| bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused); | |
| zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */ | |
| /* | |
| * If there was an allocation failure then nlwb will be null which | |
| * forces a txg_wait_synced(). | |
| */ | |
| return (nlwb); | |
| } | |
| static lwb_t * | |
| zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) | |
| { | |
| lr_t *lrc = &itx->itx_lr; /* common log record */ | |
| lr_write_t *lrw = (lr_write_t *)lrc; | |
| char *lr_buf; | |
| uint64_t txg = lrc->lrc_txg; | |
| uint64_t reclen = lrc->lrc_reclen; | |
| uint64_t dlen = 0; | |
| if (lwb == NULL) | |
| return (NULL); | |
| ASSERT(lwb->lwb_buf != NULL); | |
| ASSERT(zilog_is_dirty(zilog) || | |
| spa_freeze_txg(zilog->zl_spa) != UINT64_MAX); | |
| if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) | |
| dlen = P2ROUNDUP_TYPED( | |
| lrw->lr_length, sizeof (uint64_t), uint64_t); | |
| zilog->zl_cur_used += (reclen + dlen); | |
| zil_lwb_write_init(zilog, lwb); | |
| /* | |
| * If this record won't fit in the current log block, start a new one. | |
| */ | |
| if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) { | |
| lwb = zil_lwb_write_start(zilog, lwb); | |
| if (lwb == NULL) | |
| return (NULL); | |
| zil_lwb_write_init(zilog, lwb); | |
| ASSERT(LWB_EMPTY(lwb)); | |
| if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) { | |
| txg_wait_synced(zilog->zl_dmu_pool, txg); | |
| return (lwb); | |
| } | |
| } | |
| lr_buf = lwb->lwb_buf + lwb->lwb_nused; | |
| bcopy(lrc, lr_buf, reclen); | |
| lrc = (lr_t *)lr_buf; | |
| lrw = (lr_write_t *)lrc; | |
| /* | |
| * If it's a write, fetch the data or get its blkptr as appropriate. | |
| */ | |
| if (lrc->lrc_txtype == TX_WRITE) { | |
| if (txg > spa_freeze_txg(zilog->zl_spa)) | |
| txg_wait_synced(zilog->zl_dmu_pool, txg); | |
| if (itx->itx_wr_state != WR_COPIED) { | |
| char *dbuf; | |
| int error; | |
| if (dlen) { | |
| ASSERT(itx->itx_wr_state == WR_NEED_COPY); | |
| dbuf = lr_buf + reclen; | |
| lrw->lr_common.lrc_reclen += dlen; | |
| } else { | |
| ASSERT(itx->itx_wr_state == WR_INDIRECT); | |
| dbuf = NULL; | |
| } | |
| error = zilog->zl_get_data( | |
| itx->itx_private, lrw, dbuf, lwb->lwb_zio); | |
| if (error == EIO) { | |
| txg_wait_synced(zilog->zl_dmu_pool, txg); | |
| return (lwb); | |
| } | |
| if (error != 0) { | |
| ASSERT(error == ENOENT || error == EEXIST || | |
| error == EALREADY); | |
| return (lwb); | |
| } | |
| } | |
| } | |
| /* | |
| * We're actually making an entry, so update lrc_seq to be the | |
| * log record sequence number. Note that this is generally not | |
| * equal to the itx sequence number because not all transactions | |
| * are synchronous, and sometimes spa_sync() gets there first. | |
| */ | |
| lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */ | |
| lwb->lwb_nused += reclen + dlen; | |
| lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); | |
| ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz); | |
| ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t))); | |
| return (lwb); | |
| } | |
| itx_t * | |
| zil_itx_create(uint64_t txtype, size_t lrsize) | |
| { | |
| itx_t *itx; | |
| lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); | |
| itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); | |
| itx->itx_lr.lrc_txtype = txtype; | |
| itx->itx_lr.lrc_reclen = lrsize; | |
| itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */ | |
| itx->itx_lr.lrc_seq = 0; /* defensive */ | |
| itx->itx_sync = B_TRUE; /* default is synchronous */ | |
| return (itx); | |
| } | |
| void | |
| zil_itx_destroy(itx_t *itx) | |
| { | |
| kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen); | |
| } | |
| /* | |
| * Free up the sync and async itxs. The itxs_t has already been detached | |
| * so no locks are needed. | |
| */ | |
| static void | |
| zil_itxg_clean(itxs_t *itxs) | |
| { | |
| itx_t *itx; | |
| list_t *list; | |
| avl_tree_t *t; | |
| void *cookie; | |
| itx_async_node_t *ian; | |
| list = &itxs->i_sync_list; | |
| while ((itx = list_head(list)) != NULL) { | |
| list_remove(list, itx); | |
| kmem_free(itx, offsetof(itx_t, itx_lr) + | |
| itx->itx_lr.lrc_reclen); | |
| } | |
| cookie = NULL; | |
| t = &itxs->i_async_tree; | |
| while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { | |
| list = &ian->ia_list; | |
| while ((itx = list_head(list)) != NULL) { | |
| list_remove(list, itx); | |
| kmem_free(itx, offsetof(itx_t, itx_lr) + | |
| itx->itx_lr.lrc_reclen); | |
| } | |
| list_destroy(list); | |
| kmem_free(ian, sizeof (itx_async_node_t)); | |
| } | |
| avl_destroy(t); | |
| kmem_free(itxs, sizeof (itxs_t)); | |
| } | |
| static int | |
| zil_aitx_compare(const void *x1, const void *x2) | |
| { | |
| const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; | |
| const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; | |
| if (o1 < o2) | |
| return (-1); | |
| if (o1 > o2) | |
| return (1); | |
| return (0); | |
| } | |
| /* | |
| * Remove all async itx with the given oid. | |
| */ | |
| static void | |
| zil_remove_async(zilog_t *zilog, uint64_t oid) | |
| { | |
| uint64_t otxg, txg; | |
| itx_async_node_t *ian; | |
| avl_tree_t *t; | |
| avl_index_t where; | |
| list_t clean_list; | |
| itx_t *itx; | |
| ASSERT(oid != 0); | |
| list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); | |
| if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ | |
| otxg = ZILTEST_TXG; | |
| else | |
| otxg = spa_last_synced_txg(zilog->zl_spa) + 1; | |
| for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { | |
| itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; | |
| mutex_enter(&itxg->itxg_lock); | |
| if (itxg->itxg_txg != txg) { | |
| mutex_exit(&itxg->itxg_lock); | |
| continue; | |
| } | |
| /* | |
| * Locate the object node and append its list. | |
| */ | |
| t = &itxg->itxg_itxs->i_async_tree; | |
| ian = avl_find(t, &oid, &where); | |
| if (ian != NULL) | |
| list_move_tail(&clean_list, &ian->ia_list); | |
| mutex_exit(&itxg->itxg_lock); | |
| } | |
| while ((itx = list_head(&clean_list)) != NULL) { | |
| list_remove(&clean_list, itx); | |
| kmem_free(itx, offsetof(itx_t, itx_lr) + | |
| itx->itx_lr.lrc_reclen); | |
| } | |
| list_destroy(&clean_list); | |
| } | |
| void | |
| zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) | |
| { | |
| uint64_t txg; | |
| itxg_t *itxg; | |
| itxs_t *itxs, *clean = NULL; | |
| /* | |
| * Object ids can be re-instantiated in the next txg so | |
| * remove any async transactions to avoid future leaks. | |
| * This can happen if a fsync occurs on the re-instantiated | |
| * object for a WR_INDIRECT or WR_NEED_COPY write, which gets | |
| * the new file data and flushes a write record for the old object. | |
| */ | |
| if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE) | |
| zil_remove_async(zilog, itx->itx_oid); | |
| /* | |
| * Ensure the data of a renamed file is committed before the rename. | |
| */ | |
| if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) | |
| zil_async_to_sync(zilog, itx->itx_oid); | |
| if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) | |
| txg = ZILTEST_TXG; | |
| else | |
| txg = dmu_tx_get_txg(tx); | |
| itxg = &zilog->zl_itxg[txg & TXG_MASK]; | |
| mutex_enter(&itxg->itxg_lock); | |
| itxs = itxg->itxg_itxs; | |
| if (itxg->itxg_txg != txg) { | |
| if (itxs != NULL) { | |
| /* | |
| * The zil_clean callback hasn't got around to cleaning | |
| * this itxg. Save the itxs for release below. | |
| * This should be rare. | |
| */ | |
| atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod); | |
| itxg->itxg_sod = 0; | |
| clean = itxg->itxg_itxs; | |
| } | |
| ASSERT(itxg->itxg_sod == 0); | |
| itxg->itxg_txg = txg; | |
| itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP); | |
| list_create(&itxs->i_sync_list, sizeof (itx_t), | |
| offsetof(itx_t, itx_node)); | |
| avl_create(&itxs->i_async_tree, zil_aitx_compare, | |
| sizeof (itx_async_node_t), | |
| offsetof(itx_async_node_t, ia_node)); | |
| } | |
| if (itx->itx_sync) { | |
| list_insert_tail(&itxs->i_sync_list, itx); | |
| atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod); | |
| itxg->itxg_sod += itx->itx_sod; | |
| } else { | |
| avl_tree_t *t = &itxs->i_async_tree; | |
| uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid; | |
| itx_async_node_t *ian; | |
| avl_index_t where; | |
| ian = avl_find(t, &foid, &where); | |
| if (ian == NULL) { | |
| ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP); | |
| list_create(&ian->ia_list, sizeof (itx_t), | |
| offsetof(itx_t, itx_node)); | |
| ian->ia_foid = foid; | |
| avl_insert(t, ian, where); | |
| } | |
| list_insert_tail(&ian->ia_list, itx); | |
| } | |
| itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); | |
| zilog_dirty(zilog, txg); | |
| mutex_exit(&itxg->itxg_lock); | |
| /* Release the old itxs now we've dropped the lock */ | |
| if (clean != NULL) | |
| zil_itxg_clean(clean); | |
| } | |
| /* | |
| * If there are any in-memory intent log transactions which have now been | |
| * synced then start up a taskq to free them. We should only do this after we | |
| * have written out the uberblocks (i.e. txg has been comitted) so that | |
| * don't inadvertently clean out in-memory log records that would be required | |
| * by zil_commit(). | |
| */ | |
| void | |
| zil_clean(zilog_t *zilog, uint64_t synced_txg) | |
| { | |
| itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; | |
| itxs_t *clean_me; | |
| mutex_enter(&itxg->itxg_lock); | |
| if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { | |
| mutex_exit(&itxg->itxg_lock); | |
| return; | |
| } | |
| ASSERT3U(itxg->itxg_txg, <=, synced_txg); | |
| ASSERT(itxg->itxg_txg != 0); | |
| ASSERT(zilog->zl_clean_taskq != NULL); | |
| atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod); | |
| itxg->itxg_sod = 0; | |
| clean_me = itxg->itxg_itxs; | |
| itxg->itxg_itxs = NULL; | |
| itxg->itxg_txg = 0; | |
| mutex_exit(&itxg->itxg_lock); | |
| /* | |
| * Preferably start a task queue to free up the old itxs but | |
| * if taskq_dispatch can't allocate resources to do that then | |
| * free it in-line. This should be rare. Note, using TQ_SLEEP | |
| * created a bad performance problem. | |
| */ | |
| if (taskq_dispatch(zilog->zl_clean_taskq, | |
| (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL) | |
| zil_itxg_clean(clean_me); | |
| } | |
| /* | |
| * Get the list of itxs to commit into zl_itx_commit_list. | |
| */ | |
| static void | |
| zil_get_commit_list(zilog_t *zilog) | |
| { | |
| uint64_t otxg, txg; | |
| list_t *commit_list = &zilog->zl_itx_commit_list; | |
| uint64_t push_sod = 0; | |
| if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ | |
| otxg = ZILTEST_TXG; | |
| else | |
| otxg = spa_last_synced_txg(zilog->zl_spa) + 1; | |
| for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { | |
| itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; | |
| mutex_enter(&itxg->itxg_lock); | |
| if (itxg->itxg_txg != txg) { | |
| mutex_exit(&itxg->itxg_lock); | |
| continue; | |
| } | |
| list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list); | |
| push_sod += itxg->itxg_sod; | |
| itxg->itxg_sod = 0; | |
| mutex_exit(&itxg->itxg_lock); | |
| } | |
| atomic_add_64(&zilog->zl_itx_list_sz, -push_sod); | |
| } | |
| /* | |
| * Move the async itxs for a specified object to commit into sync lists. | |
| */ | |
| static void | |
| zil_async_to_sync(zilog_t *zilog, uint64_t foid) | |
| { | |
| uint64_t otxg, txg; | |
| itx_async_node_t *ian; | |
| avl_tree_t *t; | |
| avl_index_t where; | |
| if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ | |
| otxg = ZILTEST_TXG; | |
| else | |
| otxg = spa_last_synced_txg(zilog->zl_spa) + 1; | |
| for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { | |
| itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; | |
| mutex_enter(&itxg->itxg_lock); | |
| if (itxg->itxg_txg != txg) { | |
| mutex_exit(&itxg->itxg_lock); | |
| continue; | |
| } | |
| /* | |
| * If a foid is specified then find that node and append its | |
| * list. Otherwise walk the tree appending all the lists | |
| * to the sync list. We add to the end rather than the | |
| * beginning to ensure the create has happened. | |
| */ | |
| t = &itxg->itxg_itxs->i_async_tree; | |
| if (foid != 0) { | |
| ian = avl_find(t, &foid, &where); | |
| if (ian != NULL) { | |
| list_move_tail(&itxg->itxg_itxs->i_sync_list, | |
| &ian->ia_list); | |
| } | |
| } else { | |
| void *cookie = NULL; | |
| while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { | |
| list_move_tail(&itxg->itxg_itxs->i_sync_list, | |
| &ian->ia_list); | |
| list_destroy(&ian->ia_list); | |
| kmem_free(ian, sizeof (itx_async_node_t)); | |
| } | |
| } | |
| mutex_exit(&itxg->itxg_lock); | |
| } | |
| } | |
| static void | |
| zil_commit_writer(zilog_t *zilog) | |
| { | |
| uint64_t txg; | |
| itx_t *itx; | |
| lwb_t *lwb; | |
| spa_t *spa = zilog->zl_spa; | |
| int error = 0; | |
| ASSERT(zilog->zl_root_zio == NULL); | |
| mutex_exit(&zilog->zl_lock); | |
| zil_get_commit_list(zilog); | |
| /* | |
| * Return if there's nothing to commit before we dirty the fs by | |
| * calling zil_create(). | |
| */ | |
| if (list_head(&zilog->zl_itx_commit_list) == NULL) { | |
| mutex_enter(&zilog->zl_lock); | |
| return; | |
| } | |
| if (zilog->zl_suspend) { | |
| lwb = NULL; | |
| } else { | |
| lwb = list_tail(&zilog->zl_lwb_list); | |
| if (lwb == NULL) | |
| lwb = zil_create(zilog); | |
| } | |
| DTRACE_PROBE1(zil__cw1, zilog_t *, zilog); | |
| while (itx = list_head(&zilog->zl_itx_commit_list)) { | |
| txg = itx->itx_lr.lrc_txg; | |
| ASSERT(txg); | |
| if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa)) | |
| lwb = zil_lwb_commit(zilog, itx, lwb); | |
| list_remove(&zilog->zl_itx_commit_list, itx); | |
| kmem_free(itx, offsetof(itx_t, itx_lr) | |
| + itx->itx_lr.lrc_reclen); | |
| } | |
| DTRACE_PROBE1(zil__cw2, zilog_t *, zilog); | |
| /* write the last block out */ | |
| if (lwb != NULL && lwb->lwb_zio != NULL) | |
| lwb = zil_lwb_write_start(zilog, lwb); | |
| zilog->zl_cur_used = 0; | |
| /* | |
| * Wait if necessary for the log blocks to be on stable storage. | |
| */ | |
| if (zilog->zl_root_zio) { | |
| error = zio_wait(zilog->zl_root_zio); | |
| zilog->zl_root_zio = NULL; | |
| zil_flush_vdevs(zilog); | |
| } | |
| if (error || lwb == NULL) | |
| txg_wait_synced(zilog->zl_dmu_pool, 0); | |
| mutex_enter(&zilog->zl_lock); | |
| /* | |
| * Remember the highest committed log sequence number for ztest. | |
| * We only update this value when all the log writes succeeded, | |
| * because ztest wants to ASSERT that it got the whole log chain. | |
| */ | |
| if (error == 0 && lwb != NULL) | |
| zilog->zl_commit_lr_seq = zilog->zl_lr_seq; | |
| } | |
| /* | |
| * Commit zfs transactions to stable storage. | |
| * If foid is 0 push out all transactions, otherwise push only those | |
| * for that object or might reference that object. | |
| * | |
| * itxs are committed in batches. In a heavily stressed zil there will be | |
| * a commit writer thread who is writing out a bunch of itxs to the log | |
| * for a set of committing threads (cthreads) in the same batch as the writer. | |
| * Those cthreads are all waiting on the same cv for that batch. | |
| * | |
| * There will also be a different and growing batch of threads that are | |
| * waiting to commit (qthreads). When the committing batch completes | |
| * a transition occurs such that the cthreads exit and the qthreads become | |
| * cthreads. One of the new cthreads becomes the writer thread for the | |
| * batch. Any new threads arriving become new qthreads. | |
| * | |
| * Only 2 condition variables are needed and there's no transition | |
| * between the two cvs needed. They just flip-flop between qthreads | |
| * and cthreads. | |
| * | |
| * Using this scheme we can efficiently wakeup up only those threads | |
| * that have been committed. | |
| */ | |
| void | |
| zil_commit(zilog_t *zilog, uint64_t foid) | |
| { | |
| uint64_t mybatch; | |
| if (zilog->zl_sync == ZFS_SYNC_DISABLED) | |
| return; | |
| /* move the async itxs for the foid to the sync queues */ | |
| zil_async_to_sync(zilog, foid); | |
| mutex_enter(&zilog->zl_lock); | |
| mybatch = zilog->zl_next_batch; | |
| while (zilog->zl_writer) { | |
| cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock); | |
| if (mybatch <= zilog->zl_com_batch) { | |
| mutex_exit(&zilog->zl_lock); | |
| return; | |
| } | |
| } | |
| zilog->zl_next_batch++; | |
| zilog->zl_writer = B_TRUE; | |
| zil_commit_writer(zilog); | |
| zilog->zl_com_batch = mybatch; | |
| zilog->zl_writer = B_FALSE; | |
| mutex_exit(&zilog->zl_lock); | |
| /* wake up one thread to become the next writer */ | |
| cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]); | |
| /* wake up all threads waiting for this batch to be committed */ | |
| cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]); | |
| } | |
| /* | |
| * Called in syncing context to free committed log blocks and update log header. | |
| */ | |
| void | |
| zil_sync(zilog_t *zilog, dmu_tx_t *tx) | |
| { | |
| zil_header_t *zh = zil_header_in_syncing_context(zilog); | |
| uint64_t txg = dmu_tx_get_txg(tx); | |
| spa_t *spa = zilog->zl_spa; | |
| uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; | |
| lwb_t *lwb; | |
| /* | |
| * We don't zero out zl_destroy_txg, so make sure we don't try | |
| * to destroy it twice. | |
| */ | |
| if (spa_sync_pass(spa) != 1) | |
| return; | |
| mutex_enter(&zilog->zl_lock); | |
| ASSERT(zilog->zl_stop_sync == 0); | |
| if (*replayed_seq != 0) { | |
| ASSERT(zh->zh_replay_seq < *replayed_seq); | |
| zh->zh_replay_seq = *replayed_seq; | |
| *replayed_seq = 0; | |
| } | |
| if (zilog->zl_destroy_txg == txg) { | |
| blkptr_t blk = zh->zh_log; | |
| ASSERT(list_head(&zilog->zl_lwb_list) == NULL); | |
| bzero(zh, sizeof (zil_header_t)); | |
| bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq)); | |
| if (zilog->zl_keep_first) { | |
| /* | |
| * If this block was part of log chain that couldn't | |
| * be claimed because a device was missing during | |
| * zil_claim(), but that device later returns, | |
| * then this block could erroneously appear valid. | |
| * To guard against this, assign a new GUID to the new | |
| * log chain so it doesn't matter what blk points to. | |
| */ | |
| zil_init_log_chain(zilog, &blk); | |
| zh->zh_log = blk; | |
| } | |
| } | |
| while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { | |
| zh->zh_log = lwb->lwb_blk; | |
| if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) | |
| break; | |
| list_remove(&zilog->zl_lwb_list, lwb); | |
| zio_free_zil(spa, txg, &lwb->lwb_blk); | |
| kmem_cache_free(zil_lwb_cache, lwb); | |
| /* | |
| * If we don't have anything left in the lwb list then | |
| * we've had an allocation failure and we need to zero | |
| * out the zil_header blkptr so that we don't end | |
| * up freeing the same block twice. | |
| */ | |
| if (list_head(&zilog->zl_lwb_list) == NULL) | |
| BP_ZERO(&zh->zh_log); | |
| } | |
| mutex_exit(&zilog->zl_lock); | |
| } | |
| void | |
| zil_init(void) | |
| { | |
| zil_lwb_cache = kmem_cache_create("zil_lwb_cache", | |
| sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0); | |
| } | |
| void | |
| zil_fini(void) | |
| { | |
| kmem_cache_destroy(zil_lwb_cache); | |
| } | |
| void | |
| zil_set_sync(zilog_t *zilog, uint64_t sync) | |
| { | |
| zilog->zl_sync = sync; | |
| } | |
| void | |
| zil_set_logbias(zilog_t *zilog, uint64_t logbias) | |
| { | |
| zilog->zl_logbias = logbias; | |
| } | |
| zilog_t * | |
| zil_alloc(objset_t *os, zil_header_t *zh_phys) | |
| { | |
| zilog_t *zilog; | |
| zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); | |
| zilog->zl_header = zh_phys; | |
| zilog->zl_os = os; | |
| zilog->zl_spa = dmu_objset_spa(os); | |
| zilog->zl_dmu_pool = dmu_objset_pool(os); | |
| zilog->zl_destroy_txg = TXG_INITIAL - 1; | |
| zilog->zl_logbias = dmu_objset_logbias(os); | |
| zilog->zl_sync = dmu_objset_syncprop(os); | |
| zilog->zl_next_batch = 1; | |
| mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); | |
| for (int i = 0; i < TXG_SIZE; i++) { | |
| mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, | |
| MUTEX_DEFAULT, NULL); | |
| } | |
| list_create(&zilog->zl_lwb_list, sizeof (lwb_t), | |
| offsetof(lwb_t, lwb_node)); | |
| list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), | |
| offsetof(itx_t, itx_node)); | |
| mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL); | |
| avl_create(&zilog->zl_vdev_tree, zil_vdev_compare, | |
| sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); | |
| cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL); | |
| cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); | |
| cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL); | |
| cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL); | |
| return (zilog); | |
| } | |
| void | |
| zil_free(zilog_t *zilog) | |
| { | |
| zilog->zl_stop_sync = 1; | |
| ASSERT0(zilog->zl_suspend); | |
| ASSERT0(zilog->zl_suspending); | |
| ASSERT(list_is_empty(&zilog->zl_lwb_list)); | |
| list_destroy(&zilog->zl_lwb_list); | |
| avl_destroy(&zilog->zl_vdev_tree); | |
| mutex_destroy(&zilog->zl_vdev_lock); | |
| ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); | |
| list_destroy(&zilog->zl_itx_commit_list); | |
| for (int i = 0; i < TXG_SIZE; i++) { | |
| /* | |
| * It's possible for an itx to be generated that doesn't dirty | |
| * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() | |
| * callback to remove the entry. We remove those here. | |
| * | |
| * Also free up the ziltest itxs. | |
| */ | |
| if (zilog->zl_itxg[i].itxg_itxs) | |
| zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); | |
| mutex_destroy(&zilog->zl_itxg[i].itxg_lock); | |
| } | |
| mutex_destroy(&zilog->zl_lock); | |
| cv_destroy(&zilog->zl_cv_writer); | |
| cv_destroy(&zilog->zl_cv_suspend); | |
| cv_destroy(&zilog->zl_cv_batch[0]); | |
| cv_destroy(&zilog->zl_cv_batch[1]); | |
| kmem_free(zilog, sizeof (zilog_t)); | |
| } | |
| /* | |
| * Open an intent log. | |
| */ | |
| zilog_t * | |
| zil_open(objset_t *os, zil_get_data_t *get_data) | |
| { | |
| zilog_t *zilog = dmu_objset_zil(os); | |
| ASSERT(zilog->zl_clean_taskq == NULL); | |
| ASSERT(zilog->zl_get_data == NULL); | |
| ASSERT(list_is_empty(&zilog->zl_lwb_list)); | |
| zilog->zl_get_data = get_data; | |
| zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri, | |
| 2, 2, TASKQ_PREPOPULATE); | |
| return (zilog); | |
| } | |
| /* | |
| * Close an intent log. | |
| */ | |
| void | |
| zil_close(zilog_t *zilog) | |
| { | |
| lwb_t *lwb; | |
| uint64_t txg = 0; | |
| zil_commit(zilog, 0); /* commit all itx */ | |
| /* | |
| * The lwb_max_txg for the stubby lwb will reflect the last activity | |
| * for the zil. After a txg_wait_synced() on the txg we know all the | |
| * callbacks have occurred that may clean the zil. Only then can we | |
| * destroy the zl_clean_taskq. | |
| */ | |
| mutex_enter(&zilog->zl_lock); | |
| lwb = list_tail(&zilog->zl_lwb_list); | |
| if (lwb != NULL) | |
| txg = lwb->lwb_max_txg; | |
| mutex_exit(&zilog->zl_lock); | |
| if (txg) | |
| txg_wait_synced(zilog->zl_dmu_pool, txg); | |
| ASSERT(!zilog_is_dirty(zilog)); | |
| taskq_destroy(zilog->zl_clean_taskq); | |
| zilog->zl_clean_taskq = NULL; | |
| zilog->zl_get_data = NULL; | |
| /* | |
| * We should have only one LWB left on the list; remove it now. | |
| */ | |
| mutex_enter(&zilog->zl_lock); | |
| lwb = list_head(&zilog->zl_lwb_list); | |
| if (lwb != NULL) { | |
| ASSERT(lwb == list_tail(&zilog->zl_lwb_list)); | |
| list_remove(&zilog->zl_lwb_list, lwb); | |
| zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); | |
| kmem_cache_free(zil_lwb_cache, lwb); | |
| } | |
| mutex_exit(&zilog->zl_lock); | |
| } | |
| static char *suspend_tag = "zil suspending"; | |
| /* | |
| * Suspend an intent log. While in suspended mode, we still honor | |
| * synchronous semantics, but we rely on txg_wait_synced() to do it. | |
| * On old version pools, we suspend the log briefly when taking a | |
| * snapshot so that it will have an empty intent log. | |
| * | |
| * Long holds are not really intended to be used the way we do here -- | |
| * held for such a short time. A concurrent caller of dsl_dataset_long_held() | |
| * could fail. Therefore we take pains to only put a long hold if it is | |
| * actually necessary. Fortunately, it will only be necessary if the | |
| * objset is currently mounted (or the ZVOL equivalent). In that case it | |
| * will already have a long hold, so we are not really making things any worse. | |
| * | |
| * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or | |
| * zvol_state_t), and use their mechanism to prevent their hold from being | |
| * dropped (e.g. VFS_HOLD()). However, that would be even more pain for | |
| * very little gain. | |
| * | |
| * if cookiep == NULL, this does both the suspend & resume. | |
| * Otherwise, it returns with the dataset "long held", and the cookie | |
| * should be passed into zil_resume(). | |
| */ | |
| int | |
| zil_suspend(const char *osname, void **cookiep) | |
| { | |
| objset_t *os; | |
| zilog_t *zilog; | |
| const zil_header_t *zh; | |
| int error; | |
| error = dmu_objset_hold(osname, suspend_tag, &os); | |
| if (error != 0) | |
| return (error); | |
| zilog = dmu_objset_zil(os); | |
| mutex_enter(&zilog->zl_lock); | |
| zh = zilog->zl_header; | |
| if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ | |
| mutex_exit(&zilog->zl_lock); | |
| dmu_objset_rele(os, suspend_tag); | |
| return (SET_ERROR(EBUSY)); | |
| } | |
| /* | |
| * Don't put a long hold in the cases where we can avoid it. This | |
| * is when there is no cookie so we are doing a suspend & resume | |
| * (i.e. called from zil_vdev_offline()), and there's nothing to do | |
| * for the suspend because it's already suspended, or there's no ZIL. | |
| */ | |
| if (cookiep == NULL && !zilog->zl_suspending && | |
| (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) { | |
| mutex_exit(&zilog->zl_lock); | |
| dmu_objset_rele(os, suspend_tag); | |
| return (0); | |
| } | |
| dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag); | |
| dsl_pool_rele(dmu_objset_pool(os), suspend_tag); | |
| zilog->zl_suspend++; | |
| if (zilog->zl_suspend > 1) { | |
| /* | |
| * Someone else is already suspending it. | |
| * Just wait for them to finish. | |
| */ | |
| while (zilog->zl_suspending) | |
| cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); | |
| mutex_exit(&zilog->zl_lock); | |
| if (cookiep == NULL) | |
| zil_resume(os); | |
| else | |
| *cookiep = os; | |
| return (0); | |
| } | |
| /* | |
| * If there is no pointer to an on-disk block, this ZIL must not | |
| * be active (e.g. filesystem not mounted), so there's nothing | |
| * to clean up. | |
| */ | |
| if (BP_IS_HOLE(&zh->zh_log)) { | |
| ASSERT(cookiep != NULL); /* fast path already handled */ | |
| *cookiep = os; | |
| mutex_exit(&zilog->zl_lock); | |
| return (0); | |
| } | |
| zilog->zl_suspending = B_TRUE; | |
| mutex_exit(&zilog->zl_lock); | |
| zil_commit(zilog, 0); | |
| zil_destroy(zilog, B_FALSE); | |
| mutex_enter(&zilog->zl_lock); | |
| zilog->zl_suspending = B_FALSE; | |
| cv_broadcast(&zilog->zl_cv_suspend); | |
| mutex_exit(&zilog->zl_lock); | |
| if (cookiep == NULL) | |
| zil_resume(os); | |
| else | |
| *cookiep = os; | |
| return (0); | |
| } | |
| void | |
| zil_resume(void *cookie) | |
| { | |
| objset_t *os = cookie; | |
| zilog_t *zilog = dmu_objset_zil(os); | |
| mutex_enter(&zilog->zl_lock); | |
| ASSERT(zilog->zl_suspend != 0); | |
| zilog->zl_suspend--; | |
| mutex_exit(&zilog->zl_lock); | |
| dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); | |
| dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); | |
| } | |
| typedef struct zil_replay_arg { | |
| zil_replay_func_t **zr_replay; | |
| void *zr_arg; | |
| boolean_t zr_byteswap; | |
| char *zr_lr; | |
| } zil_replay_arg_t; | |
| static int | |
| zil_replay_error(zilog_t *zilog, lr_t *lr, int error) | |
| { | |
| char name[ZFS_MAX_DATASET_NAME_LEN]; | |
| zilog->zl_replaying_seq--; /* didn't actually replay this one */ | |
| dmu_objset_name(zilog->zl_os, name); | |
| cmn_err(CE_WARN, "ZFS replay transaction error %d, " | |
| "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, | |
| (u_longlong_t)lr->lrc_seq, | |
| (u_longlong_t)(lr->lrc_txtype & ~TX_CI), | |
| (lr->lrc_txtype & TX_CI) ? "CI" : ""); | |
| return (error); | |
| } | |
| static int | |
| zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) | |
| { | |
| zil_replay_arg_t *zr = zra; | |
| const zil_header_t *zh = zilog->zl_header; | |
| uint64_t reclen = lr->lrc_reclen; | |
| uint64_t txtype = lr->lrc_txtype; | |
| int error = 0; | |
| zilog->zl_replaying_seq = lr->lrc_seq; | |
| if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ | |
| return (0); | |
| if (lr->lrc_txg < claim_txg) /* already committed */ | |
| return (0); | |
| /* Strip case-insensitive bit, still present in log record */ | |
| txtype &= ~TX_CI; | |
| if (txtype == 0 || txtype >= TX_MAX_TYPE) | |
| return (zil_replay_error(zilog, lr, EINVAL)); | |
| /* | |
| * If this record type can be logged out of order, the object | |
| * (lr_foid) may no longer exist. That's legitimate, not an error. | |
| */ | |
| if (TX_OOO(txtype)) { | |
| error = dmu_object_info(zilog->zl_os, | |
| ((lr_ooo_t *)lr)->lr_foid, NULL); | |
| if (error == ENOENT || error == EEXIST) | |
| return (0); | |
| } | |
| /* | |
| * Make a copy of the data so we can revise and extend it. | |
| */ | |
| bcopy(lr, zr->zr_lr, reclen); | |
| /* | |
| * If this is a TX_WRITE with a blkptr, suck in the data. | |
| */ | |
| if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { | |
| error = zil_read_log_data(zilog, (lr_write_t *)lr, | |
| zr->zr_lr + reclen); | |
| if (error != 0) | |
| return (zil_replay_error(zilog, lr, error)); | |
| } | |
| /* | |
| * The log block containing this lr may have been byteswapped | |
| * so that we can easily examine common fields like lrc_txtype. | |
| * However, the log is a mix of different record types, and only the | |
| * replay vectors know how to byteswap their records. Therefore, if | |
| * the lr was byteswapped, undo it before invoking the replay vector. | |
| */ | |
| if (zr->zr_byteswap) | |
| byteswap_uint64_array(zr->zr_lr, reclen); | |
| /* | |
| * We must now do two things atomically: replay this log record, | |
| * and update the log header sequence number to reflect the fact that | |
| * we did so. At the end of each replay function the sequence number | |
| * is updated if we are in replay mode. | |
| */ | |
| error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); | |
| if (error != 0) { | |
| /* | |
| * The DMU's dnode layer doesn't see removes until the txg | |
| * commits, so a subsequent claim can spuriously fail with | |
| * EEXIST. So if we receive any error we try syncing out | |
| * any removes then retry the transaction. Note that we | |
| * specify B_FALSE for byteswap now, so we don't do it twice. | |
| */ | |
| txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); | |
| error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); | |
| if (error != 0) | |
| return (zil_replay_error(zilog, lr, error)); | |
| } | |
| return (0); | |
| } | |
| /* ARGSUSED */ | |
| static int | |
| zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) | |
| { | |
| zilog->zl_replay_blks++; | |
| return (0); | |
| } | |
| /* | |
| * If this dataset has a non-empty intent log, replay it and destroy it. | |
| */ | |
| void | |
| zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE]) | |
| { | |
| zilog_t *zilog = dmu_objset_zil(os); | |
| const zil_header_t *zh = zilog->zl_header; | |
| zil_replay_arg_t zr; | |
| if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { | |
| zil_destroy(zilog, B_TRUE); | |
| return; | |
| } | |
| zr.zr_replay = replay_func; | |
| zr.zr_arg = arg; | |
| zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); | |
| zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); | |
| /* | |
| * Wait for in-progress removes to sync before starting replay. | |
| */ | |
| txg_wait_synced(zilog->zl_dmu_pool, 0); | |
| zilog->zl_replay = B_TRUE; | |
| zilog->zl_replay_time = ddi_get_lbolt(); | |
| ASSERT(zilog->zl_replay_blks == 0); | |
| (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, | |
| zh->zh_claim_txg); | |
| kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); | |
| zil_destroy(zilog, B_FALSE); | |
| txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); | |
| zilog->zl_replay = B_FALSE; | |
| } | |
| boolean_t | |
| zil_replaying(zilog_t *zilog, dmu_tx_t *tx) | |
| { | |
| if (zilog->zl_sync == ZFS_SYNC_DISABLED) | |
| return (B_TRUE); | |
| if (zilog->zl_replay) { | |
| dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); | |
| zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = | |
| zilog->zl_replaying_seq; | |
| return (B_TRUE); | |
| } | |
| return (B_FALSE); | |
| } | |
| /* ARGSUSED */ | |
| int | |
| zil_vdev_offline(const char *osname, void *arg) | |
| { | |
| int error; | |
| error = zil_suspend(osname, NULL); | |
| if (error != 0) | |
| return (SET_ERROR(EEXIST)); | |
| return (0); | |
| } |