
ARGOS

AUTONOMOUS ROBOTS GO SWARMING

Coding Conventions

Carlo PINCIROLI

<cpinciro@ulb.ac.be>

Version 1.0

April 22th, 2010

There are two ways to write error-free
programs. Only the third one works.

If at first you don’t succeed, you must be
a programmer.

Do or do not. There is no try.

1

Contents

1 Introduction 3

2 Naming Conventions 3
2.1 Variables . 3
2.2 Types . 4
2.3 Constants . 5
2.4 Functions and Class Members . 5
2.5 Files and Directories . 5

3 Formatting Conventions 6
3.1 Generalities . 6
3.2 Header Files . 6
3.3 Implementation Files . 7

4 Coding Tips 8
4.1 Using Namespaces . 8
4.2 Copy, Reference or Pointer? . 8

4.2.1 Parameter Passing and Returning 8
4.2.2 Storing . 9

4.3 Is const Really Necessary? . 10
4.4 Why and When to Inline . 12
4.5 You Have a New Friend: typedef 12

2

1 Introduction

This document describes the coding guidelines to follow when developing code
for ARGoS.

In this phase of the development, it is very important to follow these guide-
lines. The code will be realeased soon and it must provide a minimum level
of clarity and quality to be usable by external people. The aim is to give the
impression that the code was developed by one person only, even though it is in
fact a team work.

Besides clarity for external audience, this coding guidelines make it simpler
for everybody to know how things are structured, with obvious benefits in terms
of maintainability and ease of bug solving.

2 Naming Conventions

In the code, we follow a custom version of the Hungarian Notation.

2.1 Variables

The Hungarian notation encodes the scope and the type of a variable in its name.
The scope is defined by where a variable is declared — variables can be class
members, function parameters or local variables. In Table 1 we report examples
of variable definitions. The reported examples apply also to variable references,
following the C++ interpretation of references stating that a reference is the
referenced object. For example, this is a correct declaration:

void MyFunction (const CMyClass& c_var) ;

On the contrary, for pointers, the Hungarian Notation prepends a ’p’ to the type
part of the variable name, as shown in Table 2.

Table 1: Examples of variable naming.
Class Member Local Variable Function Parameter

UIntXX m_unMyVariable unMyVariable un_my_variable
SIntXX m_nMyVariable nMyVariable n_my_variable
Real m_fMyVariable fMyVariable f_my_variable
Boolean m_bMyVariable bMyVariable b_my_variable
STL Vector m_vecMyVariable vecMyVariable vec_my_variable
STL Map m_mapMyVariable mapMyVariable map_my_variable
STL List m_listMyVariable listMyVariable list_my_variable
STL Iterators m_itMyVariable itMyVariable it_my_variable
String m_strMyVariable strMyVariable str_my_variable
Class m_cMyVariable cMyVariable c_my_variable
Struct m_sMyVariable sMyVariable s_my_variable
Enum m_eMyVariable eMyVariable e_my_variable
Union m_uMyVariable uMyVariable u_my_variable
Typdef ’d type m_tMyVariable tMyVariable t_my_variable

3

Table 2: Examples of pointer variable naming.
Class Member Local Variable Function Parameter

UIntXX m_punMyVariable punMyVariable pun_my_variable
SIntXX m_pnMyVariable pnMyVariable pn_my_variable
Real m_pfMyVariable pfMyVariable pf_my_variable
Boolean m_pbMyVariable pbMyVariable pb_my_variable
STL Vector m_pvecMyVariable pvecMyVariable pvec_my_variable
STL Map m_pmapMyVariable pmapMyVariable pmap_my_variable
STL List m_plistMyVariable plistMyVariable plist_my_variable
STL Iterators m_pitMyVariable pitMyVariable pit_my_variable
String m_pstrMyVariable pstrMyVariable pstr_my_variable
Class m_pcMyVariable pcMyVariable pc_my_variable
Struct m_psMyVariable psMyVariable ps_my_variable
Enum m_peMyVariable peMyVariable pe_my_variable
Union m_puMyVariable puMyVariable pu_my_variable
Typdef ’d type m_ptMyVariable ptMyVariable pt_my_variable

Table 3: Examples of user defined type naming.
Class class CMyClass {...};
Template Class template <typename T> class CMyClass {...};
Struct struct SMyStruct {...};
Enum enum EMyEnum {...};
Union union UMyUnion {...};
Typedef ’d type typedef char TMyType;

2.2 Types

The Hungarian Notation applies also to user defined types. In Table 3 we report
some examples.

The only exception to the stated rules are the following types1: UInt8,
UInt16, UInt32, UInt64, SInt8, SInt16, SInt32, SInt64, Real. These types are
wrappers of the C++ primitive types typedef’d to ensure portability. Since these
types are used very often, they do not follow the convention to save characters.

The U or S at the beginning of the name stand for unsigned or signed; while
the number at the end of them indicates their size in bits. The Real type corre-
sponds to either the float or double primitive types, depending on the platform
on which the code is compiled.

!
Never use the unwrapped C++ primitive types, such as int, unsigned
int, float and the likes. Always use the wrapped types, as this ensures
portability.

Furthermore, for all the classes in the control interface, we follow a slightly
different convention — all the classes must be preceded by CCI_ instead of just
C, for example:

c lass CCI_MyClass {
. . .

} ;

1Defined in file argos2/common/utility/datatypes/datatypes.h.

4

2.3 Constants

Constants do no follow the Hungarian Notation. They are defined in all capitals
and the words are separated by underscores. For example:

c lass CMyClass {
public :

s t a t i c const UInt32 MY_FIRST_CONSTANT;
s t a t i c const Real MY_SECOND_CONSTANT;

} ;

2.4 Functions and Class Members

Functions and class members follow the same convention. Their names start
with a capital letter, and words are separated by capital letters. Class get/set
methods are prepended by the Get/Set sequence and take the name of the vari-
able their refer to. If a get method refers to a boolean flag, it is prepended by
the Is sequence instead. Examples:

c lass CMyClass {
public :

void ThisIsAMethod () ;
in l ine UInt8 GetVar () const
{

return m_unVar ;
}
in l ine void SetVar (UInt8 un_var)
{

m_unVar = un_var ;
}
bool I s F l a g () const
{

return m_bFlag ;
}
bool SetF lag (bool b_ f l ag)
{

m_bFlag = b_ f l ag ;
}

private :
UInt8 m_unVar ;
bool m_bFlag ;

} ;

Real Normalize (Real f_min ,
Real f_max ,
Real f _va lue)

{
. . .

}

2.5 Files and Directories

File names and directories are all in lower case and words are separated by un-
derscores. Header files have extension .h and implementation files have exten-
sion .cpp. For example, file_name.h is right, while fileName.h, File_Name.h,
File_name.h and FileName.h are wrong.

5

3 Formatting Conventions

3.1 Generalities

When writing code, it is important to follow also the formatting guidelines that
follow.

! Indentation is done with spaces. Each level is four spaces long.

! The code formatting style is Stroustroup. Namespaces are indented.

All files must include at the very beginning the GPL license information,
typeset exactly as follows:
/*

* This program is free software; you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation; version 2.

*

* This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with this program; if not, write to the Free Software

* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

*/

3.2 Header Files

After the licensing information, a header file must contain a macro to avoid
multiple inclusion. The name of the defined macro must match the file name,
but written all capital:

#ifndef FILE_NAME_H
#define FILE_NAME_H

If the file defines classes, there may be problems in inclusion. To avoid them
once and for all, include the following statement after the macro:

namespace argos {
c lass CMyClass ;

}

and only after this line start including other stuff:
#include <argos2 /common/ u t i l i t y / data types / data types . h>
#include <s t r i ng >

About inclusions, there is an important thing to bear in mind:

! When including ARGoS headers from a .h file, always specify the com-
plete path and use the <...> syntax, as shown in the example above.

The reason is that ARGoS can be also installed system-wide in locations that
cannot be foreseen. If you do not follow this rule, user code won’t compile
correctly because some headers won’t be found.

After the includes, all ARGoS code should be included in the argos names-
pace:

6

namespace argos {
c lass CMyClass {

. . .
} ;

}

End the file by closing the macro declaration:

#endif

3.3 Implementation Files

After the licensing information, implementation files should include the needed
headers. In implementation files, the rule to include headers is as follows: if a
file is contained in the current directory or in a subdirectory, use the #include " ... "

syntax; otherwise use the #include <argos2/...> syntax.
After the includes, all code should be declared in a namespace argos {...} block.

! Never use the clause using namespace argos.

The individual elements should be separated by a comment line containing
forty *. An example to show all this:

#include " my_header_f i le . h "
#include " subd i r / another_header . h "
#include <argos2 /common/ u t i l i t y / s t r i n g _ u t i l i t i e s . h>

namespace argos {

/* ************************************** */
/* ************************************** */

const UInt32 CMyClass : : MY_FIRST_CONSTANT = 56;
const Real CMyClass : : MY_SECOND_CONSTANT = 37.472;

/* ************************************** */
/* ************************************** */

void CMyClass : : AMethod(const s td : : s t r i n g& str_param)
{

. . .
}

/* ************************************** */
/* ************************************** */

UInt32 CMyClass : : AnotherMethod ()
{

. . .
}

/* ************************************** */
/* ************************************** */

}

7

4 Coding Tips

4.1 Using Namespaces

! Never employ the clause using namespace

There is a number of reasons for this to be enforced. First of all, clarity: spec-
ifying std :: string is more informative than just saying string — it says where the
definition comes from.

Furthermore, it makes name clashes less probable. For instance, it happens
often that libraries wrap the primitive types for portability and often the used
names are colliding. If the programmers of the library have been smart enough
to define their own namespaces, there would no problem using identical sym-
bols. Let us see the problem with an example:

#include <l i b r a r y 1 . h> // d e f i n e s a t ype u int8
#include <l i b r a r y 2 . h> // d e f i n e s a t ype u int8 too

using namespace l i b 1 ;
using namespace l i b 2 ;

. . .

void MyFunction ()
{

uint8 unVar = 0; // which uint8 are we us ing here ? −> ERROR!
}

With the above stated rule, the ambiguity disappears:

#include <l i b r a r y 1 . h> // d e f i n e s a t ype u int8
#include <l i b r a r y 2 . h> // d e f i n e s a t ype u int8 too

. . .

void MyFunction ()
{

l i b 1 : : u int8 unVar1 = 0; // no ambigui ty now −> OK!
l i b 2 : : u int8 unVar2 = 0; // no ambigui ty now −> OK!

}

4.2 Copy, Reference or Pointer?

The choice among copy, reference or pointer depends on a few factors.

4.2.1 Parameter Passing and Returning

Let us consider the case of parameter passing. The main choice factor in this
case is optimization. Strings, vectors, classes and structs are usually large con-
structs, and passing them by copy can be very time consuming. Thus, for them,
passing by copy should be avoided.

! Pass and return by copy only the primitive types: UInt8, UInt16, UInt32,
UInt64, SInt8, SInt16, SInt32, SInt64, Real and bool.

8

If not by copy, should the choice be pointers or references? The differences be-
tween the two are that pointers can have the NULL value, whereas references
cannot, and pointers are usually more likely to confuse people due to the ne-
cessity to dereferenciate them to obtain their value (the * operator). Therefore,
unless you know what you are doing, follow this rule:

! For structured types, always pass and return by reference.

An example:
c lass CMyClass { . . . } ;

c lass CAnotherClass {
public :

in l ine UInt64 GetCounter () const
{

return m_unCounter ;
}
in l ine void SetCounter (UInt64 un_counter)
{

m_unCounter = un_counter ;
}
in l ine const s td : : s t r i n g& GetId () const
{

return m_strId ;
}
in l ine void Set Id (const s td : : s t r i n g& s t r _ i d)
{

m_strId = s t r _ i d ;
}
in l ine const CMyClass& GetMyClass () const
{

return *m_pcMyClass ;
}
in l ine void SetMyClass (const CMyClass& c_my_class)
{

m_pcMyClass = &c_my_class ; // t h i s works because
// a r e f e r e n c e to a c l a s s
// _ i s _ the o r i g i n a l c l a s s !

}
private :

UInt64 m_unCounter ;
s td : : s t r i n g m_strId ;
CMyClass* m_pcMyClass ;

} ;

4.2.2 Storing

Let’s say you have a class like the above example and you have to choose among
storing a variable (“by copy”) or referencing it (reference or pointer). What do
you choose?

The main question to ask yourself is whether the variable references to some-
thing that is integral part of your class or not. If the answer is ‘yes’, then prefer
storing by copy. See, in the example above, the variables m_unCounter and m_strId.
With primitive types this is easy. Unfortunately, with structured types, the thing
gets a little more complex. Let’s say you have a class C and a class D that de-
rives from it. If you store by copy with C, you lose polymorphism. Therefore,
the choice should fall on a reference or a pointer. Which of the two?

9

Furthermore, if the answer to the previous question was ‘no’, the choice falls
again on references or pointers, but which one?

The discriminant here is that references cannot be NULL. If you declare an
attribute to be a reference to something, you must have that something when
the class is created. To be clearer, see this example:

c lass CMyClass { . . . } ;

c lass CAnotherClass {
public :

// Bad c o n s t r u c t o r : the r e f e r e n c e s i s not i n i t i a l i z e d −> ERROR
CAnotherClass ()
{
}
// Good c o n s t r u c t o r : the r e f e r e n c e s i s i n i t i a l i z e d −> OK
CAnotherClass (CMyClass& c_my_class) :

m_cMyClass (c_my_class)
{
}

private :
CMyClass& m_cMyClass ;

} ;

With a pointer you don’t have this problem:

c lass CMyClass { . . . } ;

c lass CAnotherClass {
public :

// Good c o n s t r u c t o r : the p o i n t e r i s i n i t i a l i z e d to NULL
CAnotherClass () :

m_pcMyClass (NULL)
{
}
// Good c o n s t r u c t o r : the p o i n t e r i s i n i t i a l i z e d to something
CAnotherClass (const CMyClass* pc_my_class) :

m_pcMyClass (pc_my_class)
{
}

private :
CMyClass* m_pcMyClass ;

} ;

In ARGoS, we generally opted for pointers:

! When an attribute refers to an external structured type, always prefer
pointers.

4.3 Is const Really Necessary?

The short answer is yes. The long answer is yeeeeeeeeees. Now for the reasons.
A function can be seen as a service. Its declaration is a sort of contract

between the user and the provider. If the two respect the contract, both get
the right result. A fundamental part of this contract is what to do with the ex-
changed objects: the user passes some of his objects and needs to know whether
or not they are going to be changed. The same applies to the function’s return
values: can the user change it, once received, or not?

10

As a consequence of such contract, in a class, methods can be roughly di-
vided in two categories: inspectors and modifiers. Inspectors just view the con-
tent of a class, but promise not to change it. On the contrary, modifiers are
meant to change it.

The const keyword exists to make all this possible, with the added value that
you can spot contract breaches at compile time. Unfortunately, the definition of
const in C++ is one of the most shamelessly confusing a human mind has ever
imagined. The first thing to remember is that const refers to what precedes it.
Some examples:

SInt8 const nVar ; // c o n s t s i gn ed i n t e g e r
SInt8 * const pnVar ; // c o n s t p o i n t e r to s i gn ed i n t e g e r (1)
SInt8 const* pnVar ; // p o i n t e r to a c o n s t s i gn ed i n t e g e r (2)

The examples marked with (1) and (2) are tricky. The first says: you can change
the value pointed to by pnVar, but you cannot change the pointer itself. In other
words:

SInt8 nVar1 , nVar2 ;
SInt8 * const pnVar(&nVar1) ; // c r e a t i o n o f the v a r i a b l e −> OK
*pnVar = 10; // s e t t i n g the va lue −> OK
pnVar = &nVar2 ; // s e t t i n g the po in t ed addr e s s −> ERROR!

Case (2) works in the opposite way: you can change the pointed address, but
you cannot change the value you find there:

SInt8 nVar1 , nVar2 ;
SInt8 const* pnVar(&nVar1) ; // c r e a t i o n o f the v a r i a b l e −> OK
pnVar = &nVar2 ; // s e t t i n g the po in t ed addr e s s −> OK
*pnVar = 10; // s e t t i n g the va lue −> ERROR!

Clearly, you can define a constant pointer to a constant variable like this:

SInt8 const * const pnVar ;

For what concerns references, you have to remember that a reference is the
referenced object. Therefore:

SInt8 const& nVar ; // r e f e r e n c e to a c o n s t s i gn ed i n t e g e r −> OK
SInt8& const nVar ; // c o n s t r e f e r e n c e to s i gn ed i n t e g e r −> MEANINGLESS

// because i t c o r r e s pond s to t h i s :
SInt8 const nVar ;

To make it simpler for programmers coming from other languages and more
confusing for everybody else, const can also be used in the following degenerate
form:

const SInt8 nVar ; // c o n s t s i gn ed i n t e g e r
const SInt8& nVar ; // r e f e r e n c e to a c o n s t s i gn ed i n t e g e r

Back to the uses of const, class inspectors and modifiers are declared as follows:

c lass CMyClass {
public :

void I n spec to r () const
{

. . .
}
void Modi f ie r ()
{

. . .
}

} ;

11

Going back to the discussion and about copies, references and pointers (Sec-
tion 4.2), now we can fully appreciate this example:

c lass CARGoSEntity {
public :

// i n s p e c t o r , r e tu rn c o n s t r e f e r e n c e
in l ine const CVector3& GetPos i t i on () const
{

return m_cPosi t ion ;
}
// mod i f i e r , pas s c o n s t r e f e r e n c e
in l ine void S e t P o s i t i o n (const CVector3& c _ p o s i t i o n)
{

m_cPosi t ion = c _ p o s i t i o n ;
}
// i n s p e c t o r , r e tu rn copy
in l ine Real GetOr ienta t ion () const
{

return m_fOrientat ion ;
}
// mod i f i e r , pas s copy
in l ine void Se tOr i en ta t i on (Real f _ o r i e n t a t i o n)
{

m_fOr ientat ion = f _ o r i e n t a t i o n ;
}

private :
CVector3 m_cPosi t ion ;
Real m_fOr ientat ion ;

} ;

4.4 Why and When to Inline

In a nutshell, inlining a function means to copy its content in the place where it’s
called. The decision whether or not to inline a function is ultimately performed
by the compiler, but the compiler doesn’t do it if you don’t mark the possible
candidates.

Not all methods are good candidates. Short functions of few, simple lines
are the best, especially if these functions are called often.

! Always inline a class’ getters and setters.

Too much inlining is harmful. A method, to be inlineable, must be declared in
the .h file. If you do it for too many methods, you break the information hiding
principle and render the header file difficult to read.

Furthermore, too much inlining has a performance hit. In fact, when a
method is inlined, the code of the caller grows and may exceed the size of a
memory page, thus obliging the OS to load and unload memory pages to fetch
the necessary code. For this reason, once again, inline only few small functions.

! Never inline methods that include loops.

4.5 You Have a New Friend: typedef

Sometimes functions exchange complex structures, such as the following:

s td : : map<std : : s t r i n g , Real> mapMyFancyStructure ;

12

Remembering the definition of that map is though, especially if there other
similar definitions for other things. And what if you find a better way to store
your data, and that map changes definition? You’d have to change all the code
that refers to it — a nightmare.

Compare this example:

void DoSomething (s td : : map<std : : s t r i ng , Real>& map_my_fancy_structure)
{

. . .
}

with this one:

typedef s td : : map<std : : s t r i n g , Real> TMyFancyStructure ;

void DoSomething (TMyFancyStructure& t_my_fancy_s t ruc ture)
{

. . .
}

The second is much more readable and easier to use and maintain.

! Always typedef complex type definitions, such as maps and vectors.

Notice that unlikely to what happens in C, when you declare a union, an enum
or a struct, you automatically typedef it.

13

	Introduction
	Naming Conventions
	Variables
	Types
	Constants
	Functions and Class Members
	Files and Directories

	Formatting Conventions
	Generalities
	Header Files
	Implementation Files

	Coding Tips
	Using Namespaces
	Copy, Reference or Pointer?
	Parameter Passing and Returning
	Storing

	Is const Really Necessary?
	Why and When to Inline
	You Have a New Friend: typedef

