
CuNeuQuant: A CUDA Implementation of the NeuQuant Image
Quantization Algorithm

David Bottisti1, Liuva Mendez1, and Damian Dechev1,2
1Department of Computer Science, University of Central Florida, Orlando, FL, USA

2Scalable and Secure Systems R&D Department, Sandia National Laboratories, Livermore, CA, USA

Abstract— Color quantization is an often performed pre-
step in many image processing and computer vision appli-
cations. Quantization is defined as the process of selecting
a palette of representative colors P which can replace the
original colors C in an image such that |P | � |C| and
the perceptual distortion of the reduced color image is min-
imized. It is well known that the quantization process is an
NP-complete problem and as such, many competing heuristic
algorithms exist. One high-quality quantization algorithm is
NeuQuant due to Dekker. In this paper, we describe a GPU
based parallel implementation of the NeuQuant algorithm.
Our GPU-based approach demonstrated a speedup by a
factor of 5 or more in the performance evaluation we have
performed. The details of the NeuQuant algorithm present
unique difficulties to implementing a parallel version due
to the sequential dependencies present when training the
underlying neural network.

Keywords: Kohonen Neural Network, CUDA, Image Quantiza-
tion

1. Introduction
Natural images often contain several hundred thousand

colors in order to represent their subjects. While necessary
to best preserve visual details for human observers, these
additional colors can make computer processing of an image
very difficult. A large number of colors can also increase
the storage requirements for an image. For these reasons a
frequently preformed pre-processing step on images is to
reduce the number of unique colors to a more manageable
set. This process is called color quantization [1].

Consider an original image whose colors are represented
as a set C. We denote the carnality of a set using the notation
| · |. Thus, the number of original colors in the image is
|C|. The goal of quantization is to find an optimal palette
P such that |P | � |C|. Here optimal refers to minimizing
some perceptual error between the original image and the
resulting quantized image. Common error measurements
include root mean squared error (RMSE) and signal to noise
ratio (PSNR)[2].

Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

There is a wide variety of color quantizations algo-
rithms available in the literature today, each with their
own strengths and weaknesses (see [1] for an overview of
common color quantization algorithms). One such algorithm
is the NeuQuant algorithm which uses an advanced neural
network training step to produce high-quality quantization at
the expense of algorithmic complexity and speed [3]. Figure
1 compares an original full-color image with a version quan-
tized to 256 colors using the NeuQuant algorithm. Notice
that the NeuQuant algorithm creates very little banding or
other quantization artifacts. However, one of the downsides
of the NeuQuant algorithm is that training the neural network
is very slow.

In this paper, we describe a GPU based implementation
of the NeuQuant algorithm leveraging the massively parallel
stream processor technology available in nVidia’s newest
graphics processing units (GPUs) [4]. We chose NeuQuant
due to its high quality quantization in subjective evaluations
as well as the fact that no current GPU implementations are
believed to exist. The rest of this paper is organized as fol-
lows: Section 2 discusses a small subset of the many image
quantization algorithms present in the literature. Following
this, Section 3 describes the original NeuQuant algorithm.
We then discuss implementation details for implementing
NeuQuant using nVidia’s GPU development environment,
CUDA (Compute Unified Device Architecture), in Section 4.
In Section 5 we present our comparative timing and quality
results and finally conclude in Section 6.

2. Related Work
As discussed previously, performing high-quality image

quantization is very important in image processing and
compression. Due to the fact that it is of such high impor-
tance and yet NP-hard, there are various proposed heuristic
algorithms to perform image quantization. In general, the
approach to image quantization is to divide the color space
of an image into disjoint regions of similar colors (called
clusters). A representative color is then determined from
each region forming what is called the colormap (this is
a smaller set of colors that is going to be used to represent
the image).

The Median Cut algorithm [5] repeatedly divides the color
space into rectangular boxes until the desired number of

(a) Original, Full-Color Image (b) Image Quantized to 256 Colors using NeuQuant

Fig. 1: NeuQuant Example

colors is obtained. The algorithm involves the following
three steps (while using an RGB color space):

1) Sampling the three original (red, green, and blue)
colors for color statistics in order to create a color
frequency histogram;

2) Choosing a new color space based on the gathered
statistics (by successively subdividing the color space
so that each of the new colors is represented by an
equal number of pixels from the original image);

3) Mapping the original colors to the nearest neighbors
in the new color space.

Median-cut is very simple and easy to implement. The
results from running this algorithm show that the time it
takes to produce a colormap scales almost linearly with
the image size and logarithmically with the colormap size.
However, due to the fact that each color space is divided
equally, some important but infrequently occurring colors
may fail to be represented in the colormap (i.e., a red ladybug
against a swath of green leaves.)

The K-means algorithm is classified as a partitional
clustering algorithm since it assigns a set of objects into
K pre-specified clusters [6], [7]. The K-means algorithm
seeks an optimal partition of the data by minimizing the
sum-of-squared-error criterion with an iterative optimization
procedure [8]. It starts with an initial colormap (initialized
to K cluster centers), then each color pixel is assigned to
the closest color in the colormap (or cluster centers). The
colors in the colormap are recomputed as the cluster centers
of the resulting clusters. This process is then repeated until
convergence. The K-means algorithm has been proven to
converge to a local optimum [9] (versus a global optimum).
The basic steps of K-means are summarized as follows:

1) Choose K initial clusters either randomly or based on
some prior knowledge;

2) Assign each object in the data set to the nearest cluster;
3) Recalculate the cluster prototypes based on the current

partition;
4) Repeat steps 2-3 until there is no change for each

cluster.

The procedure of the K-means algorithm is very simple
and straightforward, and it can be easily implemented. The
time complexity of K-means is approximately linear, which
makes it a good selection for large-scale data applications.
The major disadvantages of K-means are dependence on the
initial partitions, convergence problems, and sensitivity to
noise and outliers. To identify the number of clusters K in
advance is also a big challenge.

The Octree quantization algorithm [10] uses an octree
hierarchical data structure (a tree structure in which each
node has up to eight children). The idea behind the octree
algorithm is to sequentially read in the image, then store
every color in an octree of depth 8 (where every leaf at depth
8 represents a distinct color). While executing the algorithm,
a limit of K (desired number of colors the original image
is being reduced to, i.e. K = 256) leaves are placed on
the tree. The algorithm has two stages; first the insertion of
colors in the tree (creating the tree as a representation of
the original image), and then merging the nodes until the
desired number of colors (colormap) is reached.

Insertion of a color in the tree can result in two outcomes:

1) If there are less than K leaves then the color is filtered
down the tree until either it reaches some leaf node that
has an associated representative color or it reaches the
leaf node representing its unique color.

2) If there are greater than K leaves in the tree some set
of leaves in the tree must be merged (their representa-
tive colors averaged) together and a new representative
color stored in their parent.

Gervautz et al. [10] propose two possible criteria to be
used in the selection of leaves to be merged:

1) Reducible nodes that have the largest depth in the tree
should be chosen first. They represent colors that lie
closest together.

2) If there is more than one group of leaves at the
maximum depth the algorithm could:

a) Merge the leaves that represent the fewest num-
ber of pixels. This will help keep the error small.

b) Reduce the leaves that represent the most pixels.
In this case large areas will be uniformly filled in
a slightly wrong color while maintaining detailed
shadings.

Once the entire image has been processed in this manner,
the colormap consists of the representative colors of the leaf
nodes in the tree. The index of the colormap is then stored
at that leaf, and the process of quantizing the image is done
by filtering each color down the tree until a leaf is found.
Because a limit is placed on the number of leaves in the
tree, this algorithm has a modest memory complexity, O(K),
compared to median-cut. Gervautz and Purgathofer [10] cite
the search phase as being linear with respect to the number of
pixels in the image. While the reduced memory complexity
and faster run-time are advantages of the Octree algorithm,
it is still susceptible to mis-quantization when infrequent but
important colors are present in an image.

The spatial color quantization algorithm (scolorq) [11]
combines color quantization with dithering (dithering is a
technique used to create the illusion of color depth in images
with a limited colormap, in which colors not available in the
map are approximated by a diffusion of colored pixels from
within the available colormap). Spatial color quantization
is a technique used for decreasing the color depth of an
image [11]; it combines palette selection and dithering with
a simple perceptual model of human vision. The authorsÕ
implementation was never made public, and the algorithm is
relatively complex, discouraging others from implementing
it.

Scolorq uses less memory and is faster compared to
median-cut. The scolorq algorithm implemented after the
algorithm described in the paper [11] produces richer colors
than median-cut and Octree, especially when reducing to
very low color depths (4, 8, and 16 colors). The major
disadvantage of using the scolorq algorithm is when it is
used for large photographs and other large continuous-tone
(smooth) images. It should also not be used when the target
number of colors is relatively larger, i.e., on the order of
256 or more, since the algorithm becomes extremely slow
for large numbers of colors and does not outperform the
standard algorithms available.

NeuQuant approaches the problem of color quantization
much differently than these statistical methods. Using the
original colors of the image, NeuQuant trains a Kohonen
Neural Network, also known as a Self-Organizing Map

(SOM), to represent the palette of colors. By restricting the
network to a size less than the number of input colors,
the network represents the quantized color palette. This
approach creates a robust color palette that does not suffer
from under-representation of important colors in the image.
We describe the NeuQuant algorithm more completely in the
following section.

3. NeuQuant
We now present a brief introduction to the NeuQuant

algorithm which we base on Kohonen’s SOM. For a more
detailed explanation of the algorithm, and for original im-
plementation details, the reader is directed to [3].

Consider a 3 × k matrix N representing our neural
network. In this matrix, each row contains a 3-element vector
representing a color which we refer to as a node, and k is the
number of desired output colors (usually 256). Originally, the
k colors (rows) in the network are initialized to gray values
(red = green = blue) equally spaced to span the achromatic
axis of a colorspace from black to white.

Network training proceeds as each pixel of the input image
is presented to the network. For each training pixel, the L1

distance between it and each node in the network is com-
puted. The node with the minimum distance is designated
the winning node. This winning node and its neighbors are
modified so that the network is stretched towards the input
pixel by a factor α. The radius of the network, as well as
the amount of movement, decay exponentially over time. In
[3] the authors provide a detailed explanation of the radius
and decay rates.

We describe the order in which the input pixels are
presented to the network. Since the network is updated
for every input pixel, and these updates affect the decision
for a winning node on the next iteration, the order of
execution greatly affects the network. For this reason, it
is undesirable to train the network in sequential order. For
example, consider an image of a landscape with a blue sky
and green grass. Sequential training will provide a large
number of blue pixels to the network before any green pixels
are presented. This biases the network towards blue and,
due to the exponential decay of the radius, very little of the
network will be used to represent the green grass.

To avoid the shortcomings associated with sequential
training while still remaining deterministic, the algorithm
presents points to the network in a quasi-random fashion.
We first choose a prime number p close to 500 that is not
a factor of the number of pixels in the image. We then
present every pth pixel to the network, wrapping around
the image as necessary. After five subsequent wraps around
the image, the neighborhood radius and network updating
factor are decreased. This choice of p means that every
pixel is presented to the network after about 500 such wraps
around the image and the decaying parameters will have
been updated no more than 101 times.

After we present a pixel to the network, the training
phase is complete and the mapping phase can begin. In the
mapping phase, every pixel is presented again to the network.
As the network does not change in the mapping phase, it is
safe to present the pixels in sequential order. For each pixel,
the node closest to the pixel is again identified and the pixel
in the original image is mapped to the value of the winning
node. Since there are a fixed number k of network nodes,
this guarantees that the resultant image will be mapped to a
palette containing at most k colors.

One possible adjustment that may be made by the user to
reduce the training time is to limit the network training to
a subset of the input colors. This is accomplished through
the selection of an integer parameter n ≥ 1 by the user
indicating that every nth color in the original image is to
be used for training. A value of n = 1 allows for training
to occur on the entire input set. Large values of n create
noticeable decreases in quantization quality [3]. Throughout
this work we set n = 1.

4. CuNeuQuant
With the recent proliferation of consumer multiprocessors,

there has been increased effort to port many common se-
quential algorithms to their parallel equivalents. Image quan-
tization is no exception. Focusing specifically on NeuQuant,
one may (incorrectly) assume that the network can be
trained in parallel using separate regions of the input image.
However, as mentioned before, the network changes after
being presented with each data point, so the networks being
trained by each thread are likely to become divergent. An
attempt to overcome this by intelligently partitioning the
input pixels so as to not overlap in the network also proves
futile since there is no way to know the outcome of the
network a priori.

Despite these challenges in the parallelization of the
NeuQuant algorithm, there are still opportunities we can
explore. Several of the operations performed during training
and mapping lend themselves well to a parallel implemen-
tation. Specifically, the identification of the winning node,
as well as updating the network, can be implemented in
parallel. Both of these tasks involve iteration over the net-
work, performing single instruction, multiple data (SIMD)
operations on each node. For this reason, the massively
parallel stream processor architecture present on a GPU is
well suited to this task. These operations are the primary
differences between the original NeuQuant and our parallel
CuNeuQuant implementation.

Our GPU implementation of NeuQuant uses nVidia’s GPU
technology [4]. nVidia provides a development environment
known as CUDA to assist programmers when developing
for their GPUs. One advantage of the CUDA programming
language is that it allows the programmer to design code to
run natively on the hardware directly rather than conforming
to a graphics-specific API such as OpenGL. CUDA is an

extension to the C/C++ language and allows for the mixing
of CPU and GPU code within the same implementation file.

In order to ensure a fair comparison between the sequen-
tial and parallel versions of NeuQuant, we implemented
CuNeuQuant to perform quantization to 256 colors. Since
the symmetric multiprocessors (SM) on the GPU have no
direct access to any memory not residing on the GPU itself,
we must transfer the image to the GPU global memory.
Furthermore, the entire training network is contained within
the device’s global memory. To avoid an additional memory
transfer, the network is initialized directly on the device in
parallel. To do this, 256 threads, one for each color, are
spawned, each one responsible for initializing one node of
the network to its thread index. Algorithm 1 shows the
pseudo code for this initialization.

Algorithm 1 Neural Network Initialization

1: idx ← [thread index]
2: networkRed[idx] ← idx
3: networkGreen[idx] ← idx
4: networkBlue[idx] ← idx

Following network initialization, we proceed with train-
ing. For this purpose, we arrange our threads into blocks of
256 threads each, corresponding to the nodes of our neural
network, and a grid of blocks with the same dimensions as
our input image. Within each GPU thread, the thread index
indicates the index of the network node and the grid indices
(x, y) indicate the spatial location of the pixel. The choice
of the width and height for grid size is not necessary as
spatial location of pixels is ignored during training. However,
to ensure the SM are fully utilized, the dimensions of the
grid should be factors of the number of training points;
the image width and height conveniently providing such a
factorization. CUDA also imposes a limit of 65535 for each
grid dimension, and a one-dimensional ordering could easily
exceed this limit.

Within each thread we compute a linear grid index. The
index of the training point is then computed by multiplying
the grid index by our step-size p modulo |C|. The grid index
is also used to obtain the iteration number for the purposes of
computing our training weight factor α and radius as defined
within the original NeuQuant algorithm.

Following identification of the index of the training point,
we then copy this point to the local memory space of the
thread. Unfortunately, performing an uncoalesced memory
transfer is extremely expensive, and such a transfer is even
more detrimental when performed on every thread. However,
since each thread within a block operates on the same image
point, and a read-only copy of the point is sufficient, we
instead make a single shared copy of the image point. The
memory transfer is performed only by the thread with an
index of 0 while all other threads wait at a barrier to ensure

0 1 2 3 4 5 6 7

x 10
6

0

2

4

6

8

10

12

14

16

18

20

S
e
c
o
n
d
s

Number of Pixels

CPU/GPU Performance

CPU Timings

GPU Timings

(a) Sequential and Parallel Timings

0 100 200 300 400 500 600 700
0

2

4

6

8

10

12

14

Image

S
p
e
e
d
u
p

Speedup by Image

(b) Per-Image Speedup

Fig. 2: Experimental Results

the point is available prior to proceeding. This reduces the
number of uncoalesced memory transfers by a factor of 255.

Following this memory transfer, each thread then proceeds
to compute the distance from the training point to its network
node. This is done using an L1 metric (sum of absolute
differences) and the result is stored in a shared memory
location. Since each thread t is accessing the tth item in
the network, this data transfer is coalesced, avoiding the
memory hit described previously. In addition, we initialize
an array of best indices so that index t contains the value
t. In Algorithm 2 we show the pseudo-code for computing
the network-to-point distance, with the initialization of r in
line 6 as in [3].

Algorithm 2 Network-to-Point Distance Computation

1: n← Number of pixels in image
2: linearP tIdx← Linear point index
3: pointIdx← (linearP tIdx× p) mod n
4: t← Thread index
5: i← linearP tIdx÷ Points Per Iteration
6: r ← b32e−0.0325×ic
7: if t = 0 then
8: point← points[pointIdx]
9: end if

10: barrier()
11: dist[t]← |point− network[t]|
12: bestIdx[t]← t

After computing these network-to-point distances, we
perform another thread synchronization operation to ensure

that all distances are computed prior to proceeding. This
is necessary since the next operation is a reduction used
to identify the network node that is the closest to the
training point, i.e., has the minimum distance. In Algorithm
3 we show the pseudo-code for the reduction operation. To
perform this reduction, we create a stride variable s which
begins at half the network size (128) and is halved at each
iteration down to 1, inclusive, as show in line 2. For each
iteration, thread t < s compares its distance to the distance
at location t+s. If the distance at index t+s is less than the
distance at t, then distance t is overwritten with distance t+s
(line 4), and index t+s is stored in the best indices array at
location t (line 5). After all iterations have completed, the
value in index 0 of the distance array contains the smallest
distance, and the value in index 0 of the best indices array
contains the network index generating that distance (line 9).

Algorithm 3 Data Reduction

1: barrier()
2: for s = 128→ 1 multiply by 1

2 at each iteration do
3: if t < s and dist[t+ s] < dist[t] then
4: dist[t]← dist[t+ s]
5: bestIdx[t]← bestIdx[t+ s]
6: end if
7: barrier()
8: end for
9: w ← bestIdx[0]

Once the winning node has been identified, each affected
node within the network needs to be updated. This update

Table 1: Average Timings, Parallel vs. Sequential

Time Per Pixel (seconds)

Sequential 2.9610× 10−6

Parallel 5.8899× 10−7

Speedup 5.0272

procedure is illustrated in Algorithm 4, with α and ρ defined
as in [3]. An "affected node" is identified as a node whose
index i < |w−r| where w is the index of the winning node,
and r is the current radius. The update is then performed for
each network node within the bounds.

Algorithm 4 Network Refinement

1: if |w − t| < r then
2: α← e−0.03i

3: ρ← 1− (|w−t|r)2

4: node[t]← αρ× trainingPoint + (1− αρ)× node[t]
5: end if

Algorithms 2, 3, and 4 together make up the training
kernel of our code. After training has completed, we move
into the mapping phase. For this phase, we execute a second
kernel which is structured very similarly to the training
kernel. We intentionally did not combine these two kernels
since we need to ensure that every block has completed
training prior to mapping, and there is no mechanism within
CUDA to achieve this. However, since each kernel call is
performed sequentially, making two separate kernels gives
us a form of block-level synchronization.

For the mapping kernel, we arrange the grids and blocks
the same way as within the training kernel; that is, each block
contains 256 threads and the grid dimensions are equal to the
dimensions of the image. We then perform the network-to-
point distance computation and reductions (Algorithms 2 and
3) to determine the closest trained node to the input point.
Next we assign to the point (now serving as our output) the
value within the winning node.

5. Experimental Results
For our timing results, we ran sequential and parallel

versions of the NeuQuant algorithm on a subset of images
obtained from the ImageNet image database [12]. The se-
quential metrics were gathered by running Dekker’s original
C implementation on a single core of an Intel i7 processor
with 8 GB of RAM. The parallel metrics were gathered
using an nVidia GeForce 9800 GTX+ GPU attached to the
same machine, so as to not introduce any bias by different
memory, bus, or processor speeds.

Figure 2a shows the result of the sequential and parallel
timings. Circles represent timings performed for individual
images with the lines indicating the average trend, with
the x-axis representing pixels in millions, and the y-axis

representing time in seconds. It can be seen from this figure
that the sequential algorithm takes between four and six
seconds to quantize a two-megapixel image. It can also
be seen from this figure that the GPU implementation
performed markedly faster and more predictably, with only
one obvious outlier. Notice that a two-megapixel image is
quantized on the GPU in about 0.7 seconds, a speedup of
about 7x on average. Also note that a six-megapixel image is
quantized in under 2 seconds compared to almost 18 seconds
with the sequential algorithm. See Table 1 for a comparison
of the quantization time per pixel, averaged over all images,
for both the sequential and parallel algorithms. Using this
data we also compute the average speedup of the parallel
algorithm verses the sequential.

This speedup is primarily due to the use of the stream
processors within the GPU. By performing the nearest-
neighbor search (Algorithms 2 and 3) and network updates
(Algorithm 4) on the GPU, we parallelize these operations
across all 128 CUDA cores available on the GeForce 9800
GTX+. Since these operations would require 256 iterations
on a sequential CPU implementation, we are able to realize
a speedup of 128x for these operations alone (neglecting
memory transfers to and from the GPU). Since CuNeuQuant
still contains sequential components, we realize a lesser
speedup of about 5x to 7x, due to Amdahl’s law.

In Figure 2b we calculate the per-image speedup and sort
these in increasing order. In this figure, the x-axis represents
an index number of the images and the y-axis represents the
speedup. It can be seen that for the majority of images, we
achieved a speedup between 5x and 7x.

6. Conclusion

In this work we presented a GPU-based parallel algorithm
based upon the NeuQuant algorithm by [3]. We showed
that for a majority of the representative images supplied
to the algorithms, a speedup of 4x or more is possible.
Furthermore, we showed that timings performed on the GPU
hardware are more consistent than running on the CPU
with in the sequential algorithm. CuNeuQuant achieves this
speedup by utilizing multiple CUDA cores for the nearest-
neighbor search and neural network updates.

We have released our implementation of the
CuNeuQuant algorithm under the Limited GNU
Public License (LGPL). This code is hosted on
Google Code and can be downloaded at https:
//code.google.com/p/dali-neuquant/.

From our results, it can be seen that the NeuQuant
algorithm is sped up significantly by the parallelism provided
by a GPU. It is our hope that these speed improvements can
help make CuNeuQuant a viable competitor in the high-
quality image quantization arena.

References
[1] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed.

Prentice Hall, 2008.
[2] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality

assessment: from error visibility to structural similarity,” Image Pro-
cessing, IEEE Transactions on, vol. 13, no. 4, pp. 600 –612, april
2004.

[3] A. H. Dekker, “Kohonen neural networks for optimal colour quanti-
zation,” Network: Computation in Neural Systems, vol. 5, no. 3, pp.
351–367, 1994.

[4] CUDA C Programming Guide. NVIDIA Corporation, 2011.
[5] P. Heckbert, “Color image quantization for frame buffer display,”

SIGGRAPH Comput. Graph., vol. 16, pp. 297–307, July 1982.
[6] E. Forgy, “Cluster analysis of multivariate data: efficiency versus

interpretability of classifications,” Biometrics, vol. 21, pp. 768–780,
1965.

[7] J. MacQueen et al., “Some methods for classification and analysis
of multivariate observations,” in Proceedings of the fifth Berkeley
symposium on mathematical statistics and probability, vol. 1, no. 281-
297. California, USA, 1967, p. 14.

[8] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means
clustering algorithm,” Journal of the Royal Statistical Society. Series
C (Applied Statistics), vol. 28, no. 1, pp. pp. 100–108, 1979.

[9] B. Freisleben and A. Schrader, “An evolutionary approach to color
image quantization,” in Evolutionary Computation, 1997., IEEE In-
ternational Conference on, apr 1997, pp. 459 –464.

[10] M. Gervautz and W. Purgathofer, “A simple method for color quan-
tization: octree quantization,” in Graphics Gems, A. S. Glassner, Ed.
San Diego, CA, USA: Academic Press Professional, Inc., 1990, pp.
287–293.

[11] J. Puzicha, M. Held, J. Ketterer, J. M. Buhmann, and D. Fellner, “On
spatial quantization of color images,” in Proceedings of the European
Conference on Computer Vision, vol. 9, pp. 563–577, 1998.

[12] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A Large-Scale Hierarchical Image Database,” in CVPR09,
2009.

