Skip to content
No description, website, or topics provided.
HTML Jupyter Notebook PHP JavaScript CSS Shell
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Type Name Latest commit message Commit time
Failed to load latest commit information.

A Personalized BDM Mechanism for Effcient Market Intervention Experiments

Abstract: The BDM mechanism, introduced by Becker, DeGroot, and Marschack in the 1960’s, employs a second-price auction against a random bidder to elicit the willingness to pay of a consumer. The BDM mechanism has been recently used as a treatment assignment mechanism in order to estimate the treatment effects of policy interventions while simultaneously measuring the demand for the intervention. In this work, we develop a personalized extension of the classic BDM mechanism, using modern machine learning algorithms to predict an individual’s willingness to pay and personalize the “random bidder” based on covariates associated with each individual. We show through a mock experiment on Amazon Mechanical Turk that our personalized BDM mechanism results in a lower cost for the experimenter, provides better balance over covariates that are correlated with both the outcome and willingness to pay, and eliminates biases induced by ad-hoc boundaries in the classic BDM algorithm. We expect our mechanism to be of use for policy evaluation and market intervention experiments, in particular in development economics. Personalization can provide more efficient resource allocation when running experiments while maintaining statistical correctness.


The experiment folder contains the files that create the causal-learning website used for running the experiment in Mechanical Turk.


The src folder contains the analysis from the data collected from the experiment.

You can’t perform that action at this time.