Skip to content
master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
src
 
 
 
 

A Personalized BDM Mechanism for Effcient Market Intervention Experiments

Abstract: The BDM mechanism, introduced by Becker, DeGroot, and Marschack in the 1960’s, employs a second-price auction against a random bidder to elicit the willingness to pay of a consumer. The BDM mechanism has been recently used as a treatment assignment mechanism in order to estimate the treatment effects of policy interventions while simultaneously measuring the demand for the intervention. In this work, we develop a personalized extension of the classic BDM mechanism, using modern machine learning algorithms to predict an individual’s willingness to pay and personalize the “random bidder” based on covariates associated with each individual. We show through a mock experiment on Amazon Mechanical Turk that our personalized BDM mechanism results in a lower cost for the experimenter, provides better balance over covariates that are correlated with both the outcome and willingness to pay, and eliminates biases induced by ad-hoc boundaries in the classic BDM algorithm. We expect our mechanism to be of use for policy evaluation and market intervention experiments, in particular in development economics. Personalization can provide more efficient resource allocation when running experiments while maintaining statistical correctness.

Experiment

The experiment folder contains the files that create the causal-learning website used for running the experiment in Mechanical Turk.

Analysis

The src folder contains the analysis from the data collected from the experiment.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published