
MDload: a Model-Driven Workload Generator for Web

Applications

Version 0.1

Last modified: October 17, 2014

Contents

1 Introduction 1
1.1 Specifying User Behavior . 2
1.2 Automatic generation of requests from Palladio models 3

2 Installation and Quick Start 4
2.1 Example: Quick start with OFBiz . 4
2.2 Example: Generating traffic from a Palladio/LQN model 5

3 User’s guide 6
3.1 Workload generation . 6
3.2 Workload generation from a Palladio/LQN model 8

A Configuration properties - config.client 10

B Brief class description 11
B.1 Package mdload.client . 11
B.2 Package mdload.client.util . 11
B.3 Package mdload.client.comm . 11

C Example: configuration properties in the OFBiz example 13

1 Introduction

MDload is a model-driven workload generation tool that automatically generates requests to a
web application by simulating a set of users. It has been developed as part of the MODAClouds
Runtime Environment to fulfill the need for a self-adaptation testing tool, capable of injecting
on-demand load to the cloud applications with characteristics of variability and burstiness.
MDload is a general-purpose tool as it can be configured to generate traffic for different
applications. This is achieved by implementing a set of routines that generate and submit
application requests, allowing the user to define the specific requests to submit and their order.
This therefore simplifies the testing of web applications, since it is only necessary to define how
the user interacts with the application.

Once the user behavior has been specified, MDload emulates a set of users by relying
on Selenium1 to automate a Firefox web browser that sequentially submits requests to the
application server. MDload is able to generate bursty traffic, dynamically changing the traffic
mix, that is, the proportion of requests types generated by the users. This behavior better
represents the actual workload faced by the application.

1http://docs.seleniumhq.org/

1

MDload 1 INTRODUCTION

The operation of MDload is built in three logical layers. The lowest layer is the request level,
which considers atomic requests submitted by the user. The second layer is the session level,
where a single user submits a sequence of semantically-correct requests, reproducing an expected
usage pattern. The highest logical level is the benchmark level, where a number of sessions are
managed to achieve the predefined workload characteristics. These levels are associated with the
three main actors participating in the traffic generation, namely the Overseer, the Dispatcher
and the UserAgents, which are implemented as Java Threads. The main thread spawns an
instance of the Overseer, which is the object delegated to coordinate the test at the benchmark
level. The Overseer simply creates an instance of a Dispatcher, which creates and manages
UserAgents threads. Each UserAgent generates traffic by submitting requests to the Selenium
driver that produces HTTP requests via Firefox. This operation is therefore automated by
MDload, and it is only necessary to specify the user behavior as described next.

MDload is composed of three main libraries: mdload, mdload-dev, and mdload-matlab.
The dependencies are shown in Figure 1. Using these libraries, the MDload user can specify
the user behavior for a particular application an application-specific library. This library will
then be used by MDload to generate the application workload. The next section provides a
step-by-step guide on how this can be achieved, using an example application.

mdload

mdload-dev

mdload-matlab

mdload libraries

Application-
specific library

Figure 1: MDload components

1.1 Specifying User Behavior

To specify the application user behavior, the MDload user needs to specify (extend) two
main (abstract) classes: Request and Session. These abstract classes are defined in the
mdload.client.workload package, distributed as part of the mdload-dev project. The class
Request is used to determine the action necessary to submit each of the possible application
requests, which is done by implementing the action method. Thus, one Request class needs
to be implemented for each type of application request to generate. The action method has
Selenium Web driver object as its only parameter, which enables the action to use its func-
tionality to interact with the application, e.g., clicking, clearing and filling fills, and submitting
forms, among others.

The second abstract class to extend as part of MDload is Session, which determines how
an application user submits the different requests defined as Request classes. The constructor of
a Session object includes a unique user identifier that enables MDload to distinguish among
the different users active in a benchmark. The MDload user needs to implement two methods,
getWarmUp and getNext, both of which provide a set of Requests to execute, in the form of
a Linked List. The getWarmUp method is used during a first stage called Warm Up, which is
typically used to register users with the application, so that they are able to access it later on.

2 Last revision: October 17, 2014

MDload 1 INTRODUCTION

The getWarmUp method therefore returns a list of Requests that reflect this behavior, including
for instance clicks to registration forms, filling and submitting these forms, among others. The
getNext method is used once the Warm Up period has finished, and it therefore returns a
list of requests that reflect the common usage of the application, including both logged-in and
non-logged in users.

1.2 Automatic generation of requests from Palladio models

Palladio component models provide a compact specification of a software application, including
the workload that the users are expected to generate. To take advantage of this, MDload
offers the module mdload-matlab, which generates a sequence of requests according to the
usage defined in the Palladio model. The module is developed in Matlab2 and uses as input an
XML file containing a Layered Queueing Network (LQN) model. This XML file can be easily
obtained using the PCM2LQN transformation implemented in Palladio Bench, and therefore
can help in bringing to the runtime environment the Palladio models.

2This module is implemented in Matlab, but its binaries do not require a Matlab license to be executed.

3 Last revision: October 17, 2014

MDload 2 INSTALLATION AND QUICK START

2 Installation and Quick Start

To start using MDload, download the libraries by cloning the repositories publicly available
at

� mdload:

https://github.com/imperial-modaclouds/modaclouds-mdload

� mdload-dev:

https://github.com/imperial-modaclouds/modaclouds-mdload-dev

� mdload-ofbiz:

https://github.com/imperial-modaclouds/modaclouds-mdload-ofbiz

� mdload-matlab:

https://github.com/imperial-modaclouds/modaclouds-mdload-matlab

2.1 Example: Quick start with OFBiz

The fastest way to start using MDload is to make use of the implementation already provided
for the OFBiz e-commerce application. To do this,

1. Download, install, and deploy the latest release of Apache OFBiz 12 from
https://ofbiz.apache.org/download.html. After deployment, OFBiz is available on
the URL BASE URL, and listening on port BASE PORT, which normally is 8080. This means
that OFBiz can be accessed on
OFBIZ URL:OFBIZ PORT/ecommerce/

2. Download Firefox 13, which is compatible with the workload generator, and is available
from https://ftp.mozilla.org/pub/mozilla.org/firefox/releases

3. Import the projects mdload, mdload-dev, and mdload-ofbiz, into your favorite Java IDE.
Add mdload-dev as a dependency of mdload and mdload-ofbiz.

4. In the mdload-ofbiz project, modify the config.userdefs to specify the properties

� BASE URL: URL to access OFBiz, e.g., http://myofbiz.com

� BASE PORT: port where OFBiz accepts requests, normally 8080.

5. Create a jar file from the project mdload-ofbiz, say it is called ofbiz.jar.

6. In the mdload project, modify the config.client file to specify the properties

� WORKLOAD JAR: full path to the jar file created in the previous step, e.g.,
in a Windows platform this could be C://path//to//my//jar//ofbiz.jar. No-
tice that MDload is a Java application, and is therefore portable among different
platforms.

� WORKLOAD CLASS: location of the main session class within the above-mentioned jar.
In this case it is mdload.userdefined.session.Test

7. In the mdload project, Execute the class MDLoad. This should start a Firefox browser, or
as many as indicated in the TOTAL USERS property in the config.client file, and start
emulating the interaction of these users with the application.

4 Last revision: October 17, 2014

MDload 2 INSTALLATION AND QUICK START

2.2 Example: Generating traffic from a Palladio/LQN model

MDload also allows generating the application workload from a Palladio Component Model
(PCM). A PCM is a compact description of an application, its components, the resources
where it is deployed, and the workload if faces. PCMs can be built and modified with the
Palladio Bench tool, available for download on http://www.palladio-simulator.com/tools/

download/. More details on PCM can be found in [1]. As part of the mdload-matlab repository,
a sample PCM is provided in the file data/OfBizBranch.zip, which is a model of the OFBiz
application.

Once a PCM model is available, it is necessary to generate the associated Layered Queue-
ing Network (LQN) model. This can be achieved in Palladio Bench, which implements the
PCM2LQN transformation introduced in [3]. LQNs are a popular abstraction for application
performance models [2]. The mdload-matlab repository also provides a sample LQN in the file
data/ofbizBranch.xml.

You can thus use this LQN model for workload generation, following the next steps.

1. After downloading all the repositories mentioned at the beginning of this section, follow
steps 1 to 4 in the previous sub-section.

2. Download and install MATLAB Compiler Runtime (MCR) version 2012b, freely available
on http://www.mathworks.co.uk/products/compiler/mcr/.

3. Start the MDL server. Go to your local copy of the mdload-matlab repository. In the
folder test you will find the MDL executable file for Windows, together with a properties
file named MDL.properties. Double click on the MDL.bat file, which runs MDL.exe with
MDL.properties as parameter. This will start the MDL server that parses the LQN model
and returns a set of requests to execute by the application client.

4. In the mdload-ofbiz project, modify the config.userdefs file to set the following prop-
erties

� LQN FILE: set this to the sample LQN model provided, e.g., in a Windows platform
this could be C://path//to//mdload-matlab//data//ofbizBranch.xml. Notice
that MDload is a Java application, and is therefore portable among different plat-
forms.

� LQN SERVER: set this to the IP address where the MDL server is running, e.g., if it
is your local server set it to localhost.

� LQN PORT: set this to the port where the MDL server is listening. This should be the
same as the port property in the MDL.properties file. The default value is 6350.

5. Create a jar file from the project mdload-ofbiz, say it is called ofbiz.jar.

6. In the mdload project, modify the config.client file to specify the properties

� WORKLOAD JAR: full path to the jar file created in the previous step, e.g., in a Windows
platform this could be C://path//to//my//jar//ofbiz.jar. Notice that MDload
is a Java application, and is therefore portable among different platforms.

� WORKLOAD CLASS: location of the main session class within the above-mentioned jar.
In this case it is mdload.userdefined.session.TestMatlab

7. Execute the class MDLoad. This should start a Firefox browser, or as many as indicated in
the TOTAL USERS property in the config.client file, and start emulating the interaction
of these users with the application. In the command-line window where the MDL server
executes, you can also see the log of request sequences generated from the LQN model,
and passed to the workload generator.

5 Last revision: October 17, 2014

MDload 3 USER’S GUIDE

3 User’s guide

In this section we illustrate how to develop the classes needed to generate the workload for an
specific application, relying on the MDload tool. We will use the OFBiz example, the classes
of which are provided in the mdload-ofbiz repository.

3.1 Workload generation

Since MDload takes care of all the details of the workload generation, it is enough to focus
on describing the user behavior in terms of sessions and requests. A request is an atomic
interaction of the user with the application, typically accessing a service URL. A session is a set
of consecutive requests submitted by a single user, describing a behavior necessary to achieve a
certain service. For instance, a user registering for the first time with the application submits
a different sets of requests than a user that already has an account.

As shown in the next code snippet, when developing a workload generator with MDload one
must define a class that extends the Session abstract class. This involves providing two main
methods: getWarmUp and getNext. These two methods return a list of requests to be executed
by the user. The getWarmUp method is used during the first stage of a benchmark, called warm-
up period, where basic information necessary for the normal operation of the application can be
collected. For instance, users could register in this phase to populate the users database. The
getNext method is used during the main stage of the benchmark, called steady state, which
comes after the warm up period, and represents the expected behavior of the application users.

public class Test extends Se s s i on {
public LinkedList<Request> getWarmup () {
. . .
}

public LinkedList<Request> getNext () {
. . .
}

}

The actual implementation of the getWarmUp method is provided in the next snippet. Here
we observe the creation of a List if Requests to return, and the addition of each of the specific
requests. In particular we observe that the RegisterDetails request requires the user details as
a parameter in the constructor. To this end, we define the class mdload.userdefined.UserLoginDetails,
which holds the details of a specific user, and the Test class has a field of this class, thus asso-
ciating an individual user to each session.

public LinkedList<Request> getWarmup () {
LinkedList<Request> s e s s i o n = new LinkedList<Request>() ;
s e s s i o n . add (new S ta r tS e s s i on ()) ;
s e s s i o n . add (new Home()) ;
s e s s i o n . add (new Reg i s t e r ()) ;
s e s s i o n . add (new Reg i s t e rDe t a i l s (user)) ;
return s e s s i o n ;

}

Similarly, the getNext method is defined in the following snippet, returning a different
sequence of requests to execute. We notice that the LoginDetail request also makes use of the
user details mentioned above.

public LinkedList<Request> getNext () {

6 Last revision: October 17, 2014

MDload 3 USER’S GUIDE

LinkedList<Request> s e s s i o n = new LinkedList<Request>() ;
s e s s i o n . add (new S ta r tS e s s i on ()) ;
s e s s i o n . add (new Home()) ;
s e s s i o n . add (new Login ()) ;
s e s s i o n . add (new Log inDeta i l s (user)) ;
s e s s i o n . add (new QuickAddMain ()) ;
s e s s i o n . add (new Main ()) ;
s e s s i o n . add (new Logout ()) ;
s e s s i o n . add (new EndSession ()) ;
return s e s s i o n ;

}

The previous definition of the Test class, which extends the Session class, is provided in
the mdload.userdefined.session package. We now illustrate the definition of the Request

classes, which are provided in the mdload.userdefined.request package. The next snippet
exemplifies the Home request, which is the basic request that accesses the application home page.
This class extends the Request abstract class, for which it implements the action method. This
method receives a Selenium WebDriver, which it uses to access the application homepage. In this
case the URL and PORT to access the application are provided by the utility class UserDefs.
This method also returns the response time experienced in processing this request.

public class Home extends Request
{

public long ac t i on (WebDriver d r i v e r) {
long in = System . cur rentT imeMi l l i s () ;
d r i v e r . get (UserDefs .BASE URL + ” : ” + UserDefs .BASE PORT + ...

”/ecommerce/”) ;
return System . cur rentT imeMi l l i s () − in ;

}
}

A different example is given in the next snippet, where the action action method of the
Login request uses the driver to find a link with the text “Login”, and clicks it to initiate the
user login.

public class Login extends Request
{

public long ac t i on (WebDriver d r i v e r) {
long in = System . cur rentT imeMi l l i s () ;
d r i v e r . f indElement (By . l inkText (”Login”)) . c l i c k () ;
return System . cur rentT imeMi l l i s () − in ;

}
}

After the previous request, the user submits the LoginDetails request, which provides the
required login details and clicks the submit button. In this case the LoginDetails class requires
a UserLoginDetails field to keep the details of the specific user.

public class Log inDeta i l s extends Request
{

private UserLog inDeta i l s user ;

public Log inDeta i l s (UserLog inDeta i l s u)
{

super () ;
use r = u ;

}

7 Last revision: October 17, 2014

MDload 3 USER’S GUIDE

public long ac t i on (WebDriver d r i v e r) {
long in = System . cur rentT imeMi l l i s () ;
d r i v e r . f indElement (By . id (”userName”)) . c l e a r () ;
d r i v e r . f indElement (By . id (”userName”)) . sendKeys (user . getUsername ()) ;
d r i v e r . f indElement (By . id (”password”)) . c l e a r () ;
d r i v e r . f indElement (By . id (”password”)) . sendKeys (user . getPassword ()) ;
d r i v e r . f indElement (By . c s s S e l e c t o r (” input . button”)) . c l i c k () ;
return System . cur rentT imeMi l l i s () − in ;

}
}

3.2 Workload generation from a Palladio/LQN model

As described in sections 1 and 2, MDload provides the means to generate the application
workload using a Palladio Component Model (PCM) or a Layered Queueing Network (LQN)
model. This is illustrated in the TestMatlab class, which is provided in the mdload-ofbiz

repository. To understand the operation of this class, we must first mention that MDload
comes with a component called the MDL server, distributed in the mdload-matlab repository.
This component operates as a server, receiving instructions to generate a set of requests from
an LQN model. The operation of MDload in this case thus relies on first starting the MDL
server, and then connecting to it to obtain a set of requests.

This operation is illustrated in the following snippet, where the getNext method of the
TestMatlab class is depicted. The first step consists of connecting to the MDL server. Next,
this class submits the command “NEXT”, after which the MDL server sends a sequence of
requests back. This list of requests, separated by semicolon, is parsed, creating a Request

object for each request using the injectNewRequest method. This method uses the requests
classes defined in the package mdload.userdefined.request, described in the previous section.
These Request objects are added to the list returned by the method.

public LinkedList<Request> getNext () {
LinkedList<Request> s e s s i o n = new LinkedList<Request>() ;
connected = connect () ;
i f (connected) {

try {
// reques t l i s t from MDL s e r v i c e
S t r ing command ;
// reques t next r eque s t
command = ”NEXT” ;
out . p r i n t l n (command) ;
out . f l u s h () ;
// response
St r ing resp = in . readLine () ;
System . out . p r i n t l n (resp) ;
// token i z e re sponse
St r ing [] par t s = resp . s p l i t (” : ”) ;
// f i l l s e s s i o n l i n k e d l i s t with response
for (int i = 0 ; i < par t s . l ength ; i++){

s e s s i o n . add (injectNewRequest (par t s [i])) ;
}
// c l o s e connect ion ;
command = ”CLOSE” ;
out . p r i n t l n (command) ;
out . f l u s h () ;
out . c l o s e () ;
in . c l o s e () ;
l i n eSo ck e t . c l o s e () ;

}catch (IOException e) {
System . e r r . p r i n t l n (”An I /O except ion occurred : ”+e . getStackTrace ()) ;

8 Last revision: October 17, 2014

MDload 3 USER’S GUIDE

System . e x i t (1) ;
}

}
return s e s s i o n ;

}

A challenge with PCM and LQN models is that their level of granularity may be too coarse
to directly generate requests from the application calls defined in these models. To overcome
this, we have implemented a simple method in MATLAB, currently provided as part of the
MDLprotocol script in the mdload-matlab repository. As depicted in the snippet below, this
method parses each application call in the PCM model into a valid application request. For
instance, the LQN model, which is also provided in the repository, includes a call to a service
named “checkLogin”. This is not an actual application request, and instead represents two
consecutive requests: Login and LoginDetails. This method therefore maps each application
call in the PCM/LQN model into an appropriate set of requests, that can be readily used by
the workload generator to emulate the user behavior. This of course is application and model
specific, and needs to be dealt with in each case. Thus, the user needs to modify this method
accordingly for the specific application and model considered.

f unc t i on reqName = parseCal lRequest (callName)
reqName = ' ' ;
i f l ength (callName) >= 26 && strcmpi (callName (1 : 2 4) , ...

' RequestHandler HandlerIF ')
reqName = s t r t ok (callName (26:end) , ' ') ;
switch reqName

case 'main '

reqName = 'Main ' ;
case ' checkLogin '

reqName = ' Login : Log inDeta i l s ' ;
case ' quickadd '

reqName = 'QuickAddMain ' ;
case ' addcartbulk '

reqName = 'CartAddAll ' ;
case ' checkoutopt ions '

reqName = 'CheckOut ' ;
case ' proc e s s o rde r '

reqName = ' OrderHistory ' ;
case ' o rd e rh i s t o r y '

reqName = ' OrderHistory ' ;
case ' o rd e r s t a tu s '

reqName = 'CartView ' ;
case ' l ogout '

reqName = 'Logout ' ;
end

end

end

9 Last revision: October 17, 2014

MDload A CONFIGURATION PROPERTIES - CONFIG.CLIENT

A Configuration properties - config.client

The following are the configuration properties to specify in the config.client file, in the
mdload project.

CACHING: enables the browser cache options if set to 1; disables them if set to 0. Default
value: 0.

CLIENT MASTER IP: IP address of the client node that acts as the master node.

DISPATCHER PORT: port where the Overseer sends messages to the Dispatcher regard-
ing the status of the benchmark. Default value: 9878.

EXECUTION TIME MS: total execution time (in milliseconds) of the benchmark. Default
value: 60000.

OVERSEER PORT: port where the Dispatcher sends messages to the Overseer regarding
the status of the benchmark. Default value: 9877.

PAGELOAD TIMEOUT MS: timeout (in milliseconds) when loading a page with Sele-
nium. Default value: 60000.

IMPLICIT WAIT MS: implicit wait time (in milliseconds) for the Selenium driver. Default
value: 600000.

RANDOM SEED: seed used for random number generation. Used to generate the inter-
session arrival times, and the inter-request think times. Default value: 0L.

SESSION IAT ACF GEOMDECAY RATE: decay rate of the auto-correlation function
of the stochastic process that generates the session inter-arrival times. Default value: 0.0

SESSION IAT MEAN MS: mean session inter-arrival time in milliseconds. After a session
is complete, it undergoes an inter-arrival time before a new session is created. Default
value: 1000.

SESSION IAT STDEV MS: standard deviation of the session inter-arrival times in mil-
liseconds. Default value: 1000.

THINK TIME ACF GEOMDECAY RATE: decay rate of the auto-correlation function
of the stochastic process that generates the inter-request think times. Default value: 0.

THINK TIME MEAN MS: mean inter-request think time in milliseconds. This think time
is the time elapsed between two successive requests within a session. Default value: 1000.

THINK TIME STDEV MS: standard deviation of the inter-request think times in millisec-
onds. Default value: 1000.

TOTAL USERS: total number of application users emulated. Default value: 1.

WORKLOAD JAR: full path of the JAR file with the workload definitions specific for the
application.

WORKLOAD CLASS: main class within the workload JAR file. This class extends the
Session class.

10 Last revision: October 17, 2014

MDload B BRIEF CLASS DESCRIPTION

B Brief class description

This appendix briefly describes the classes of the MDload tool.

B.1 Package mdload.client

ClientDefs: utility class with static fields that hold the configuration properties defined in the
client.config file. It also loads the client.config file and updates the corresponsding
fields.

MDLoad: main class of the package, uses the configuration information from ClientDefs,
defines the distributions for the think times and the session inter-arrival times (IATs).
Creates and launches the Overseer.

Overseer: setups a Dispatcher with given think time and inter-session inter-arrival distribu-
tions. Keeps track of the signals submitted by the Dispatcher to record the beginning
and the end of the three main stages of the benchmark: warm-up, steady state, and
cool-down.

Dispatcher: creates the UserAgents, which emulate the web application users. Upon creation
each UserAgent is assigned a Selenium driver for a Firefox browser to interact with the
application. This object keeps a dispatch queue, where the UserAgents add themselves
when they are ready to be assigned a new set of requests. The set of requests is obtained
from the class WORKLOAD CLASS defined within the JAR file WORKLOAD JAR, by means of
two methods: getWarmUp and getNext. These provide the sequence of requests to be
executed during the WarmUp and the Steady State periods.

UserAgent: this is the class that emulates the behavior of the application user. Its main task
is to execute the sequence of requests assigned to it by the Dispatcher, with interleaving
think times.

B.2 Package mdload.client.util

This package provides support classes for workload generation.

Distribution: abstract class that defines the method next, which returns a random number
according to a probability distribution.

DMPH: defines a marked PH process which is used to represent the state of the workload
generator. It is used to model burstiness in the arrival process.

B.3 Package mdload.client.comm

This package provides support classes for communication between the main MDload compo-
nents.

InChannel: abstract class that defines the method receive, in charge of receiving signals via
an application socket.

OutChannel: abstract class that defines the method send, in charge of receiving signals via
an application socket.

TCPInChannel: extends the InChannel class using Java Sockets and Server Sockets.

TCPOutChannel: extends the OutChannel class using Java Sockets.

UDPInChannel: extends the InChannel class using Java Datagram Sockets.

11 Last revision: October 17, 2014

MDload B BRIEF CLASS DESCRIPTION

UDPOutChannel: extends the OutChannel class using Java Datagram Sockets.

Signal: defines a set of signals for communication between the MDload components.

12 Last revision: October 17, 2014

MDload C EXAMPLE: CONFIGURATION PROPERTIES IN THE OFBIZ EXAMPLE

C Example: configuration properties in the OFBiz example

The following are the configuration properties to specify in the config.userDefs file, specific
for the OFBiz application.

BASE URL: URL of the OFBiz application.

BASE PORT: port to access the OFBiz application.

LQN FILE: full path of the LQN model from which the workload must be generated, in XML
format.

LQN SERVER: IP address where the MDL server is running, e.g., if it is your local server
set it to localhost.

LQN PORT: port where the MDL server is listening. Default value: 6350.

13 Last revision: October 17, 2014

MDload REFERENCES

References

[1] Steffen Becker, Heiko Koziolek, and Ralf Reussner. Model-based performance prediction
with the palladio component model. In Proceedings of the 6th WOSP, pages 54–65, 2007.

[2] G. Franks, T. Al-Omari, M. Woodside, O. Das, and S. Derisavi. Enhanced modeling
and solution of layered queueing networks. Software Engineering, IEEE Transactions on,
35(2):148–161, 2009.

[3] Heiko Koziolek and Ralf Reussner. A model transformation from the palladio component
model to layered queueing networks. In Performance Evaluation: Metrics, Models and
Benchmarks, volume 5119 of Lecture Notes in Computer Science, pages 58–78. Springer,
2008.

14 Last revision: October 17, 2014

