
1.

2.
3.

1.

2.

vRealize Orchestrator Dynamic Types Plug-in Generator v3

1. Goal
This tool is designed to help create third party integrations in vRealize Automation with limiting as much as possible the requirement of writing the code for
it.

Via custom resources vRealize Automation can deploy, operate, decommission anything as long as it can be inventoried, created, operated, deleted via a
vRealize Orchestrator plug-in.

It can be created within the vRealize Orchestrator designer integrating any third party API providing unique objects. The most common use case is to
integrate via REST API and this is what this generator focus on.

2. Use cases
Provide in the service catalog the deployment and operations of custom resources that are dependent on a third party API (on premise or cloud
based).
Include some of these custom resources in cloud templates for operating them as part of the cloud template deployment
Use inventory object as workflow inputs to select object in drop downs, tree views

3. What this tool resolves ?
Implementing such extensibility requires the understanding of the third party APIs (most often REST based) as well as experience building plug-ins with
vRO.

Building plug-ins for vRO can be done two ways:

Using the plug-in SDK. This is mainly how VMware technology partners build vRO plug-ins. This requires a Java developer and follow a typical
product development cycle.
Using Dynamic Types. This is mainly how customers / partners / VMware field build plug-ins. This can be done entirely in vRO in JavaScript.

This generator:

Removes a lot of the complexity involved in completing a plug-in from scratch
Reduce drastically the time required by generating most of the code
Determine object hierarchy based on REST object paths

4. How Dynamic Types plug-in Generator is working
At a high level this tool is:

Gathering information pertinent to the integration from the API documentation
If a Swagger / OpenAPI URL is provided : Automated via a workflow using the swagger as input. This allows to build a basic plug-in
without having access to the third party REST host.
if not : with a wizard workflow that ask the user the strict minimum required information to create a plug-in and its objects and gathering
the other information interacting with the API. This way requires access to a live third party REST host

Automate the creation of the plug-in element (Plug-in / Objects / Objects relationships)
Generate code (actions) integrating the third party API for providing the functionality of the plug-in (Getting objects, CRUD operations).
Future : Generate workflows for CRUD operations (Create , Delete, Operations workflows that are needed to create vRA custom resources).

Upon workflow completion the end user should get:

A new Dynamic Types plug-in
Inventory objects for this plug-in
A set of CRUD operations actions for each object. These actions can be added to the Create, update, delete workflows used for vRA custom
resources.

The completion level this tool reach depends on how standard the API is and how well it is documented.

For example

It is working well without having to write Javascript code if the API :
Uses standard authentication mechanism supported by the vRO REST plug-in
Observes the object hierarchy in the URL path
Returns an object that is defined by a specific schema and include standard id and name properties

Some manual code updates are necessary if the API:

Uses specific authentication (I.E call to auth URL to get a token and using this as header)
Does not observe object hierarchy in the URL path
If the returned objects are generic (I.E map)
If the returned object has different nested children objects
If the URL requires extra parameters after the main path

More consequent work is required such as determining object hierarchy, major update on find object methods if the API:

Has complex authentication mechanism (I.E AWS)
Does not use HTTP GET to get objects
Requires URL parameters that cannot be listed by the API

5. Pre-requisite
A REST API returning JSON or XML objects
A supported authentication in the vRO REST plug-in (no coding involved) / or a documented way to use header based authentication (creating an
authentication action is required)
GET method to get objects. ideally :

/api/parents being the url to get all parents objects
/api/parents/{parentId} being the url to get a single parents object
/api/parents/{parentId}/children being the url to get all children objects of the parent that has parentId Id
/api/parents returning an array of objects including properties with at least an id and name properties

A documentation for the REST API or better a swagger / open API

The more the REST API will comply with these rules, the less update work there will be on the plug-in

You need to collect the following information:

What is the API URL endpoint
What is the API authentication type (Basic, OAuth1, OAuth2, ...)
If the authentication is not one of the defined type in vRO "Add a REST Host" the process of making the custom authentication, for example :

What URL to call to get a token
What to pass to this URL (typically a body with username and password)
What part of the response need to be retrieved to be used as an authentication header

What are the objects you need to provide in the plug-in

6. Installation & first setup
Import the Dynamic Types Plug-in Generator package
Run "Set up first - Set vRO credentials"

vRO hostname is the same as in your browser URL (without https:// before and /orchestration-ui after)
Username is the username you used to log in vRO

This workflow is saving vRO its credentials information for being able to create via vRO REST API the elements used by the plug-in.

7. Create a plug-in from Swagger / Open API
If the REST API provides a Swagger / Open API then the creation of the plug-in can be automated.

7.1. REST host authentication test

Before creating the plug-in we need to insure requests can be run on the REST host.

Workflows for testing the REST Host authentication are under Create a plug-in with Swagger / Test REST Host Authentication:1

-A- Create a REST Host - Copy of library "Add a REST host". Alternatively run the library workflow
-B- Create a REST operation - Copy of library "Add a REST operation"
-C- Invoke a REST operation with headers from action - Custom workflow that can optionally use a custom build header authentication action
-D- Remove a REST Host - Copy of library "Remove a REST host"

Run "-A- Create a REST Host" workflow

Include its URL with https
Set the certificate to be accepted silently

On the second tab set the Authentication type. If standard set the Authentication type from the drop down. If header based authentication (I.E vRA 8, vRA
Cloud) set it to NONE)

Run the workflow.

7.1.1. Custom authentication header authentication

If you selected "NONE" for Authentication type and need to authenticate using an authentication header you need to create an action. If you selected one
of the other authentications you can skip this part.

A few actions are provided as examples in the com.vmware.coe.dynamicTypes.pluginGeneratorV3.getCustomHeadersActions scripting module.

This action can have the following inputs in this order:

restHost of type REST:RESTHost
method of type string
urlTemplate of type string
content of type string

and must return a Properties type object containing the Authorization header

It is not mandatory to use all of them in the action but they are provided in case they could be used.

A typical implementation is

POST a body to an authentication URL (either including username password or authentication token)
extract the token from the response
Set and return an header property from

Samples on how to retrieve configuration elements content is in the getCloudServicesCustomHeaders and getvRA82CustomHeaders actions.

Start "-B- Create a REST operation"

Use a simple URL from the REST documentation to GET an object type

Start "-C- Invoke a REST operation with headers from action"

If you selected "NONE" for Authentication type and need to authenticate using an authentication header you need to select your
getCustomHeadersAction action as in the example below.
If you selected one of the other authentications you can keep the .getCustomHeadersAction field empty

Check you get a statusCode of 200 and the expected content in contentAsString

In case the custom header action fails update it and restart "-C- Invoke a REST operation with headers from action" until success.

In case you get a different error code check error codes here to determine where the issue could https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
be.

This part must be working for the plug-in to work

Once successful you can run "-D- Remove a REST host"

7.2. Creating the plug-in

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Enter a plug-in name (Capital letters only)
You can use the default name for the action module or rename it at your convenience
Enter the Swagger URL. To check the URL is valid :

If you open this URL in Chrome you should get a JSON.
if you open this URL in Firefox you should get something like this:

In case you do not have a swagger URL and are provided with the JSON file you can Check :Use Swagger JSON and paste it.
WorkflowCategory is the location where CRUD operation workflows will be created
Set your getCustomHeaders Action in case you set the REST Host Authentication type to "NONE" and need to use a Header Authorization
Authentication configuration is in case your getHeaderAction can get credentials from different configuration elements // Need to check this
The host name should be automatically set to the one in the Swagger URL. In case you pasted a swagger JSON you need to enter a valid host
name for your target REST system
RUN

Example below for the VRA IaaS API.

The workflow should run a few minutes. It will:

Run Library workflow "Add a REST Host by Swagger spec as a string"
Create a plug-in for (API name in swagger)

-1- Create new plug-in
For each object type:

Create plugin-name.objectName
Update findById for plugin-name.objectName (if an URL was found to get the object by ID)

Create CRUD operations for GET, PUT, POST, PATCH, DELETE operations

For easier troubleshooting each type creation / update is run as a separate workflow.

The "-2- Create plug-in from Swagger" is not supposed to fail but it can provide warning and error messages in its log when it may have issues finding the
necessary information to create a type.

Once completed there are quite a few changes in the inventory:

"Add a REST Host by Swagger spec as a string" added the REST host with all its operations.

NB that the plug-in will leverage the REST Host so this must be kept in the inventory. However the plug-in will not use the REST operations. These are
used only during the generation of the actions for the plug-in.

Under Dynamic Types / Type Hierarchy there is

A host type for the plug-in (I.E VRAIAASHost)
The folders types for the objects that are under this host (I.E iaasMachinesFolder)

The object types under the folders (I.E iaasMachines)
And if these objects have children objects folders and objects (I.E iaasMachinesIdDisksFolder & iaasMachinesIdDisks)

7.3. Updating the REST Host

The REST host was created by the library workflow "Add a REST Host by Swagger spec as a string" with an authentication set to "NONE".

If you did set your REST host to an authentication different then "NONE" during the REST Host Authentication test run "-3- Update a REST host" and
update the Authentication type and credentials.

If you set it to "NONE" you can skip this step.

8. Checking and updating the generated plug-in
With the plug-in generated it is necessary to check the inventory objects. The generator makes some assumption to find the objects returned by the API in
different structures as well as to find their properties including the mandatory id and names properties.

The goal is to update anything that is not

8.1. Verifying the generated objects

Open the namespace in the inventory.

Unfold the host.
Unfold each folder under the host.
Unfortunately since recent version of vRO there is no more check on the objects to know if they have children (the hasChildrenInRelation binding
in the DT object definition). You can check if the object is expected to have children in the Type hierarchy.
Click on each object type to check its properties

Note that as of this version of vRO (8.2 Patch 1) there is a known issue where right after being generated the inventory may not show the folder and
default object icons.

If unfolding is either displaying children objects or no object because there are not expected to have any all is well.

If any error occurs in the code that has been generated it should display a visible error message. The next section will go through possible issues.

If you want to make sure there is no error you can tail the vRO logs and check for exception.

Below is an example of a plug-in generated with the vRA IaaS API. This API works well.

Bellow is an example of object with the following properties:

The mandatory / minimal ones:

id : This is a mandatory property allowing the plug-in to identify the object. It is a / separated string including the REST plug-in Host ID then the
REST ID of the parent object (Here machine), then the REST ID of the child object (here disk ID).
name : This is also a mandatory property as this is the main one that will help the end user identify the object

The internal ones :

@fullType : this defines the vRO types we created. Here DynamicTypes:VRAIAAS.iaasMachinesIdDisks

The debug properties. These properties are added to the inventory object to help troubleshoot possible issues

DEBUGrequestFullUrl : The URL that was used to get the object containing all the children objects (I.E https://cava-6-240-219.eng.vmware.com
/iaas/api/machines/1e0fc1b9-b794-3b55-9efd-83b5149ae3e9/disks)
DEBUGjson : The result of the request made to get the object containing all the children objects

DEBUGobjectsPath : The property in the object returned that return an array of children objects (In this example ".content")

The object properties : All the properties contained in the object (I.E status, capacityInGB, ...)

8.2. Fixing issues, updating the generated code

There are cases where the generator does not find a children object type, its id and name properties. There are multiple reasons for that.

It can be that the Swagger is documenting somme generic objects types like maps that do not document the properties. It can also be that the URL is not
returning array of objects or that the objects has multiple sub objects.

The plug-in generator tries to generate the object anyway as it is a lot less work to fix these than creating them from scratch. It also let you know when
there is obviously a problem and give you information to what action need to be updated.

If a folder name end up with "name / ID property not found. Please update"

8.2.1. Troubleshooting using the folder object properties

With clicking on the folder you can get a lot of information that was captured from the swagger and the generation of the code finding the children of the
parent object.

The properties that determine how the JSON from the HTTP query response will be used. This 3 properties when not determined are causing failures.

objectPath is the path in the JSON file to the array of objects
idProperty is the property that will be used for object id
nameProperty is the property that will be used for the object name

In the example below the objectPath and nameProperty seems to be defined but the idProperty was set to "notFound" as there were no obvious id
property.

The returnedObjectDefinition property is the part of the swagger that define what is returned by the URL and is used to set the objectPath. In the example
below the .supportedApisPath was chose as this is an array of objects of type ApiDescription.
The returnedChildObjectDefinition property is what swagger documents for the APiDescription object. The generator determined apiVersion may be the
name of the object but did not find any property that is named in an obvious way to find the id property. Hence the "notFound" idProperty

Two other important properties are:

actionGeneratingFolderChildren : This is the action that is responsible to run the GET urlWithParameters (with replacing the parameters if any),
getting the objects from the objectPath, creating the object using the idProperty and nameProperty and setting other properties. This is the file you
need to edit whenever the objectPath, the ideProperty or nameProperty are not the right ones, when you need to add / remove other properties.
actionGeneratingFolder : this is the action that generate the parent folder with its name and its properties. You can hardcode the name of this
folder if the one generated is not ideal, you can remove a lot of the properties that are useful at development time but may not be for the end
users.

Required / optional parameters. Sometimes the swagger API mark some parameters as required. This is important information particularly if these are after
the "?". The generator does not set these and they will need to be set within the actionGeneratingFolderChildren action.

If you unfold the folder, if the request managed to go far enough there will be a "Error - click me for more information" object

This object is generated to provide further information on what was returned by the query and may suggest fixes.

8.2.2. Troubleshooting using the "Error - click me for more information" object

If you click on the "Error - click me for more information" object it should display a number of properties helping to troubleshoot:

The error property attempts to provide more information. Here "ID property is wrong : returned undefined"
The fix action directs you to the action you need to edit for the fix. In the case ite objectPath property was no good it may suggest other possible
properties returning array of objects.
The DEBUGrequestFullUrl indicates the URL that was used (with parameters replaced with parent object IDs in case of children objects). This
way the url can be tested separately to see if it leads to a problem. It may happen that the credentials do not allow to get from a particular URL.
Another possible issue are some required parameters that are not included in the query. In this case the url used to make the query can be edited
in the action to provide these.

Another important property is the DEBUGjson which gives the result of the query. In the case below we can see that the object returned has few
information. We may choose to delete completely this object if it is not useful or to provide some of this information as leaf object.

For example here he can still use the supportedApis objectPath, keep "apiVersion" for the name property and also use it for the ID property as this will
always be a unique string. We could as well used the documentationLink one but shorter strings are preferred as the value of this property will be used as
the last part of the whole object ID that include the RESTHost ID and the parent object IDs.

8.2.3. Updating / fixing the children objects with editing the [objectType]FolderFindRelation action

The [objectType]FolderFindRelation action is a crucial part of the code written for the plug-in. While most of its code can in most case stay the same the
objectsPatch, the id and name property are likely to be different.

The parts that are the most likely to be edited are commented on the same line. This is the case for these properties which can be edited on these 3 lines:

In the case above the objectsPath looks to be OK when we check on the DEBUGjson property of the Error object.

The shortId set as typeObject.notFound is definitely wrong and can be replaced by typeObject.apiVersion.

The name set as typeObject.apiVersion is fine.

Other lines of code that are in the generated action also are commented to suggest they could be removed if wanted as these:

Provide troubleshooting information (I.E the addDebugProperties() function)
Avoid the action to throw exceptions (I.E the many try catch to allow troubleshooting from the UI instead of the vRO logs)
Handle specific use cases (I.E out of order parameters between parent and child URLs, children objects as string links instead of JSON, children
object being a single object)

Also by default the action is setting object properties dynamically using these lines.

But do provide with an example of setting the properties individually so you could remove the above lines and choose which one of the properties you want
to have on the object, rename these properties as needed etc

These properties are the one that were found in the swagger file. In some case the generator does not pick up the right ones so you may have to edit
these based on the DEBUGjson content.

Another thing to look at is the cache settings. Cache was built in as there are situations were the plug-in will call to this action many times to get the very
same results.

Cache can be controlled per object type editing the next two lines:

There may be cases where other changes need to be applied such as executing additional REST queries to get some properties needed in the object. The
action can be customize as much as needed.

8.2.4. Updating / fixing the children objects with editing the [objectType]FolderFindId action

This action defines the folder for the object. In some cases you may want to rename the folder, add / remove folder properties.

For example when the plug-in generated the folder it added "name / ID property not found. Please update iaasFolderFindRelation"

The name of the folder can be set via the name property in the makeObject call. In the case above it is the name of the object.

But it can be overwritten bu the displayName property.

So basically if we want to remove the "name / ID property not found. Please update iaasFolderFindRelation" we can either edit the displayName property
or delete the line completely to keep the name set in the make object call. In this case I set the displayName property to "About"

There are also a lot of properties set on folders that are for informational . debugging purposes during the development of the plug-in. All these properties
can be removed.

Here is the result after the changes to fix iaasAboutFolderFindRelation and IaasAboutFolderFindById

In some cases the API does not return much information or information that is not worth exposing to the plug-in. In this case the "Delete a type" workflow
can be used. However be careful not to delete a parent type that is needed by a children type that is needed,

9. Create a plug-in from non swagger REST documentation
In the case the REST API is not providing a swagger / openAPI (I.E PDF based or HTML based REST API documentation) or in the case you need to
create only specific inventory objects from this API it is possible by using a wizard style workflow that interacts with the API.

9.1. Pre requisites

To make sure you have proper REST Host and its credentials, proper authentication method follow section 8.1.

9.2. Creating the plug-in and REST Host

The workflows are located in "Create a plug-in no swagger"

Run "-1- Create new plug-in "

Enter a plug-in name
Set a host icon (you can upload icons in vRO resources)
Set the action module to be created (default from the plug-in name)
Set a workflow category (Not used ATM, may be used for creating CRUD workflows)
If the REST Host authentication requires passing a custom authorization header set the action you created in section 8.1

RUN

Run "-2a- Create a REST host" - This is the same workflow as the library "Add a REST host" workflow

Set a REST Host name
Enter the host URL
Set the accept certificate, Automatic URL redirection and support for parallel operations to true

Run "-2b- Add REST Host as DT Host"

Select the REST Host
Select the plug-in namespace
The third input is optional. It allows to bind a configuration element to the host so it can be used from the getCustomHeaderAction action

9.3. Creating a type under the host type

The workflows for creating the plug-in types are under the "-3- Repeat for each object type" folder.

Run the "-3a- Add a REST operation" workflow - this is the same workflow as the "Add a REST operation" workflow from the library

Run "-3b- Invoke a REST operation with headers from action"

Select the operation
Select the action used to create the Authorization header (if needed)

Check the request status is fine (200 for a GET operation)

Check contentAsString variable is set with returned objects.

Run "-3c- Create a type from a REST operation"

Select the REST operation you just created
Enter a type name
Set an icon for this type (icons can be uploaded as resource elements separately)
Select a the parent type for this object. If the URL has no parameter the parent type should be the namespace name + "Host"
Enter a folder label
If you are using an action to return an authorization header check "hasCustomHeaderAction" and set your action
If you got the previous steps right you should see a JSON based text in "Content Preview". You may copy and paste this JSON in a JSON viewer
to check in which property the array of objects is stored
Objects path should list all the possible paths to an array of object. Select the right one.
Element index is used to select which of the object you want to see preview in the next objectProperties input
The objectProperties input is used to see what is the data retrieved and to choose which properties should be kept in the Dynamic Types object.
You can select and remove the ones that are not needed
Set the ID property. This must be a unique ID, this must be the ID used in /objectType/{objectId} URL to get a specific object by ID
Set the Name property. This should be a unique name allowing to identify the object.

RUN

Once the workflow complete check the vRO Inventory.

You should see the folder object then the child objects. You can click and check the properties. There are a number of properties that are added to the
object automatically starting with "DEBUG". You can click on the parent folder to get the name of the action returning the child objects and edit it to modify
the properties returned if needed.

9.4. Creating a type under another type

You may have object types requiring to be under another type. In the example below the disk type under the machine type.

Typically the URL for such type does have the parent type in the URL followed by a parameter that is the ID of the the parent object.

First add the REST Operation. The template URL must provide the parent id between {} as in the example below. You can find these URLs in the API
documentation

Test this operation with running "-3b- Invoke a REST operation with headers from action"

This time you will have to provide a parameter value. If you look at the contentAsString variable from the last run of this workflow you should have in the
objects their ids. You can copy and paste the id of one of them when adding a parameter.

You should get a 200 status code with a new contentAsString set with the JSON representing the child objects.

Run "-3c- Create a type from a REST operation"

This is similar to the previous run you did except:

Make sure to select the operation to get the child objects you just tested
Parent type should be the parent type you previously created
In parent name and ID select one item. This is the equivalent of passing and ID as you did in the previous step.

You can follow the previous create instructions for the other inputs.

Once the workflow complete check the vRO Inventory.

You should see under the parent object the child object folder then the child objects. You can click and check the properties.

	vRealize Orchestrator Dynamic Types Plug-in Generator v3

