MANET protocols for INET - no longer maintaiened. Please DO NOT use it with new projects.
Switch branches/tags
Clone or download
#7 Compare This branch is 797 commits ahead of neuwin1216548787:master.
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
3rdparty
_scripts
doc
etc
examples
migrate
src
tests
.cproject
.gitignore
.nedfolders
.oppbuildspec
.project
CREDITS
ChangeLog
INSTALL
License
Makefile
Makefile.vc
README
README.INETMANET
WHATSNEW
__TODO
doxy.cfg

README

INET Framework for OMNEST/OMNeT++ 4.0
=====================================

The INET framework is an open-source communication networks simulation
package, written for the OMNEST/OMNeT++ simulation system. The INET framework
contains models for several Internet protocols: beyond TCP and IP there is UDP,
Ethernet, PPP and MPLS with LDP and RSVP-TE signalling. See the CREDITS file
for the names of people who have contributed to the INET Framework.

IMPORTANT: The INET Framework is continuously being improved: new parts
are added, bugs are corrected, and so on. We cannot assert that any protocol
implemented here will work fully according to the specifications. YOU ARE
RESPONSIBLE YOURSELF TO MAKE SURE THAT THE MODELS YOU USE IN YOUR SIMULATIONS
WORK CORRECTLY, AND YOU'RE GETTING VALID RESULTS.

Contributions are highly welcome. You can make a difference!

See the WHATSNEW file for recent changes.


GETTING STARTED
---------------
You may start by downloading and installing the INET framework. Read the INSTALL
file for further information.
 
Then you can gather initial experience by following the INET tutorial. After
that, you can learn the NED language from the OMNeT++ manual & sample
simulations.
 
After that, you may write your own topologies using the NED language. You may
assign some of the submodule parameters in NED files. You may leave some of
them unassigned.
 
Then, you may assign unassigned module parameters in omnetpp.ini of your
simulation. (You can refer to sample simulations & manual for the content of
omnetpp.ini)
 
Finally, you will be ready to run your simulation. As you see, you may use
the INET framework without writing any C++ code, as long as you use the
available modules.
 
To implement new protocols or modify existing ones, you'll need to add your
code somewhere under the src directory. If you add new files under the 'src'
directory you will need to regenerate the makefiles (using the 'make makefiles'
command).
 
If you want to use external interfaces in INET, please install libpcap-dev (on linux)
or winpcap (on windows from www.winpcap.org), then re-run the omnetpp configuration
script (./configure). You should also enable the pcap support by editing the
src/makefrag and then regenerating the INET makefiles (using the "make makefiles"
command).

Directory structure
-------------------
Directories of INET framework source are arranged roughly along the OSI layers.

Bottom-up:

 src/
   networkinterfaces/    L2 (data link layer) protocols
     contract/           API to common L2 functionality
     ethernet/           Ethernet model (MAC, LLC, Encap)
     etherswitch/        Ethernet switch (relay unit) model
     ppp/                basic PPP model (framing only)
     mfcore/             Core modules from the Mobility Framework (modified)
     mf80211/            MF's 802.11b ad-hoc mode model (modified)
     ext/                External interface
     experimental/       Experimental protocols
     underTest/          protocols that must be tested
     battery/            Symple battery module


   network/              L3 (network layer) protocols
     contract/           API to common L3 functionality
     autorouting/        autoconfiguration of static routes
     arp/                ARP protocol
     queue/              router queues (QoS, RED, etc)
     ipv4/               IPv4 and associated protocols
     ipv6/               IPv6 implementation (currently in work)
     icmpv6/             ICMPv6 implementation (currently in work)
     mpls/               MPLS implementation (will be replaced soon)
     ldp/                LDP signalling protocol for MPLS
     rsvp_te/            RSVP-TE signalling protocol for MPLS (will be replaced soon)
     scenario/           specific for RSVP-TE (will be replaced soon)
     manetrouting/       Manet routing protocols
        aodv             AODV-UU protocol
        dsr              DSR-UU protocol
        dymo             dymo-um protocol
        dymo_fau         dymo-fau
        batman           BATMAN routing protocol
        olsr             OLSR-UM and OLSR-UM with ETX
        manager          Start module (load the selected routing protocol in memory)
        base             base class for manet routing protocol and Uint128 multicontainer address class


   transport/            transport layer protocols
     contract/           API to transport layer functionality
     tcp/                TCP protocol (supporting SACK) (default TCP implementation)
     tcp_nsc/            TCP protocol using Network Simulation Cradle
     tcp_old/            TCP old (obsolete) TCP implementation (without SACK) for refeence only
     udp/                UDP protocol
     rtp/                Realtime Transport Protocol (not yet integrated)
     sctp/               Stream Control Transmission Protocol

   applications/         application layer
     tcpapp/             TCP application models
     udpapp/             UDP application models (VideoStream, etc.)
     generic/            traffic generators (directly for IP)
     ethernet/           traffic generators (directly for Ethernet)
     pingapp/            ping application

   world/                scenario manager, MF channel manager

   nodes/                protocol stacks, host and router models
     inet/               IP-based components
     ipv6/               IPv6-based components
     mpls/               router models with MPLS/LDP/RSVP-TE

   base/                 common header files, base classes
   util/                 utility classes
   
   underTest/           aditional protocols, the protocols in this directrory can be disable without problems
                        the actual list of protocols in this directory are:
                        	802.15.4 (becon mode file Ieee8215Mac.cc and csma mode file csma802154.cc)
                        	Wimax (partial functionality)
                        	New Ieee80211 Management Stack for INETMANET in Omnet++ 4.0
                        	rstp (Rapid Spanning Tree Protocol)
                        	channel models
                        By default this directory is disabling. It's necessary to include this directory in the project
                         

 examples/               example networks
   ethernet/             example Ethernet networks
   inet/                 IP-based example networks
   ipv6/                 IPv6-based example networks
   mpls/                 example networks for MPLS/LDP/RSVP-TE
   rtp/                  RTP examples (not yet integrated)
   mobileadhoc/          mobile and ad-hoc networks (incomplete)

 doc/                    documentation

 tests/                  some test
   ipv4/                 for IPv4 components
   ipv6/                 for IPv6 components
   mpls/                 for the MPLS models
   newtcp/               for the TCP model

 3rdparty/               optional 3rd party components like (Network Simulation Cradle etc.)