diff --git a/docs/README.md b/docs/README.md index a5df66d1f..5ba4f6966 100644 --- a/docs/README.md +++ b/docs/README.md @@ -4,12 +4,12 @@ * Intel-Optimized TensorFlow (*coming soon*) * Intel-Optimized TensorFlow Serving: - * [Installation Guide](general/tensorflow_serving/InstallationGuide.md) - * [General Best Practices](general/tensorflow_serving/GeneralBestPractices.md) + * [Installation Guide](/docs/general/tensorflow_serving/InstallationGuide.md) + * [General Best Practices](/docs/general/tensorflow_serving/GeneralBestPractices.md) ## Tutorials by Use Case * Intel-Optimized TensorFlow (*coming soon*) * Intel-Optimized TensorFlow Serving: - * [Image Recognition](image_recognition/tensorflow_serving/Tutorial.md) (ResNet50 and InceptionV3) + * [Image Recognition](/docs/image_recognition/tensorflow_serving/Tutorial.md) (ResNet50 and InceptionV3) * Object Detection (*coming soon*) \ No newline at end of file diff --git a/docs/general/tensorflow_serving/GeneralBestPractices.md b/docs/general/tensorflow_serving/GeneralBestPractices.md index d8aba6474..7617b3e07 100644 --- a/docs/general/tensorflow_serving/GeneralBestPractices.md +++ b/docs/general/tensorflow_serving/GeneralBestPractices.md @@ -86,5 +86,5 @@ Figure 1. NCHW format - ***TENSORFLOW_SESSION_PARALLELISM*** = *num_physical_cores*/4 3. Use NCHW data format for images 4. See one of the hands-on tutorials for an advanced walkthrough of your use case: - * [Image Recognition](https://github.com/NervanaSystems/intel-models/blob/master/docs/image_recognition/tensorflow_serving/Tutorial.md) (ResNet50 and InceptionV3) + * [Image Recognition](/docs/image_recognition/tensorflow_serving/Tutorial.md) (ResNet50 and InceptionV3) * Object Detection (*coming soon*) \ No newline at end of file diff --git a/docs/image_recognition/tensorflow_serving/Tutorial.md b/docs/image_recognition/tensorflow_serving/Tutorial.md index 3d85b9ec0..13c62ab22 100644 --- a/docs/image_recognition/tensorflow_serving/Tutorial.md +++ b/docs/image_recognition/tensorflow_serving/Tutorial.md @@ -11,12 +11,12 @@ It also provides sample code that you can use to get your optimized TensorFlow m ## Prerequisites This tutorial assumes you have already: -* [Installed TensorFlow Serving](https://github.com/NervanaSystems/intel-models/blob/master/docs/general/tensorflow_serving/InstallationGuide.md) -* Read and understood the [General Best Practices](https://github.com/NervanaSystems/intel-models/blob/master/docs/general/tensorflow_serving/GeneralBestPractices.md), +* [Installed TensorFlow Serving](/docs/general/tensorflow_serving/InstallationGuide.md) +* Read and understood the [General Best Practices](/docs/general/tensorflow_serving/GeneralBestPractices.md), especially these sections: * **Performance Metrics** * **TensorFlow Serving Configuration Settings** -* Ran an example end-to-end using a GRPC client, such as the one in the [Installation Guide](https://github.com/NervanaSystems/intel-models/blob/master/docs/general/tensorflow_serving/InstallationGuide.md) +* Ran an example end-to-end using a GRPC client, such as the one in the [Installation Guide](/docs/general/tensorflow_serving/InstallationGuide.md#option-2-using-grpc-this-is-the-fastest-method-but-the-client-has-more-dependencies) ## Background @@ -31,8 +31,8 @@ Tuning TensorFlow Serving to take full advantage of your hardware for image reco ## Hands-on Tutorial - ResNet50 or InceptionV3 For steps 1 and 2, refer to the Intel Model Zoo FP32 benchmarks: -* [ResNet50 README](https://github.com/NervanaSystems/intel-models/tree/master/benchmarks/image_recognition/tensorflow/resnet50#fp32-inference-instructions) -* [InceptionV3 README](https://github.com/NervanaSystems/intel-models/tree/master/benchmarks/image_recognition/tensorflow/inceptionv3#fp32-inference-instructions) +* [ResNet50 README](/benchmarks/image_recognition/tensorflow/resnet50#fp32-inference-instructions) +* [InceptionV3 README](/benchmarks/image_recognition/tensorflow/inceptionv3#fp32-inference-instructions) 1. **Download the Model**: Download and extract the ResNet50 or InceptionV3 pre-trained model (FP32), using the instructions in one of the READMEs above. @@ -81,7 +81,7 @@ For steps 1 and 2, refer to the Intel Model Zoo FP32 benchmarks: For example, for a machine with `Core(s) per socket: 28` and `Socket(s): 2`, *num_physical_cores* = 28 * 2 = 56. 7. **Start the server**: Now let's start up the TensorFlow model server. To optimize overall performance, use the following recommended settings from the - [General Best Practices](https://github.com/NervanaSystems/intel-models/blob/master/docs/general/tensorflow_serving/GeneralBestPractices.md): + [General Best Practices](/docs/general/tensorflow_serving/GeneralBestPractices.md): * OMP_NUM_THREADS = *num_physical_cores* * TENSORFLOW_SESSION_PARALLELISM = *num_physical_cores*/4