
Security Properties of Key Transparency
Esha Ghosh

IETF 118 - November 10, 2023

Key Transparency Systems

Service Provider maintains a directory of userid
to public key mappings

User Interactions:
1. Search/Lookup: own key or other contact’s

key
2. Update: own key
3. Monitor/Audit: checking for log consistency

Userid Public Key

Alice 𝑝𝑘!
Bob 𝑝𝑘"
… …

Key Transparency Systems

Auditable Key
Directory Service

Clients
get
cryptographic
proofs of
correctness

Create TreeHeads
periodically

3

Service holds public identity keys for
every client device

Verify the proofs against the
latest TreeHead; alert users if
proofs do not check out

Clients Devices

Epoch TreeHead

1 ℎ#
2 ℎ$
… …

Security Properties

• When the log operator is honest: Correctness Properties

• When the log operator is malicious: Consistency Properties

Correctness Properties

1. When a user looks up a key, the result they receive is the same
 result that any other user searching for the same key would have seen

2. When a user modifies a key, other users will see the modification
the next time they search for the key

Consistency Properties

1. When a user looks up a key, the result they receive is not the same
result that any other user searching for the same key would have
seen, it will be detected

2. When a user modifies a key, but other users do not see the
modification the next time they search for the key, it will be
detected

Consistency Properties

• Bob’s[Owner] latest key:

• When Alice[Receiver] queries for Bob’s latest key, she sees a fake key:

Consistency Properties

• Dissemination of TreeHeads
• State at clients:
• User’s own state
• User’s contact’s state

• When is the inconsistency detected
• Who detects the inconsistency
• 3rd Party Auditing
• Owner Signing

Dissemination of TreeHeads

• All users should receive the same TreeHead for the same epoch:
globally consistent view of the log.

• To detect forking of the log, the TreeHeads should be disseminated
among the participants.

• Bulletin Board: Disseminates TreeHeads through a third-party Bulletin Board

• Gossip Channel: Dissemination of TreeHeads happen through gossip among
the participants (comparing TreeHeads directly with each other)

Key Owner’s state

• Only the owner of the key (Bob) will be able to authoritatively decide
that a distributed key was fake

• To detect this, Bob has to lookup the history of his own key in the log
often

• Each time Bob changes his key, he has to check that the key change is
correctly included in the log

• Bob also has to remember the epochs at which he updated his key.

User’s contact’s state

• Each user’s device may keep need to keep some state for their
contacts

• e.g.: The last keys of the user’s contacts, version numbers and possibly other

auxiliary information for their contact’s keys

Who detects the inconsistency

• Bob [Key Owner] may detect the inconsistency

• Alice [Recipient] may detect the inconsistency

When is the inconsistency detected

• At least 2 checks needs to happen:

• Alice [R] needs to ensure that the key she is seeing is committed by the server
in the latest TreeHead

• Bob [O] needs to see this key distributed on his behalf while monitoring for
his own key after the fake key distribution

When is the inconsistency detected

• Bob [O] detects the inconsistency the first time he comes online
since the distribution of the fake key and monitors his key history

• Bob [O] cannot detect the inconsistency the first time he comes
online since the distribution of the fake key and checks his key
history: additional checks need to be performed (by Alice [R] or other
parties) for this to be detected

Third Party Auditing (3PA)

• Third party auditor downloads and authenticates the log’s content

• The auditor is trusted to run this correctly and attest to the result

• This party is added for efficiency: if the clients do not want to trust
an external auditor, they can run the audit function themselves.

Owner-Signing

• If a malicious server publishes a TreeHead at a certain time and
compromises a user’s device some time after that

• The clients who hold that TreeHead will not accept any keys that the
user’s device did not authorize before being corrupted

Takeaways

• Several subtle dimensions of security properties

• It would be great to think about what are the desirable properties for
a KT system

• Various combinations of the consistency properties offer different
efficiency tradeoffs

