Skip to content

intelligent-environments-lab/CityLearn

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CityLearn

CityLearn is an open source OpenAI Gym environment for the implementation of Multi-Agent Reinforcement Learning (RL) for building energy coordination and demand response in cities. A major challenge for RL in demand response is the ability to compare algorithm performance. Thus, CityLearn facilitates and standardizes the evaluation of RL agents such that different algorithms can be easily compared with each other.

Demand-response

Environment Overview

CityLearn includes energy models of buildings and distributed energy resources (DER) including air-to-water heat pumps, electric heaters and batteries. A collection of building energy models makes up a virtual district (a.k.a neighborhood or community). In each building, space cooling, space heating and domestic hot water end-use loads may be independently satisfied through air-to-water heat pumps. Alternatively, space heating and domestic hot water loads can be satisfied through electric heaters.

Citylearn

Installation

Install latest release in PyPi with pip:

pip install CityLearn

Documentation

Refer to the docs for documentation of the CityLearn API.

About

Official reinforcement learning environment for demand response and load shaping

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published