Recrawl Scheduling Based on Information Longevity

Christopher Olston
Yahoo! Research
Santa Clara, California
olston@yahoo-inc.com

ABSTRACT

It is crucial for a web crawler to distinguish between ephemeral

and persistent content. Ephemeral content (e.g., quote of
the day) is usually not worth crawling, because by the time
it reaches the index it is no longer representative of the web
page from which it was acquired. On the other hand, con-
tent that persists across multiple page updates (e.g., recent
blog postings) may be worth acquiring, because it matches
the page’s true content for a sustained period of time.

In this paper we characterize the longevity of information
found on the web, via both empirical measurements and a
generative model that coincides with these measurements.
We then develop new recrawl scheduling policies that take
longevity into account. As we show via experiments over
real web data, our policies obtain better freshness at lower
cost, compared with previous approaches.

Categories and Subject Descriptors

H.3.3 Information Storage and Retrieval]: Information
Search and Retrieval

General Terms

Algorithms, Experimentation, Measurement, Theory

1. INTRODUCTION

Modern search engines rely on incremental web crawlers [3]
to feed content into various indexing and analysis layers,
which in turn feed a ranking layer that handles user search
queries. The crawling layer has two responsibilities: down-
loading new pages, and keeping previously-downloaded pages
fresh. In this paper we study the latter responsibility, and
consider what page revisitation policy a crawler should em-
ploy to achieve good freshness.

Good freshness can be guaranteed trivially by simply re-
visiting all pages very frequently. However, doing so would
place unacceptable burden on the crawler and leave few re-
sources for discovering and downloading new pages. Hence
we seek revisitation policies that ensure adequate freshness
while incurring as little overhead as possible.

Prior work on this problem has focused on two factors
when determining how often to revisit each web page:

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.

WWW 2008, April 21-25, 2008, Beijing, China.

ACM 978-1-60558-085-2/08/04.

Sandeep Pandey
Carnegie Mellon University
Pittsburgh, Pennsylvania

spandey@cs.cmu.edu

1. Change frequency (how often the content of a page is
updated by its owner) [4, 6, 7].

2. Relevance (how much influence the new/old page con-
tent has on search results) [12, 13].

A third important factor that has thus far been ignored
is information longevity: the lifetimes of content fragments
that appear and disappear from web pages over time. In-
formation longevity is not strongly correlated with change
frequency, as we show in Section 3.2.

It is crucial for a crawler to focus on acquiring longevous
(i.e., persistent) content, because ephemeral content such as
advertisements or the “quote of the day” is invalid before it
hits the index. Besides, a search engine typically has little
interest in tracking ephemeral content because it generally
contributes little to understanding the main topic of a page.

Real web pages differ substantially in the longevity of their
content. Figure 1 shows the temporal evolution of two web
pages, in terms of the presence or absence of individual con-
tent fragments. (The manner in which we divide pages into
fragments is not important for the present discussion.) In
each graph the horizontal axis plots time, and the vertical
axis shows unique fragments, sorted by the order in which
they first appear on the page. Each horizontal stripe rep-
resents a fragment; the left end-point is the time at which
the fragment first appears on the page; the right end-point
is the time at which the fragment disappears.

Page A has a small amount of static content, and a large
amount of highly volatile content that consists of dynami-
cally generated text and links apparently used to promote
other web pages owned by the same organization. Page B
contains a mixture of static content, volatile advertisements,
and a third kind of content manifest as horizontal stripes
roughly 30 to 60 days long. Page B is part of a cooking site
that displays a sliding window of recent recipes.

Contrasting Pages A and B, we appreciate the importance
of considering the lifetime of information when crafting a
page revisitation policy. Pages A and B both undergo fre-
quent updates. However Page A is not worth revisiting of-
ten, as most of its updates simply replace old ephemeral
information with new ephemeral information that would be
pointless for the search engine to index. Page B, on the
other hand, is adding information that sticks around for one
to two months (i.e., recipes) and might be worthwhile to in-
dex, making Page B worth revisiting often. (We estimate the
prevalence on the web of pages like A and B in Section 3.3.)

Information longevity has been measured in various ways
in previous work [1, 8, 9]. However we are not aware of any
work that considers its role in recrawl effectiveness.

II
| I
L
i
L
|
|l

£ |
£ —

2 =

- IIL
IL
LI_
|
LL
| I N
IIL
L
0 30 60 90
time (days)

Page B
= |
I
_=h
o I —
=
=
i — S —
hb_
- ea
a]
£
o
m
=
0 30 60 S0

time (days)

Figure 1: Temporal behavior of two web pages.

1.1 Contributions

This paper makes the following contributions:

e Identification of information longevity as a key factor
in crawler performance.

e Longevity measurements of real web content, and a
generative model that accounts for the observed char-
acteristics (Section 3).

e New page revisitation policies that take into account
information longevity in addition to the usual factors,
and avoid wastefully downloading ephemeral content
(Section 4).

e Empirical study of the online revisitation problem, where

policies must sample page update behavior on the fly,
in order to learn how pages change and use the learned
information to schedule future revisitations (Section 5).

The revisitation policies we propose are highly practical.
They incur very little per-page space and time overhead.
Furthermore, unlike some previously-proposed policies, ours
do not rely on global optimization methods, making them
suitable for use in a large-scale parallel crawler. Lastly, our
policies automatically adapt to shifts in page change behav-
ior.

Our revisitation policies are based on an underlying theory
of optimal page revisitation, presented next.

2. THEORETICAL FRAMEWORK

The scenario we consider is as follows. A crawler has ac-
quired the content associated with a set of pages P. Each
page P € P may undergo autonomous updates after the
crawler’s first visit, causing the web-resident copy of P to
drift from the crawler’s copy. A page revisitation policy gov-
erns the schedule with which the crawler refreshes its local

copy of P, by revisiting the web-resident copy and reacquir-
ing its content, in order to bring the local copy in sync with
the web copy, if only temporarily.

2.1 Metrics

The following metrics are of interest:

e Refresh cost: the total resources spent refreshing
web pages. Following previous work we make the ap-
proximation that every refresh event incurs equal re-
source utilization, and measure refresh cost as the total
number of refresh events during in a given time period.

e Divergence: the degree to which the crawler’s local
cache of page content differs from the true web-resident
content, averaged across pages and across time.

Mathematically, we have a page divergence function D(P, P")
of two copies of a page: the true copy P and cached copy
P’. TImmediately following a refresh event, P = P’ and
D(P,P’) = 0. Later, if P undergoes updates such that
P # P D(P,P') > 0. (We give the exact form of the D(-)
function in Section 2.1.1.)

The overall divergence of the web cache at a given time is
defined as a weighted average across pages:

1
D(P)= — > Wp D(P,P) (1)
Pl i
where Wp denotes the importance or relevance weight of
page P, e.g., P’s pagerank or embarrassment coefficient [13].
Averaging across a given time interval (¢1,¢2), we have:

to 1
D(P, t1,t2) :/

T > We-D(P(t), P'(t)dt (2)

PeP

where P(t) denotes the true content of page P at time ¢,
and P’(t) denotes the (possibly out-of-date) content cached
for P as of time t.

2.1.1 Page Divergence Metric

Modern web pages tend to consist of multiple content
regions stitched together, e.g., static logos and navigation
bars, dynamic advertisements, and a central region contain-
ing the main content of the page, which is also dynamic
but behaves quite differently from advertisements. Conse-
quently, page divergence metrics that model a page as an
atomic unit of content are no longer a good fit.

The page divergence metric we propose is called fragment
staleness. It measures the fraction of content fragments that
differ between two versions of a page. Mathematically, we
treat each page version as a set of fragments and use the
well-known Jaccard formula for comparing two sets:

_EP)nF(P)|

PEP) =1 (R B O R @

where F'(P) denotes the set of fragments that comprise P.

As far as how we divide a page into fragments, we require
a method that is amenable to efficient automated compu-
tation, because we will use it in our crawling algorithms.
Hence we rule out sophisticated semantic approaches to page
segmentation, which are likely to be too heavyweight and
noisy for this purpose. A simple and robust alternative that
is well aligned with the way search engines tend to treat doc-
uments is to treat sequences of consecutive words as coherent
fragments. We adopt the well-known shingling method [2],
which emits a set of content fragments, one for each word-
level k-gram (k > 1 is a parameter).

Our rationale for adopting the fragment staleness metric
is as follows. Consider what would happen if the cached
copy of a page contains some fragments that do not appear
in the web-resident version: The search engine might display
the page’s URL in response to a user’s search query string
that matches the fragment; yet if the user clicks through she
may find no relevant content. Conversely, if a query matches
some fragment in the web-resident copy that does not ap-
pear in the cached copy, the search engine would overlook
a potentially relevant result. Fragment staleness gives the
likelihood of introducing false positives and false negatives
into search results.®

Fragment staleness generalizes the “freshness” metric of [4,
6], which we refer to in this paper as holistic staleness (stale-
ness is the inverse of freshness). Holistic staleness implicitly
assumes one content fragment per page and yields a Boolean
response: each page is either “fresh” or “stale.”

2.2 Optimal Recrawling

A theory of optimal recrawling? can be developed in a
manner that is independent of any particular choice of per-
page divergence metric. The goal is a page revisitation pol-
icy that achieves minimal time-averaged divergence within
a given refresh cost budget. For the sake of the theory let

1To account for nonuniform importance or relevancy of frag-
ments, one can extend our formula to associate a numeric
weight with each fragment, along the lines of [12]. The tech-
niques presented in this paper are not tied to uniform weight-
ing of fragments.

2This theory was first presented in [10], in a somewhat dif-
ferent context.

us assume that for each page P, divergence depends only
on the time tp since the last refresh of P. Assume fur-
thermore that, other than in the case of a refresh event,
divergence does not decrease. Under these assumptions we
can re-express divergence as D(P(t), P'(t)) = Dp(t — tp),
for some monotonic function Dp(-).

Let T be any nonnegative constant. It can be shown using
the method of Lagrange Multipliers that the following revis-
itation policy achieves minimal divergence compared with
all policies that perform an equal number of refreshes:

At each point in time t, refresh exactly those pages that have
Up(t —tp) > T, where

Up(t) =t Djp(t) — /O'D;;(x) dz (4)

Intuitively speaking, Up(t) gives the utility of refreshing
page P at time ¢ (relative to the last refresh time of P). The
constant T represents a wutility threshold; we are to refresh
only those pages for which the utility of refreshing it is at
least T'. The unit of utility is divergence X time.

2.3 Discussion

Figure 2 shows divergence curves for the two web pages
illustrated in Figure 1. The horizontal axis of each graph
plots time, assuming the crawler refreshes both pages at time
0. The vertical axis plots divergence, under the fragment
staleness metric introduced in Section 2.1.1.%

If we expect the divergence curve of a page to behave sim-
ilarly after the next refresh as it did after the ¢ = 0 refresh,
then we should favor refreshing Page B over refreshing Page
A at the present time. The reason is that refreshing Page B
gives us more “bang for our buck,” so to speak, than Page A.
Utility at time ¢ is given by the area of the shaded region.
Page B has higher utility than Page A, which matches our
intuition of “bang for buck.”

In addition to giving the intuition behind the utility for-
mula derived in Section 2.2, this example also illustrates
the appropriateness of fragment staleness as a divergence
metric. Although our generic theory of optimal revisitation
of Section 2.2 can be applied to holistic staleness as well
(see Appendix A; our result matches that of [4]), the nature
of the holistic staleness metric can lead to undesirable be-
havior: Under a revisitation policy that optimizes holistic
staleness, Pages A and B, which undergo equally frequent
changes, are treated identically—either both ignored or both
refreshed with the same frequency.

One may wonder whether a simpler utility function such
as Up(t) = Dp(t) (i.e., prioritize refreshing based on current
divergence) may work nearly as well as the theoretically op-
timal formula given in Equation 4. We have verified em-
pirically via simulation over real web data (see Section 3.1)
that refreshing according to Equation 4 yields significantly
improved staleness for the same refresh cost, compared with
using the naive form Uy (t) = Dp(t). In fact, the naive form
even performs worse than uniform refreshing, which is to be
expected in light of the findings of [4].

3In Figure 2 divergence usually increases or remains con-
stant over time, but occasionally undergoes a slight decrease.
These decreases are due to a few fragments reappearing af-
ter they had previously been removed from the page. (The
visualizations of Figure 1 do not show lapses in fragment
presence.)

Page A

2500

2000 _/

utility

=
Ul
o
o

divergence

1000

500

0

Page B

utility

/
/

0 2 4 6 8 1012 14 1618 202224262830 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

time (days)

time (days)

Figure 2: Two divergence graphs, with utility.

3. ANALYSIS OF WEB DATA

In this section we study the information longevity char-
acteristics of real web pages. After describing our data
sets in Section 3.1 we measure the (lack of) correlation be-
tween information longevity and change frequency in Sec-
tion 3.2. Then in Section 3.3 we propose and validate a
generative model for dynamic web content. Lastly in Sec-
tion 3.4 we measure the potential performance gain from use
of a longevity-aware revisitation policy.

3.1 Data Sets

We use two real web data sets:

¢ Random. We obtained a random sample of 10,000
URLs from Yahoo's crawled collection, and configured
a crawler to download the content of each URL once
every two days over the course of several months in
2006. A total of 50 snapshots were obtained.

e High-quality. Our second data set is based on a
random sample of 10,000 URLs from the OpenDirec-
tory [11]. We consider this data set to consist of much
higher quality pages than random ones, on average.
For this data set we obtained 30 temporal snapshots,
again by downloading each page every second day.

Within each data set we assign uniform importance weights
(Wp =1 for every page).

The high-quality data set is of significantly more inter-
est to study than the random data set, because crawlers
typically avoid recrawling low-quality pages frequently. The
interesting question is how frequently to recrawl each high-
quality page. For most of our experiments we only report
results on the high-quality data set, due to space constraints.
In general the two data sets yield similar results.

Unfortunately a few page snapshots are missing from the
data, because in some cases the server hosting a given page
was unreachable, even after several retries. In these rare
cases we substituted the content from the previous snapshot.

To evaluate page revisitation policies (Sections 3.4 and 5),
we need a notion of “ground truth.” Since we are not the

25
i
++ +
Zz 20 &7 1
R
NI 3 ++
S 15| g™ . .
P ' :
S :
T 10} o 1
£ T
S i A P
= 5+t ##ﬁﬂ& T A b
G s
0 +¢+ ++J‘j+ iy i‘ + ‘ %% ‘
0 0.2 0.4 0.6 0.8 1
change frequency
Figure 3: Change frequency versus information
longevity.

originators of the web pages in our data sets, we do not
have access to complete update histories. The only infor-
mation available to us comes from our bi-daily snapshots,
and we need to interpolate. Our method of interpolation is
described in Appendix B.

3.2 Information Longevity Distribution

Figure 3 plots change frequency versus information longevity
for the high-quality data set. Each point denotes a page.
Change frequency is computed as the number of snapshots
that differ from the previous snapshot, normalized to [0, 1].
Information longevity is the average lifetime of fragments
(shingles) on the page, in terms of the number of contigu-
ous snapshots in which a given shingle occurred (shingles
that were present in the initial or final snapshots are not
included, since we are unable to determine their lifetimes).

The fact that the points in Figure 3 are substantially
spread out indicates that information longevity is not strongly
correlated with change frequency (the correlation coefficient
is 0.67). In other words, if we are told the change frequency

of a page, we cannot accurately predict the longevity of its
content. This observation, combined with the fact that in-
formation longevity is a major determinant of effective page
revisitation strategy (Section 1), motivates the study of in-
formation longevity on the web.

3.3 Generative Model

We model a page as a set of independent content regions,
where the temporal behavior of each region falls into one of
three categories:

e Static behavior: content essentially remains unchanged

throughout the page’s lifetime, such as templates.

e Churn behavior: content is overwritten repeatedly,
such as advertisements or “quote of the day.”

e Scroll behavior: content is appended periodically,
such as blog postings or “what’s new” items. Typi-
cally, as new items are appended, very old items are
removed.

Page A in Figure 1 consists of a small static region (tem-
plates) and a larger churn region (advertisements). Page B
consists of a large static region (templates), a churn region
(advertisements) and a scroll region (recipe postings).

In our generative model, each churn or scroll region R has
an associated Poisson update process with rate parameter
Ar (in our data sets updates closely follow a Poisson dis-
tribution, which is consistent with previous findings). In a
churn region, each update completely replaces the previous
region content, yielding the fragment lifetime distribution:

P(lifetime <t) =1 — e(ZARD)

In a scroll region each update appends a new content
item and evicts the item that was appended K updates
previously, such that at any given time there are K items
present.? The fragment lifetime distribution is:

1— — Qrt)i-e

P(lifetime < t) = T
i=0

Figure 4 plots the lifetime distributions for a churn region
and a scroll region with K = 10, where both regions have
the same update rate Ag = 0.25. The two distributions are
quite different. Fragment lifetimes tend to be much longer
in the scroll case. In fact, in the scroll case it is unlikely for
a fragment to have a short lifetime because it is unlikely for

ten updates to occur in rapid succession, relative to Ag.

3.3.1 Model Validation

To validate our generative model, we analyzed the real
fragment lifetime distribution of pages from the high-quality
data set. We focused on a set of pages that have the same
average change frequency Ap = 0.25. We assigned an esti-
mated K value to every non-static fragment, based on the
number of page update events the fragment “survives” (i.e.,
remains on the page). For each page we found the most
common K value among its fragments.

We obtained three groups of pages: those whose dom-
inant K value is 1 (churn behavior), those dominated by
K = 2 (short scroll behavior), and those dominated by

4In the case of K = 1 the scroll model degenerates to the
churn model. Nonetheless it is instructive to consider them
as two distinct models.

1 [
>
= 0.8 1
Ne)
3
e 06t X]
o & churn —e—
2 ¥ scroll (K=10) -
£ 04 X]
:
3 02 jﬁ 1

O L L L

0 20 40 60 80 100
lifetime

Figure 4: Cumulative distribution of fragment life-
times, under two different content evolution models.

'.l'-;ilixxx gunt
' a xgm

£ 087} At gt |
st 2" L "
< . ﬁﬁ u'-

L >] |
g 0.6 ' ﬂn iy
0 g LB churn (data) =
= 047 L@ xm churn (model) ¢ A
= *a x" scroll (K=2; data) =
S L O ¥ scroll (K=2; model)
3 02fe., scroll (K>2; data) x|

" scroll (K>2; model) =

(o) | : : : : :
0 5 10 15 20 25 30

lifetime
Figure 5: Actual and modeled lifetime distributions.

scroll behavior with some K > 2 (the third category was
not large enough to subdivide while still having enough data
for smooth lifetime distributions). Figure 5 plots the frag-
ment lifetime distributions for the non-static fragments of
the three groups of pages, along with corresponding lifetime
distributions obtained from our generative model. Each in-
stantiation of the model reflects a distribution of K values
that matches the distribution occurring in the data.

The actual lifetime curves closely match the ones pre-
dicted by the model. One exception is that the K > 2
curve for the actual data diverges somewhat from the model
at the end (top-right corner of Figure 5). This discrepancy
is an unfortunate artifact of the somewhat short time dura-
tion of our data set: Fragments present in the initial or final
snapshot of a page were not included in our analysis because
we cannot determine their full lifetimes. Consequently the
data is slightly biased against long-lifetime fragments.

Unlike the right-most curve of Figure 4, none of the curves
in Figure 5 exhibit the flat component at the beginning. The
reason is that in each of our page groups there is at least
some K =1 content that churns rapidly.

3.3.2 Implications

In our data set, churn behavior accounts for 67% of the
non-static fragments, with 33% exhibiting scroll behavior

0.1

0.09 uniform - 1
§ FS-S =

HS-S —8—

& 008} FSS ——]
% HS-D
€ 0.07 |
[0}
£
g 006 1
S
© 0.05 1
(9]
>
©

004 w& o ETB— ,

003 1 1 1 1

0 0.1 0.2 0.3 0.4 0.5

refresh cost

Figure 6: Performance of offline revisitation policies.

(K > 1). Based on these findings we conclude that about
a third of the dynamic content on high-quality web sites
behaves in a scrolling fashion. The prevalence of scrolling
content points to the inadequacy of models that only account
for churning content, including the ones used in pervious
work on recrawl scheduling.

3.4 Offline Page Revisitation Policies

Now that we have developed an understanding of infor-
mation longevity as a distinct web evolution characteristic
from change frequency, we study whether there is any ad-
vantage in adopting a longevity-aware web crawling policy.
For now we consider offiine policies, i.e., ones that rely on
a-priori measurements of the data set to set the revisitation
schedule (we consider online policies in Sections 4 and 5).

The offline policies we consider are:

e Uniform: refresh each non-static page with the same
frequency. Ignore static pages.

e Fragment staleness with static input (FS-S): the
optimal policy for fragment staleness as derived in Sec-
tion 2.2, given a-priori knowledge of the divergence
function D% (+). (We estimated Dp(+) offline: For each
t let Dp(t) equal the average divergence between pairs
of snapshots separated by ¢ time units.)

e Holistic staleness with static input (HS-S): from
[4], the optimal policy for holistic staleness, given a-
priori knowledge of each page P’s change frequency
Ap. (We estimated Ap offline by dividing the total
number of changes by the total time interval.)

e Fragment staleness with dynamic input (FS-D):
the same as F'S-S except instead of using a static, time-
averaged divergence function D%(-), at each point in
time use the divergence curve that occurred between
the time of the previous refresh and the current time.

e Holistic staleness with dynamic input (HS-D):
the same as FS-D, but substituting holistic staleness
as the divergence metric.

Figure 6 shows how these policies perform on the high-
quality data set. The x-axis plots normalized refresh cost (1
corresponds to refreshing every snapshot of every page). The

y-axis plots average fragment staleness as per Equations 2
and 3 (Section 2.1).> On both axes, lower is better.

Roughly half of the pages are completely static, so the
largest interesting value of refresh cost is 0.5. Even if we
do refresh every non-static page at every opportunity (ev-
ery two days, in our data set), staleness still does not go to
zero due to divergence during the two-day period between
refreshes. (Recall from Section 3.1 that we interpolate be-
tween snapshots.)

The FS-S policy is roughly the analogue of HS-S. Both
assume stationary page change behavior (encoded as Dp(-)
and Ap, respectively). Comparing these two, we see that
the fragment-based policy (FS-S) performs significantly bet-
ter, especially if we consider uniform refreshing as the base-
line. The fragment-based policy is geared toward refreshing
content of high longevity, and avoids wasting resources on
ephemeral content.

Turning to the dynamic policies FS-D and HS-D, we again
see the fragment-based policy (FS-D) performing better.
Also, both dynamic policies vastly outperform their static
counterparts, which points to adaptiveness as a big win.

4. ONLINE REVISITATION POLICIES

We now turn our attention to online page revisitation poli-
cies. An online policy is not given any a priori information
about page change behavior, and must expend refreshes in
order to learn how pages behave. There is little previous
work on this topic.

In this section we present two online revisitation policies.
We begin by introducing a data structure common to both
policies, called a change profile, in Section 4.1. We then
present our two online policies in Sections 4.2 and 4.3. Both
policies are based on our underlying theory of optimal re-
freshing (Section 2.2) and are governed by a utility thresh-
old parameter T'; we discuss how to choose T" in Section 4.4.
Lastly, in Section 4.5 we give a method of bounding the risk
associated with overfitting to past observations.

4.1 Change Profiles

A change profile of page P consists of a sequence of (time,
divergence) pairs, starting with a base measurement (tg, 0)
and followed by zero or more subsequent measurements in
increasing order of time. Time tp is called the base time,
and represents the time at which the change profile was ini-
tiated. Each subsequent measurement corresponds to a re-
fresh event performed subsequently to tp by the revisitation
policy. All divergence values in the profile are computed
relative to the base version P(tg).

An example change profile is: ((10, 0), (12, 0.2), (15,
0.2), (23, 0.3)). This profile indicates that the refresh
times for this page include 10, 12, 15 and 23, and that
D(P(10),P(12)) = 0.2, D(P(10),P(15)) = 0.2, and
D(P(10), P(23)) = 0.3. P(10) is the base version; 10 is
the base time.

Our online revisitation policies initiate and maintain change
profiles in the following manner. Each time a new refresh
of P is performed, a new change profile is created with base
time tp set to the time of the refresh. Each subsequent time

5We also generated an analogous graph that plots holistic
staleness on the y-axis (omitted due to space constraints).
As expected the HS policies outperform the FS policies on
that metric.

t that P is refreshed, the profile is extended with the pair

Up to h change profiles are maintained simultaneously,
each with a different base version. (h is a positive integer
parameter that governs the amount of history tracked by
the policy.)

4.2 Curve-Fitting Policy

Our first policy is based on fitting divergence curves over
the sampled divergence values found in the change profiles.
It works as follows. Immediately after each refresh of page
P, the policy updates its change profiles and then computes
anew refresh period ¢p, i.e., the period of time to wait before
refreshing P again. The process for computing ¢p has three
steps:

1. Combine change profiles. Combine the observa-
tions recorded in the h different change profiles, into
a single profile. In particular, first normalize each
change profile by subtracting the base version from
each recorded timestamp, so that each profile starts
from ¢t = 0. Then take the union of the (¢, D) pairs
across all profiles, while combining entries that have
the same ¢ value by taking the average D value.

2. Fit divergence curve. Fit a continuous divergence
curve to the set of points in the combined change pro-
file, based on our generative model of Section 3.3. In
particular, fit one curve that corresponds to churn be-
havior, and a second curve for scroll behavior, and
select the one that yields the closest fit.

3. Compute refresh period. Using Equation 4, set
the refresh period ¢p equal to the ¢ value that causes
Up(t) =T, where T is the utility threshold parameter.

To ensure that enough observations are collected at the
outset, for each newly-discovered page P there is an ini-
tial learning phase in which the maximum refresh period is
bounded by [- n where n denotes the total number of past
refreshes of P and [> 0 is a learning parameter. Hence
initially the policy is required to perform refreshes in rapid
succession, but the maximum refresh period grows linearly
over time. (Other functions to control the learning phase are
also possible, and may be worth studying in future work.)

4.3 Bound-Based Policy

Our second policy does not attempt to fit a divergence
curve based on a generative model. Instead, it places conser-
vative bounds on divergence, and uses the bounds to adjust
the refresh period ¢p adaptively.

In addition to the h change profiles, for each page the
bound-based policy maintains a reference time tg. The pol-
icy attempts to find the optimal time for the next refresh,
tr+¢p, where ¢pp denotes the optimal refresh period. Once
the policy believes it has reached or passed time tr + ¢p it
resets the reference time tr to the current time, and repeats
the process. Each iteration is seeded with the refresh period
used in the prior iteration, so that the process converges
(assuming the page behavior is stationary).

The exact policy is as follows:

1. Determine divergence bounds. For each change
profile, determine upper and lower bounds on diver-
gence as shown in Figure 7. The upper bound curve
represents the extreme situation where the jump in di-
vergence between two successive observations occurs

divergence

Figure 7: A change profile, with lower and upper
bounds on the area under the divergence curve.

immediately following the first observation. The lower
bound curve represents the opposite extreme, in which
the jump in divergence occurs immediately prior to the
second observation. This manner of fitting divergence
bounds is conservative: it assumes no model other than
monotonic divergence.

2. Combine divergence bounds. Combine the upper
bounds from the h change profiles into a single one
by averaging. Combine the lower bounds in the same
fashion.

3. Determine utility bounds. Compute the area un-
der the divergence upper bound curve, in the interval
[0,t — tr], where ¢ is the current time and tg is the
reference time. Do the same for the divergence lower
bound curve. Label these two areas Ao and A,
respectively, as shown in Figure 7. Then compute cor-
responding bounds on utility U as per Equation 4,
yielding Ui and Uj,qg respectively.

4. Adjust refresh period and reference time.

o If Upow < T, set ¢pp :=(t —tr) - 2.

e IfUpin > T, reset the reference time to the present
time (¢tg :=t), and set ¢p := ¢pp/2.

The rationale behind the above policy is that if the upper
bound on utility is below the utility threshold 7', the period
(t — tr) was shorter than the optimal refresh period ¢p, so
we should continue to explore larger refresh periods. We
do so by doubling the quantity (¢ — tr) and scheduling the
next refresh that many time units in the future. On the
other hand, if the lower bound on utility is above the utility
threshold, the period (¢ — tr) was longer than the optimal
period ¢Ep, so we need to start over with a new reference
time and explore shorter refresh periods. To ensure that we
use a small enough period to start with, we use half of the
current period ¢p.

There is a third case in which the utility bounds straddle
the utility threshold, i.e., Upin < T < Upae. In this case we
take the neutral action of leaving the refresh period as it is.

4.4 Setting the Utility Threshold

Overall, crawling resources must be shared between dis-
covery and retrieval of new content, and refreshing of old
content [7]. Hence there is an intrinsic tradeoff between
freshness and coverage. In view of this tradeoff, the fol-
lowing overall crawling strategy seems appropriate: when
there is an opportunity to boost freshness significantly by

refreshing old content, do so; dedicate all other resources to
acquiring new content.

From Section 2.2 we know that basing refresh decisions
on a fixed threshold of utility, measured according to Equa-
tion 4, is optimal in terms of freshness achieved per unit cost.
We leave the utility threshold T as a parameter to be set by
a human administrator who can judge the relative impor-
tance of freshness and coverage in the appropriate business
context. T is set properly iff (1) it would be preferable to
receive a freshness boost of magnitude T' (in units of diver-
gence X time) rather than download a new page, and (2) it
would be preferable to download a new page than to receive
a freshness boost of T — .5

In a parallel crawler, the value of T" may be broadcast
to all nodes at the outset of crawling (and during occasional
global tuning). Subsequently, all refresh scheduling decisions
are local, because they depend only on 1" and a given page’s
change profiles.

4.5 Bounding Risk

Given that web servers are autonomous and pages can
change arbitrarily at any time, it is important to mitigate
the risk associated with waiting a long time between re-
freshes. Our online revisitation policies (Sections 4.2 and 4.3)
aim to refresh a page whenever the estimated utility penalty
of not doing so exceeds T, in a best-effort manner. We wish
also to guarantee that in the worst case, the utility penalty
incurred without performing a refresh is at most p-7T', where
p > 1is a risk control parameter.

Let D4z denote the maximum divergence value allowed
under the chosen page divergence metric. (Dimqe = 1 under
our fragment staleness metric.) The maximum loss in utility
incurred during t time units is ¢ - Dyez. To cap the utility
loss between refreshes at p- T, we restrict the refresh period
¢p to remain less than or equal to p - T'/Dpas at all times.

S. ONLINE EXPERIMENTS

We evaluate our online page revisitation policies empiri-
cally, using simulation over our web data sets described in
Section 3.1. There are three sets of experiments:

e Comparison between our two policies. (Section 5.1)

e Measurement of the space footprint. (Section 5.2)

e Comparison with previous work. (Section 5.3)

5.1 Curve-Fitting vs. Bound-Based Policy

In our first experiment, we compare the performance of
our two online revisitation policies: the one based on curve-
fitting (Section 4.2) and the one based on divergence bounds
(Section 4.3).

We perform separate measurements of warm-up behavior
and steady-state behavior. Warm-up behavior occurs during
the time following discovery of a new page, while an on-
line policy focuses on learning the page’s change patterns.
Steady-state behavior follows, wherein the policy focuses
primarily on exploiting its accumulated understanding of the
page.

Figure 8 shows the policies’ warm-up behavior—their per-
formance in the first 30 days of our high-quality data set.

5Designing a meta-policy that quantifies the utility of down-
loading various new pages, and weighs that against the util-
ity of refreshing, is beyond the scope of this paper.

0.1
]

0.09 [*®)\ offline FS-D =
a uniform -
2 curve-fitting
(;'; 0.08 bound-based —8— |
< 0.07
£

n

g 006
S
& 005 .
[}
> [|
© |

0.04 b

0.03 L L L L L

0 0.1 0.2 0.3 0.4 0.5 0.6

refresh cost

Figure 8: Warm-up performance of online revisita-
tion policies, on high-quality data set.

0.1

0.09 | offine FS-D = 1
a [] X, uniform. -
2 curve-fitting
(;'; 0.08 |- bound-based —8— |
€ 007
(0]
£
g 006 =
5
S 0.05
2
1 n

0.04 | L

0-03 1 1 1 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6

refresh cost

Figure 9: Steady-state performance of online poli-
cies, on high-quality data set.

Figure 9 shows their steady-state behavior—their perfor-
mance in the final 30 days (there are 60 days total). In
both graphs refresh cost is plotted on the x-axis, and aver-
age fragment staleness is plotted on the y-axis.

The different points associated with a policy correspond to
different utility threshold (7°) values. For the bound-based
policy we used h = 5 change profiles, and risk parameter
p = 10. For the curve-fitting policy we again used h = 5,
and we tuned the learning factor [such that the investment
in learning is proportional to the refresh cost incurred.

For reference, in both graphs we also show the perfor-
mance of uniform refreshing and of the offline FS-D policy
(Section 3.4). Ideally no policy should perform worse than
uniform refreshing. FS-D is a hypothetical policy that has
full knowledge of the page’s behavior even when it is not be-
ing refreshed. It is effectively impossible for an online policy
to approach the performance of an offline one.

From Figure 8 we see that during warm-up the curve-
fitting and bound-based policies perform about the same
amount of exploration (reflected as refresh cost). For a given
exploration cost, the staleness level during warm-up roughly
coincides with uniform refreshing. Turning to Figure 9 we
see that in steady-state both of our policies perform sig-
nificantly better than uniform refreshing, with curve-fitting
slightly ahead of bound-based.

0.09 | curve-fitting (m=all, h=5) 1
a3 curve-fitting (m=8, h=5) -
2 curve-fitting (m=all, h=1) -
s 008 curve-fitting (m=8, h=1) 1
g bound-based (m=all, h=5) —8—
€ 007t bound-based (m=8, h=5) & |
9} bound-based (m=all, h=1) —&—
£ bound-based (m=8, h=1) ---@---
g 006
S
© 0.05
g
©

0.04

003 L L L L L

0 0.1 0.2 0.3 0.4 0.5 0.6

refresh cost

Figure 10: Impact of space-saving techniques on per-
formance.

5.2 Space Footprint

Our online revisitation policies maintain per-page state.
In the presence of billions of pages, it is important to con-
sider the total space footprint of this state.

For each page our policies maintain h change profiles, each
of which consists of a short sequence of numeric (time, di-
vergence) pairs. Furthermore, for each change profile a sum-
mary of the base version must be kept, to enable computa-
tion of divergence values relative to the base version.

A page summary consists of a list of page fragments. To
save space, each fragment is encoded as a hash value of the
shingle string, using a collision-resistant hash function. Fur-
thermore, following [2], rather than storing the complete
list of fragments, we retain only the m fragments of minimal
hash value, for some constant m > 0. A simple unbiased
estimator of the Jaccard distance based on minimal hash
value sets is given in [2].

The experiments reported in Section 5.1 used m = oo (all
fragments) and h = 5, where h is the number of histori-
cal change profiles and base version summaries maintained.
Figure 10 shows the performance of our curve-fitting and
bound-based policies under different values of m and h. As
we can see, there is little degradation in performance due to
truncating history and using compact fragment summaries
to estimate divergence.

With m = 8 and h = 1, we store just one base version
summary containing just 8 shingle hashes, which requires
32 bytes. In our experiments, change profile sizes ranged
from 4 to 12 observations, for a space footprint of between
32 and 96 bytes. The overall space footprint is between 64
and 128 bytes per page. If there are 10 billion pages, in the
worst case the total space footprint amounts to a little over a
terabyte. Modern crawlers spread the per-page state across
more than a thousand crawler nodes, for about a gigabyte
of state per node, which easily fits in memory on each node.

5.3 Comparison with Previous Work

We compare our online curve-fitting policy (Section 4.2)
against the policy proposed by Cho and Garcia-Molina for
optimizing holistic staleness [4] coupled with a method of es-
timating change frequency proposed by the same authors [5],
which we refer to as the CGM policy. Since that work does
not propose a way of scheduling exploratory refreshes for
learning purposes, we use a simple linearly-growing warm-

0.1
0.09 | offine FS-D = |
§] X, uniform -
curve-fittin,
% 0.08 |- CaM —a— |
£ 007 il
[0}
£
g 006 = 1
S s
g 005 1
% " e S
0.04 | n]
u
0.03 L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6

refresh cost

Figure 11: Comparison with previous work, on high-
quality data set.

0.2
® o018t " offline FS-D = 4
2 uniform %
° curve-fitting
g 016 | CGM —&— |
z .
[}
£
8‘) n
= 0.14 +]
(0] N
o | B e R E T
g | e T T
[}
3 012} "
01 L L L L

0 0.1 0.2 0.3 0.4 0.5 0.6
refresh cost

Figure 12: Comparison with previous work, on
random data set.

up schedule for both CGM and our own policy. After the
warm-up period we allow each policy to set its own refresh
schedule. We measure post-warm-up performance.

Figure 11 shows the result of this comparison, on the high-
quality data set. Almost 90% of the content fragments are
static, so it is trivial to achieve staleness below 0.1. On the
other extreme, 3% of the content is so dynamic that even
under bi-daily refreshing it does not remain synchronized for
long. Hence the “playing field” on which the policies compete
spans the 0.03—0.1 staleness range.

Figure 12 shows the same comparison, but on the ran-
dom data set. Observe that the minimum staleness level
achievable on the random data set is much higher than on
the high-quality data set. This difference is due to the fact
that random pages tend to have more dynamic content than
high-quality ones, perhaps aimed at attracting the attention
of search engines and users.

As expected our policy, which is optimized for the frag-
ment staleness metric, outperforms CGM in terms of frag-
ment staleness per refresh cost, on both data sets. Although
the performance difference is small in the low-cost/high-
staleness part of the graphs (upper-left portion), the gap be-
comes substantial as we move to the moderate-cost/moderate-
staleness part (middle portion) and beyond.

For example, on the high-quality data set our policy incurs
refresh cost 0.2 instead of 0.4 to achieve the same moderate
staleness level, which translates to refreshing pages once ev-
ery 10 days instead of every 5 days, on average. If there are
1 billion high-quality pages, this difference amounts to 100
million saved page downloads per day.

CGM assumes that every time a page changes, its old
content is wiped out (i.e., churn behavior), and therefore
ignores all frequently changing pages. In contrast, our policy
differentiates between churn and scroll behavior, and revisits
scroll content often to acquire its longevous content. The
only way to get CGM to visit that content is to have it visit
all fast-changing content, thus incurring unnecessarily high
refresh cost.

6. SUMMARY

We identified information longevity as a distinct web evo-
lution characteristic, and a key factor in crawler effective-
ness. Previous web evolution models do not account for the
information longevity characteristics we found on the web,
so we proposed a new evolution model that fits closely with
actual observations.

We brought our findings to bear on the recrawl schedul-
ing problem. We began by formulating a general theory of
optimal recrawling in which the optimization objective is
to maximize correct information x time. The theory
led us to two simple online recrawl algorithms that target
longevous content, and outperform previous approaches on
real web data.

Acknowledgements

We thank Vladimir Ofitserov for his invaluable assistance
with data gathering and analysis. Also, we thank Ravi Ku-
mar for suggesting a way to interpolate divergence values.

7. REFERENCES

[1] Z. Bar-Yossef, A. Z. Broder, R. Kumar, and
A. Tomkins. Sic Transit Gloria Telae: Towards an
Understanding of the Web’s Decay. In Proc. WIWW,
2004.

[2] A. Z. Broder, S. C. Glassman, and M. S. Manasse.
Syntactic clustering of the web. In Proc. WWW, 1997.

[3] J. Cho and H. Garcia-Molina. The Evolution of the
Web and Implications for an Incremental Crawler. In
Proc. VLDB, 2000.

[4] J. Cho and H. Garcia-Molina. Effective Page Refresh
Policies for Web Crawlers. ACM Transactions on
Database Systems, 28(4), 2003.

[5] J. Cho and H. Garcia-Molina. Estimating frequency of
change. ACM Transcations on Internet Technology,
3(3), 2003.

[6] E. Coffman, Z. Liu, and R. R. Weber. Optimal robot
scheduling for web search engines. Journal of
Scheduling, 1, 1998.

[7] J. Edwards, K. S. McCurley, and J. A. Tomlin. An
Adaptive Model for Optimizing Performance of an
Incremental Web Crawler. In Proc. WWW, 2001.

[8] D. Fetterly, M. Manasse, M. Najork, and J. L. Wiener.
A large-scale study of the evolution of web pages. In
Proc. WWW, 2003.

[9] A. Ntoulas, J. Cho, and C. Olston. What’s New on
the Web? The Evolution of the Web from a Search
Engine Perspective. In Proc. WWW, 2004.

[10] C. Olston and J. Widom. Best-effort cache
synchronization with source cooperation. In Proc.
ACM SIGMOD, 2002.

[11] The Open Directory Project. http://dmoz.org.

[12] S. Pandey and C. Olston. User-centric web crawling.
In Proc. WWW, 2005.

[13] J. Wolf, M. Squillante, P.S.Yu, J.Sethuraman, and
L. Ozsen. Optimal Crawling Strategies for Web Search
Engines. In Proc. WWW, 2002.

APPENDIX
A. OPTIMAL RECRAWLING FOR
HOLISTIC STALENESS

We specialize our model of optimal recrawling from Sec-
tion 2.2 to the case where the divergence metric of interest
is holistic staleness.

Following the model of [4], suppose each page P expe-
riences updates according to a Poisson process with rate
parameter Ap, where each update is substantial enough to
cause the crawled version to become stale. Consider a par-
ticular page P that was most recently refreshed at time O.
The probability that P has undergone at least one update
during the interval [0,] is 1 — e *P"*. Hence the expected
divergence D(P, P’) is given by Dp(t) = 1 — e *P*, The
expected utility of refreshing P at time ¢, according to Equa-
tion 4, is found to be:

_ 1 _ L\ e
UP(t)_Ap (t+)\P)e

The policy of refreshing a page whenever Up(t) > T (for
some constant T) results in identical schedules to those re-
sulting from the optimal policy derived in [4] for the same
holistic staleness objective.

B. INTERPOLATION OF DIVERGENCE

Our interpolation method starts by assigning to each page
an eagerness score, based on whether the divergence curve
tends to be concave (high eagerness) or convex (low eager-
ness). A page with a high eagerness score contains dynamic
content that has rapid turnover, such as advertisements.

Given three consecutive snapshots P(to), P(t1) and P(t2)
of a page P, eagerness is measured as:

D(P(to), P(t1))

E(P10) = 5(P(t0), P(e2))

The overall eagerness score E(P) € [0,1] is found by aver-
aging over all (to,t1,t2) triples for which all three snapshots
were downloaded successfully.

Now, suppose we have two consecutive snapshots P(t)
and P(ty+1) and wish to estimate divergence inside the in-
terval (P(tz), P(tz+1)), relative to some base version P(tg).
We do so by taking the average of the two endpoint diver-
gence values, weighted by eagerness. Mathematically, for
any ¢t € (tz,tz41) we assume D(P(tp), P(t)) = (1 — E(P)) -
D(P(t), P(t.)) + E(P) - D(P(t), P(to+1)).

