Skip to content

A platform-centric approach to developing analytical tools and solutions aiming to maximize the advantages of combining multiple analytic toolsets (AI/ML, BI, SQL, Quantum, IoT, MapReduce, NLP, DL/CV, etc.) in a single analytic process or a system of agent processes. Also, the InterSystems-led community for the practitioners of this approach.

License

master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.

Featured Materials

In English

Breaking News:

Agent IRIS*

Agent-IRIS

*In-Platform Agent-Based Simulation of a Connected Factory Cluster

In this paper we prototype and explore how multiple agent-based models of robotic factories connected to other robotic factories (represented by their respective models) can be orchestrated using an all-purpose data platform – thereby simulating descriptive and predictive properties of a group of factories (a factory cluster). For the underlying prototype, NetLogo suite was used to do factory agent-based simulation (re-using “Robotic Factory” model [1]) while InterSystems IRIS data platform was used for NetLogo orchestration and factory/cluster end-to-end simulation.

Webinars

Articles

Collaboration Experiences

Tutorials

Demos

In German

Breaking News:

Mit der Schlange in die Produktion: Python für (I)IoT-Anwendungen

csm_chris-ried-ieic5Tq8YMk-unsplash_850x473_c356a515eb

Python gilt als eine der beliebtesten Programmiersprachen von Entwicklern. Doch beim Datenbankzugriff und bei der Performance weist Python einige Nachteile auf. Abhilfe versprechen Lösungen, die Python näher an das eigentliche Herz von Anwendungen – die Daten – rücken. Welche Vorteile sich dadurch ergeben und was sich hinter „Embedded Python“ konkret verbirgt, erfahren Sie in diesem Webcast.

Webinars

In Russian

Breaking News:

Эксперимент IRIS

x9I5Th3vA_sRSn-RS6QWKYwM1fdJxXY0yyhhcP0qCbo

Платформенная агентная модель производственного кластера

В данной публикации мы описываем прототип и исследуем оркестровку нескольких агентных моделей связанных друг с другом роботизированных фабрик (представленных каждая своей моделью) с применением универсальной платформы данных – добиваясь симуляции наблюдаемых и прогнозных свойств группы фабрик (производственного кластера). В прототипе были задействованы программный комплекс NetLogo для агентных моделей фабрик (с моделью «Robotic Factory» [1] в качестве основы) и платформа данных InterSystems IRIS для оркестровки NetLogo и сквозной симуляции системы «фабрики-кластер».

Webinars

Articles

In French

Breaking News:

Comment construire et mettre en œuvre une stratégie Data Driven ?

LOGO-SCE-BLEU-2

Améliorer vos processus opérationnels ou prendre les bonnes décisions, la donnée s’impose comme un actif précieux et indispensable dans l’élaboration et la mise en œuvre d’une stratégie d’entreprise Data Driven. Pourquoi et comment mettre en place une stratégie Data Driven et avec quelles technologies ? Autant de questions abordées lors de cette prise de parole qui fera le point sur les bonnes pratiques à travers l’intervention d’experts et de témoignages clients dans la mise en place d’une stratégie Data Driven réussie.

Webinars

Links to Required Downloads

  • InterSystems IRIS Community Edition: download a community edition of InterSystems IRIS data platform here - create an account to start the download
  • ML Toolkit: Python Gateway: download an open-source set of extensions to InterSystems IRIS for in-platform orchestration of Python here
  • ML Toolkit: R Gateway: download an open-source set of extensions to InterSystems IRIS for in-platform orchestration of R here
  • ML Toolkit: Julia Gateway: download an open-source set of extensions to InterSystems IRIS for in-platform orchestration of Julia here

Repository Resources Legend

  • Programs: program classes for pre-configured showcases
  • Data: source data for showcases
  • Tables: table classes for showcases

Root Resources

Showcases (Programs/Data/Tables):

  • 000 Robotized ML - FACTORY.xml/FACTORY.zip/FACTORY.txt
  • 001 Sentiment Analysis - SENTIMENT.cls/SENTIMENT_NEG_UTF8.txt, SENTIMENT_POS_UTF8.txt, SENTIMENT_UNK_UTF8.txt/SENTIMENTNEG.cls, SENTIMENTPOS.cls, SENTIMENTUNK.cls
  • 002 Engine Condition Classification - ENGINES.cls/ENGINES_EVEN.txt, ENGINES_ODD.txt/ENGINESEVEN.cls, ENGINESODD.cls
  • 003 Reimbursement Request Check - RECORD.cls/RECORD_TEST.txt, RECORD_TRAIN.txt/RECORDTEST.cls, RECORDTRAIN.cls
  • 004 Retail Cannibalization Analysis - CANNIBALIZATION.cls/CANNIBALIZATION.txt/CANNIBALIZATIONVOLUMEYEARWEEKCATEGORYDESC.cls
  • 005 Marketing Campaign Optimization - CAMPAIGN.cls/CAMPAIGN_APPLY.txt, CAMPAIGN_TRAIN.txt/CAMPAIGNAPPLY.cls, CAMPAIGNTRAIN.cls
  • 006 Rail Time Series Discovery - INTRA.cls/INTRA.txt
  • 007 Housing Debts Prediction - HOUSING.cls/HOUSING_TEST.txt, HOUSING_TRAIN.txt/HOUSINGTEST.cls, HOUSINGTRAIN.cls
  • 008 Diseases Network Analysis - DISEASES.cls/DISEASES_MATRIX.txt, DISEASES_NODES.txt/DISEASESMATRIX.cls, DISEASESNODES.cls

About

A platform-centric approach to developing analytical tools and solutions aiming to maximize the advantages of combining multiple analytic toolsets (AI/ML, BI, SQL, Quantum, IoT, MapReduce, NLP, DL/CV, etc.) in a single analytic process or a system of agent processes. Also, the InterSystems-led community for the practitioners of this approach.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published